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Plan of this talk

Introduction: Asymptotic profiles for fast diffusion
e Previous results

e Problem, motivation
Stability of asymptotic profiles [A-Kajikiya'13]
e Definition of (in)stability for asymptotic profiles

e Stability criteria for isolated profiles

Stability analysis of non-isolated asymptotic profiles [A’16]

Instability of positive radial profiles in thin annular domains [A’16]
(cf. [A-Kajikiya'14])

Exponential stability of nondegenerate profiles of least energy
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1. Asymptotic profiles
for fast diffusion



Fast Diffusion equation (FD)

Consider the Cauchy-Dirichlet problem for the Fast Diffusion Equation (FD),

(1) O: (|u|™%u) = Au in Q X (0,00),
(2) u=20 on 90 x (0, 00),
(3) u(+,0) = ug in €2,

where . > 2 and Q is a bounded domain of RYY with smooth boundary OX2.

Background: singular diffusion of plasma (m = 3 by Okuda-Dawson '73).
Throughout (the most of) this talk, we assume that

m < 2% : and  u, € H (Q).
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Behavior of solutions: finite-time extinction

Extinction in finite time
[ Jt, = ti(ug) >0 st u(,t) =0 inQ VL2>t,. j

e Singular diffusion  Setting w = |u|™ %u, one can rewrite (FD) as

oyw = A (|w|m/_2w) =V. ((m' — 1)|fw|m'_2Vw),
diffusionzefficient

where m’ :(=m/(m — 1) € (1, 2).
e Separable solution Put u(x,t) = p(t)v¥(x), where p(t) > 0. Then

o Sy = —xp(t) for t>0, p(0) =1,

dt
® — AYP(z)= A" P(z) for x € Q, YPlan = 0.
- L 1 m-—1
= t) =t "2 (t, — )7 with t, == — - :
& p(t) ( )T wi N m— 2
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Asymptotic profiles of vanishing solutions

Berryman-Holland (’80) proved that

1

Vug € Hy () \ {0}, 3t = t.(uo) > 05 [lu(t)|lay < (B — )77

Then there exists an asymptotic profile of the vanishing solution u, i.e.,

() () = lim (. - tn) P 3u(x, t,) in HX(Q) for 3t, 7 t,,

and moreover, ¢ solves the Emden-Fowler equation (EF),

(5) —Ap = A, |0|™ %P in Q, ¢ =0 on O

with X,,, = 2= > 0 (cf. see also &).

m—2

(cf. Y.-C. Kwong ('88), DiBenedetto-Kwong-Vespri ('91), Savaré-Vespri ('94),

Feireisl-Simondon ('00), Bonforte-Grillo-Vazquez ('12)).
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Rescaled Problem (RP)

Apply the transformations (thent " t, < s 7 o0),

(7) v(x,s):= (t., —t)" Y " Dy(x,t) and s := log(t,/(t. —t)).

Then, ¢ = lim wv(s,) with s, := log(t./(t. — t.)).

Spn—>00

Moreover, rewrite (FD) as Rescaled Problem (RP):

(8) 95 ([v|™%v) = Av+A,[v[" v in Q X (0, 00),

(9) v=20 on 0L X (0, 00),
(10) v(+,0) = v in €,
where vg = t, (1) (" 2y and N\, = "m"’:; > 0. Here the function
1 Am
s— J(v(s)) := 5||va(s)||i2 — —||v(s)]|}%. is non-increasing.
m

Then, S := {asymptotic profiles for (FD)} = {nontrivial sol. of (EF)}

= {nontrivial stationary sol. of (RP)} = {nontrivial critical points of J(-)}.
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Asymptotic profiles are stable ?

If (EF) has a unique positive solution ¢, then all nonnegative solutions of
(FD) have the same profile ¢, i.e., ¢ is “globally stable”
(e.g., Berryman-Holland '80).

But, what happens if we take account of sign-changing solutions or of the

case that (EF) has multiple positive solutions ?

Q

Let ¢ be an asymptotic profile for (FD).

If ug € HJ () is sufficiently close to ¢, does the asymptotic profile (of the

solution u = u(x,t) of (FD)) for ug also coincide with ¢ or not ?

“Stability of asymptotic profile” for vanishing solutions of (FD)

[AK13] G. Akagi, R. Kajikiya, Manuscr. Math. 141 (2013), 559-587.

e Notions of stability and instability of asymptotic profiles for FDE.

e Stability criteria for isolated asymptotic profiles.
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2. Stability of asymptotic
profiles



Asymptotic profile in H (©2)
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Asymptotic profile in H (©2)
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Stability of the asymptotic profile ¢4

7/51



Instability of the asymptotic profile ¢4
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Stability /instability of asymptotic profiles

Let us recall the transformation,

v(x,s) = (t, —t) "V Dy(x,t) and s =log(t,/(t. —1t)) > 0.

In particular, note the relation vy = ¢, (ug) /2.

Define the set of initial data for (RP) by

X = {t.(uo) Y™ Pug: ug € Hy() \ {0}]
= {vo € Hy(Q): t.(vo) =1} (by tu(puo) = ™t (o)),
and then, we observe that wo € H; (Q2) \ {0} < vy € X.
(i) X is homeomorphic to a sphere in H;(2). Moreover, S C X.

(i) vo € X = v(s) € X Vs > 0.
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Phase set X and the projection of ug onto 0/51



U0 = (L0 2 Y b

0% -

Stability of the asymptotic profile ¢¢
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Definition of the stability /instability of profiles

~ Definition 1 (Stability of asymptotic profiles [AK13])
Let ¢ € H;(S2) be an asymptotic profile of vanishing solutions for (FD).
(i) ¢ is said to be stable, if for any € > O there exists 6 = d(e¢) > 0

such that any solution v of (RP) satisfies

v(0) € XN Bry(#36) = sup [[o(s) = Blluy < e
s€|0,00

(ii) ¢ is said to be unstable, if ¢ is not stable.

(ili) ¢ is said to be asymptotically stable, if ¢ is stable, and moreover,

there exists 09 > 0 such that any solution v of (RP) satisfies

v(0) € X N By(¢38) = lim [|v(s) — $lly = O

-

~

/

= Stability in Lyapunov’s sense of stationary points for (RP) on X’.
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Stability of asymptotic profiles

Def. Let d; be the least energy of J over nontrivial solutions, i.e.,

d, := iggJ(v), S = { nontrivial solutions of (EF)}.

A least energy solution ¢ of (EF) means ¢ € S satisfying J(¢) = d;.
Remark. Every least energy solution of (EF) is sign-definite.

~ Theorem 2 (Stability of profiles [AK13]) ~

Let ¢ be a least energy solution of (EF). Then

(i) ¢ is a stable profile, if ¢ is isolated in H}(€2) from the other least
energy solutions.

(i) ¢ is an asymptotically stable profile, if ¢ is isolated in H} (£2) from

the other sign-definite solutions.
\ %
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Instability of asymptotic profiles

~ Theorem 3 (Instability of profiles [AK13])

Let v) be a sign-changing solution of (EF). Then
(i) ¢ is NOT an asymptotically stable profile.

(ii) 7/ is an unstable profile, if ¢ is isolated in H (€2) from the set
{wesS: J(w) < J)}.

-

Roughly speaking,
e least energy solutions of (EF) are asymptotically stable profiles;
e sign-changing solutions of (EF) are unstable profiles

under appropriate assumptions on the isolation of profiles.
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Variational view of the stability criteria
(RP) can be expressed as a (generalized) gradient flow,

95 (|[v|™ %v) (s) = =J'(v(s)) in H (), s> 0.
Moreover, the energy functional J(+) has a mountain pass structure.

1
J(w) = 2| Vw3,

m |

Wl Ty w € HA(Q), m > 2.

1 H; ()

(cf. Nehari manifold N = {w € H}(Q) \ {0}: (J'(w),w) = 0})
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Variational view of the stability criteria

Key properties of the set X = {vg € H;(Q): t.(vo) = 1}

(i) voEX = Vs, >00, I(n) C(n), dp €S, v(s,) — O.
(ii) X is (sequentially) weakly closed in H (€2).

(iii)

(cf. Nehari manifold N = {w € H}(Q) \ {0}: (J'(w),w) = 0})
14/51



Variational view of the stability criteria

Key properties of the set X = {vg € H;(Q): t.(vo) = 1}

(i) voEX = Vs, >00, I(n) C(n), dp €S, v(s,) — O.
(ii) X is (sequentially) weakly closed in H (€2).

(iii) X is a separatrix between stable and unstable sets for (RP) in H;(£2).

(cf. Nehari manifold N = {w € H}(Q) \ {0}: (J'(w),w) = 0})
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Characterization of X

Global dynamics of solutions to (RP) can be completely clarified, i.e.,

H(Q)=XTUXUX"~

~ Proposition 4 (Characterization of X’)
Let v(s) be a solution of (RP) with v(0) = wvy.
(i) fvo € X = {vy € HX(): t,(vo) = 1}.then

v(sp) = ¢ €S strongly in H;(£2) as s,, — oo.

(ii) fvg € X1 := {vg € H;(): t.(vo) > 1}, then v(s) diverges
as s — oo. Hence X’ is an unstable set.

(iii) fvo € X~ := {vo € H;(2): t.(vo) < 1}, then v(s) vanishes
in finite time. Hence X~ is a stable set.

-

J
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3. Stability of non-isolated
asymptotic profiles



Beyond the criteria: annulus case

Let us consider the annular domain,

Q=An(a,b):={zeRV:a < |z| <b}, 0<a<hb.

If (b —a)/a < 1, then least energy solutions of (EF) are not radially
symmetric (see [Coffman '84] and also [Y.Y. Li '90], [Byeon '97]).

Then least energy solutions of (EF) form a one-parameter family in H (€2).
So this case is out of the criteria given by Theorem 2.
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Non-isolated profiles of least energy

The solitary assumption of asymptotic profiles is essentially needed to verify

their asymptotic stability. But, how about the stability ?

Namely, we shall discuss the following question:

Q

Are non-isolated asymptotic profiles of least energy always stable or not ?
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Non-isolated profiles of least energy

The solitary assumption of asymptotic profiles is essentially needed to verify
their asymptotic stability. But, how about the stability ?

Namely, we shall discuss the following question:

Q | Are non-isolated asymptotic profiles of least energy always stable or not ?

</5)
9

—
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Stability of all least energy profiles

Our result reads,

~ Theorem 5 (Stability of non-isolated profiles [A16]) ~

Let @ > O be any least energy solution of (EF).
Then ¢ is stable in the sense of Definition 1 (for possibly sign-changing

data).
- /

[A16] G. Akagi, Comm. Math. Phys. 345 (2016), 077-100.
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Idea of proof

Goal

vo~¢p on X = Vs>0, v(s)~¢ onX

Key claim:

vo~ @ onX = supllv(s)— vollpg-10) K 1.
s>0

Remark: It is not true, if we do not restrict the phase space onto X’.
Indeed, ¢ is a saddle point of J(-) over H;(f2).

=> The set X plays a crucial role !!

In particular, in the current setting, one may expect the existence of a “center

manifold” on X, since ¢ belongs to a one-parameter family of stationary

points.
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Lojasiewicz-Simon inequality for J(-)

Let ¢ > O be a least energy solution of (EF). Then by maximum principle,
0< ¢p(x) <3Lg inQ, 9,¢(x) <0 on IN.

To prove the main result, we shall employ (see [Feireisl-Simondon’00]):

~ Proposition 6 (tojasiewicz-Simon inequality for J(-)) ~
VL > L,, 30 € (0,1/2], Jw > 0, 36 > 0 s.t.
(£S) [J(w) = J(@)]"™" < w [|J' (W)l g1

forall w € Hy(R2), |lw(-)| < Lae inQ, ||w— ¢ g < 9.
. J
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LS for Lyapunov stability
Test (RP): 9, (|v|™ 2v) = —J’(v) by 9,v(s) to see that

(83(|v|m_2fv),6sv) - —diSJ(v(s)).

Suppose that v(s) is uniformly bounded for s > 0. Then

Cs ||8s (|v|™20) (s)]|, Ly S _iJ(v(s))

for some C'; > 0 (depending on L := sup,>, ||v(s)||L=). Note by the
t-S inequality that

(RP)

Has (lv|™ ) | (v(8) | e-1(02)

S o (Jwe) - I6)

(S)HH—l(Q)
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tS for Lyapunov stability

We obtain
Co (J@() = T@) " [, (017 70) () -1
d
< ——(T(w(s) ~ I(9))

In case J(v(s)) — J(¢) > O, it follows that

—2 d 0
[0 (121™720) ()| -1y < ~Cog; (F(0(5) = T(@)) -

_J/

N

=: H(s)

Integrate both sides over (0, s).
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tS for Lyapunov stability

Then

S Y s d
[ 10 (01770) () -1y s < —~C [ 7405 s
= —C3H(s) + C3H(0)
< C3H(0)
= &y(7(0(0) = J(#))

which implies

[[o]™2v(s) — [o]™20(0) ;1 ) < Cs(T(2(0)) — T(6))"

L1 if v(0) ~¢ onX.

= desired conclusion (by fundamental inequalities).
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A uniform extinction estimate for (FD)

~Lemma 7 (Uniform estimate for rescaled solutions) ~
3C' = C(N, m) > 0; Vsg € (0,log2), Vyy € X,

4dm
|v(s) (@) < C (e —1)"% R(vo)==3 forall s> so.

with kK := 2N — Nm + 2m > 0 (by m < 2%).
\ /

(cf. [DiBenedetto-Kwong-Vespri '91] for v > 0)

e For 0 < sg < 1, one can prove that

sup [[v(s) — voll ey < 1
36[0730]

e By Lemma 7, one can apply the £S5 argument for v(s) on [sq, 00):

v(so) ~¢p on X = Sup [v(s) — vollmp) < 1.
8>S0
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4. Instability of positive radial
profiles in annular domains



Positive radial profiles in annular domains

Let us recall the annular domain,
Q=An(a,b):={zeRV:a < |z| <b}, 0<a<hb.

Then (EF) admits a unique positive radial solution ¢ > 0 (cf. [Ni '83]).

If (b — a)/a <K 1, then least energy solutions of (EF) are not radially
symmetric.

Thereby, the positive radial profile  may NOT take the least energy and it is
NOT sign-changing. Hence ¢ is also beyond the scope of the stability criteria
of [AK13].
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[AK14] G. Akagi, R. Kajikiya, AIHP (C) 31 (2014), no.6 1155-1173.

Instability of positive radial profiles for N = 2

~ Theorem 8 (Instability of positive radial profiles [AK14]) ——

-

Let 2 = An(a, b) and assume that

b\ N3+ /b — a2 m — 2
11 — .
(11) (a) ( Ta ) <N—l

Let ¢ be the unique positive radial solution of (EF).

Then ¢ is NOT asymptotically stable in the sense of profile.

In addition, if (b — a)/a < 1 and N = 2, then ¢ is unstable.

Q

Can we prove the instability for general /N under the quantitative

condition (11) ?
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Instability of positive radial profiles for general NV

Our result reads,

~ Theorem 9 (Instability of positive radial profiles [A16]) ~
Let 2 = AN (a,b) and assume that
b\ M3+ /b—a\? m—2
NN
\Then the positive radial profile ¢ is unstable. )

Non-radial perturbation to ¢ (IN = 2 for simplicity):
Gc(x) = (1 +ecos@)p(r) for x = x(r,0).

Then ¢, & X. However, vy, 1= t*(¢€)—1/(m—2)¢€ c X.
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Proof

Under (11), one can (explicitly) construct vg . € X such that
voe = @ INHJ(Q) as e >0, and J(voe) < J(@) if € > 0.

Therefore there exist ). € S such that the solution v. of (RP) with
Ve(0) = v ¢ satisfies

ve(s) = o in HY(Q), J(.) < J(vor) < J ().

Claim. 1. does not converge to ¢» as € — 0.

Suppose on the contrary that b, — ¢. Then, due to the LS inequality (6),

J(e) = J(@) for e K1,

which is a contradiction to the difference of the energy.

Consequently, the solution v, of (RP) with v._(0) = vo ., cannot stay

within a small neighborhood of ¢. []
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J ()

Instability of other profiles

./ uniform in € 7 \

beq

UO,EJ.

By Lojasiewicz-Simon ineq.:

¢ |1(0) = J(w)['" < w|J'(w)]|u-1(q)

uniform 1in &

no critical points with different energies

29/51



Remarks

The main results can be extended to local minimizers of J over X,
i.e., ¢ € H;(2) \ {0} satisfying

J(¢) = inf{J(w): w € X N Byi(q)(¢;7m0)} for some ro > 0.
(1) Theorem 5 is extended as follows:

~ Theorem 10 (Stability of local minimizers of J over X') —

Let ¢ be a local minimizer of J over X'. Then ¢ is stable in the sense
of Definition 1.
N\

/

(2) Theorem 9 is extended to

~ Theorem 11 (Instability of sign-definite profiles) ~

Let ¢ be a positive or negative profile except for local minimizers of

J over X. Then ¢ is unstable.
N\ A
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5. Exponential stability of
asymptotic profiles



Hierarchy of stability

/ Notion of stability \

Exponential stability

J
Asymptotic stability

U

\ Stability /

Q | Can we prove exponential stability for some class of isolated asymptotic

profiles of least energy ?
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Hierarchy of stability

/ Notion of stability <= Criteria \

Exponential stability ?
Y M
Asymptotic stability isolated profiles of LE
4 a

Q

\ Stability any profiles of LE /

LE = least energy

Can we prove exponential stability for some class of isolated asymptotic

profiles of least energy ?
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Exponential stability of non-degenerate LESs

~ Theorem 12 (Exponential stability of non-degenerate LESs) ~

Let » > O be a non-degenerate least energy solution of (EF), namely,
Ly:=—A+ Ap(m — 1)|p|™ 2 is invertible.

Then ¢ is exponentially stable, i.e., ¢ is stable, and moreover,

e there exist C, u, 69 > O s.t. any solution v(x, s) of (RP) satisfies
|v(s) — bllai) < Ce™  forall s >0,

provided that v(0) € X and ||[v(0) — @[ g1(q) < do.

In particular, ;o = (€2, N, m, ||[,;1||)
N\ /

cf.) Exponential convergence of any nonnegative solution for (FD) with

m < my for some my € (2, co) (Bonforte-Grillo-Vazquez '12).
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Outline of proof

Since J"”(¢) = L4 is non-degenerate, one can prove the following gradient
inequality:

~ Proposition 13 (Gradient inequality) ~

For any w > ||£;1||£(H_1(Q);H3(Q)), there exists & > 0 such that

(12) T (w) — J(P)]"* < w|| T (w)]| 10

for all w € Hy () satisfying ||lw — ¢|| g1 () < 0.

\ /
Remark: In LS inequalities, it could be difficult to identify the exponent 6
(indeed, O might be less than 1/2). On the other hand, 8 = 1 /2 will play a
crucial role to prove the exponential stability.
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Outline of proof
Test (RP): 9, (|v|™ 2v) = —J’(v) by ,v(s) to see that

\(83(|v|m_2v),83v2 - —éJ(fv(s)).

N

(m—1) [q [v]™=2|8;0[2 dz = =4 [, 8502 |2 da
Since ¢ is stable (i.e., ||v(s)|| 1) = ||®] H2(q)). one can derive

d

C |9 (Jo|™ ") < —5;J(v(s))

(s) HH 1(0) =
for some C' > 0 depending on o.
Here, by gradient inequality, we find that

(RP)

|85 (Jv|™ %) 1T (v(8)) || -1

o (I(w(s)) = T(9)) -

(S)HH—l(ﬂ)
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Outline of proof

We obtain

Cw(J(0(s) — J(9)) < — (I (v(s)) — I (0))
It follows that
0 < I(0(s)) — I(®) < (J(W(0)) — T(@)) e,

On the other hand, as in the proof of stability, one can derive

C d

185 (0] 20) (8) 110 < =~ (T (v(5)) — T ()

0 ds

Integrate this over (s, c0). Then

[ 10 (1em20) @)l sy dor < 5 (T0()) - T(8)) "
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Outline of proof

Hence

[0 = [0 20() g0y < [ 19 (0™ 20) (@) 112y do

< Z(Iw(s) ~I(6))" < Cet.

Furthermore, we can also derive

©

o [f—v(s)lfm < (™ — o™ 20(s), ¢ — v(s)) g < Ce5",
1 _ _ B
o ~(IVo(s)2: = V@I ) < (@iff. of J and || - [I7) < Ce "

and then, we finally obtain

lv(s) = ¢llzn = Vo)l — IVSll7n — 2(V, V(v(s) — ¢)) 2
< Ce 2%, [
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Examples of non-degenerate least energy solutions

e (Dancer ('88)). Let 2 < m < 2™ and €2 be a bounded convex domain
in R?, which is symmetric w.r.t. the coordinate axes. Then positive
solution is unique and nondegenerate (see also [Pacella '05]).

e (Lin ("94)). Let 2 < m < 2* and (2 be a bounded convex domain in
[R?. Then least energy solution is unique and nondegenerate.

e (Grossi ('00)). Let V > 3 and 2* — 6 < m < 2™ with a small 6 > 0.
Let © C RY be convex in x; and symmetric w.r.t. [x; = 0] for each
1 < ¢ < IN. Then positive solution is unique and nondegenerate.

e (Dancer ('03)). Let 2 < m < 2 + ¢ with a small 6 > 0 and €2 be any
bounded smooth domain in RY™Y. Then positive solution is unique and
nondegenerate.
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6. Sobolev-critical case

Work in progress

joint work with N. lkoma (Keio Univ., Japan)



FDEs with the Sobolev critical exponent

Let us consider the Sobolev-critical case (i.e., the case m — 27),

O (|ul” u) = Au+pu  in QX (0,00),
u=20 on 92 X (0, 00),
u(+,0) = ug in €2,

where Q is a b’dd domain of RN, N > 3, . < A;(Q2) and 2* = (N2_]\;)+

(here A1 (€2) is the principal eigenvalue of —A). Then one can prove that

o for each ug € H;(S2) \ {0} there exists ¢.(up) > 0 such that
1/(2*—2 1/(2*—2
et = )7V < Nu®)lmy@) < Ct — Y™

forsome 0 < ¢ < C < +00.
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FDEs with the Sobolev critical exponent

Set v(x, s) := (t. — t);l/(z*_z)u(m,t) with s = log(t./(t. — t)).

Then v(x, s) solves (RP), that is,

Os (|v|” ?v) = Av+ pv + Afv]” v in Q x (0, 00),

v=20 on 9 x (0, 00),
v(+,0) = vy in €,
where A, = =2 > 0 and vy = t..(uo) /@ Du,y. Moreover,

e it holds that ¢ < [|v(s)|| g1y < C forall s > 0,

W(0(3)) 1= | Vo(s) 17+ Lllo(s)17: — 32 [[v(s) 2. s
non-increasing in s,

e however, the embedding H}(Q2) — L?"(£2) is no longer compact.
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Sobolev-critical case (contd.)

Even if m = 2%, the following facts are still valid:
e (v(sy)) is a (PS)-sequence for J () along some sequence s,, — oo,
o J,(w) > d, forall w € X (proof requires more effort),

e an asymptotic profile ¢(x) of w(x,t) can be defined as a limit of
v(x, s,) (in Hy(S2)) along a seq. s,, — +oo and characterized by

(BN)  —A¢ —pud = A|d|* 2¢ inQ, ¢|sq = 0.

e notions of stability of asymptotic profiles can be also defined in the same
manner for (regular) profiles,

On the other hand, it is unclear
does each solution v(x, s) have a (regular) asymptotic profile 7

due to the lack of compactness embedding H ] (2) — L*"(92).
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Sobolev-critical case without lower order term

As for the case u = 0, i.e.,

O (lul” *u) = Au in Q2 X (0,00),
u=20 on 9 x (0, 00),
u(+,0) =ug in €2,

Galaktionov and King ('02) If ug is positive and radial, then

1

u(®) || = C(t. — )T | log(t. — £)|77 1(1 + o(1))

ast "t,. Italso yields

N4-2
|lv(s)||p~e = C|s — logt.|>2(1 4+ o(1)) as s  oc.
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Sobolev-critical case without lower order term

If m = 2* and Q@ = RY, (FD) and J(-) are invariant under the scaling,

N —2
v(xz,s) — v,(&8) = nu= v(pg,s).
In particular, we remark that

e d, is never attained by non-trivial solutions to (EF). Furthermore, it is
characterized with a Talenti function W (x) by

1 A
dy = inf J(w) = 5/ VW (z)2dz — 22 [ W ()| de.
RN m

wES RN
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Global compactness result

By applying Struwe’s global compactness result (Struwe '84, Bahri-Coron '88),

~ Proposition 14 (Global compactness)

(7 =1,2,...,k) to the limiting problem

such that, up to a subsequence,

k
R — oo and |v(sp)—¢—» )
71=1

-

— AP = A || in RY

D1,2(RN)

There exist k € N U {0}, sequences (R?) in (0, +o00) and () in €2,
a solution ¢ € H;(S2) of (EF) and nontrivial solutions ¢»? € D'?(R"Y)

— 0

as n — oo. Here ¥ (z) = (R?)N=2)/2¢i(RI (x — x9)).

~
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Global compactness result

~ Proposition 15 (Global compactness)

Moreover, we have

J(v(sn)) = J(#) + > Jun (¥7)

=0
with
1 ) A
Jrv (w) 1= —/ IVw(x)|“de — — lw(x)|"d.
2 Jpn m JpnN

Furthermore, if 2 = 7, then

R RI o -
T I =i +R R |x! —x! | —= +oo asm — +oo.

o
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Star-shaped domain case

Let us consider the case that (2 is strictly star-shaped w.r.t. O and 1y > 0
(hence vg > 0 and v(-, s,,) > 0). Then ¢ > 0 and ¥’ > 0.

On the other hand, by a well-known nonexistence result, (EF) admits no
positive solution. Hence ¢ = 0.

Furthermore, we claim that k£ = 0. Indeed, if kK = 0, then
v(s,) — 0 strongly in H;(2) and J(v(s,)) — 0.

However, since J(v(s,)) > dy > 0 by v(s,) € X, it yields a
contradiction.
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Star-shaped domain case (contd.)

Moreover, one can observe that 1) = W, a Talenti function, and

J(v(sn)) = kB with B := Jen(W).

Remark. k is uniquely determined, for J(wv(-)) is nonincreasing.

s

-

Observation
Let 2 be strictly star-shaped and assume that ug > 0 and kG <

J(ug) < (k + 1)3. Then v(-) forms at least one and at most k
bubbles along a sequence s,, — +o0, I.e.,

k
v(x, Sp) ~ Zwi(w) for n > 1,

=1

where 7 (z) = (RI)N-2/2W (R? (x —x2)), for some s,, — +o0.

~

J
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Brezis-Nirenberg result

~ Proposition 16 (Brezis-Nirenberg '83)
e Incase n > 4, forany pu € (0, X\1(£2)),

e In case n = 3, there exists p, € [0, A1(£2)) such that for any
TAS (“*7>‘1(Q))'

the Dirichlet problem

(BN) —Ap — pp = Ao

admits a positive solution ¢ > O.

=26 inQ, ¢lag =0

-

Remark Incase n = 3 and Q = B(0;1) C R?,

o 1< p = A1(£2)/4,

e (BN) has no positive solution for any p < p, = A1 (2)/4.
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Local compactness

~ Lemma 17 (Local compactness [BN '83, Struwe '90])
Any sequence (u.,,) in H;(€2) satisfying

Ju(un) = 78 < —SN/z, J,(un) — O strongly in H1(Q)

is precompact in H;(€2). Here Sy denotes the infimum of the Rayleigh

/

quotient,
, | V’w”%%n)
So 1= }nf T
wEHG (OO} ||| 7%
\
Remark Under the assumptions of the BN result, one can check the above

N/2.

for th t level, that is, d; , = inf —
or the mountain-pass level, that is, d, ,, irésJ <NS
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Results

~ Theorem 18 (Convergence to least energy profiles)

In addition to the assumptions of the Brezis-Nirenberg result, suppose that
1 _~N/2
Vo € X, J(’U()) < NSO .

For any s,, — 400, there exist a subsequence (n’) of (n) and a non-
trivial solution ¢ of (BN) such that

v(Sn) — ¢ strongly in H(2).
Moreover, if either » > 0 or N = 3., 4, then

v(s) — ¢ strongly in H,(2) as s — +oo.

-

~
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Results

Asymptotic profiles of least energy are stable.

[Theorem 19 (Stability of least energy profiles) ]
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Key of proofs

e Lack of compactness — Local compactness result

e Lack of uniform boundedness for v(x, s) — refine arguments to exclude
the use of uniform boundedness

— 1S inequality for power nonlinearities (with a singularity at the origin)
[Feireisl-Simondon '00]: L ineq. is applied to a cut-offed function.
Remove unif. b'ddness of solutions [A-Schimperna-Segatti, preprint]

2*—2,0) J,u()

— Energy arguments to handle 9;(|v

Improvable for the critical case [T




Remark

“Compactness’ is needed to realize a “reqular” asymptotic profile.

— FDE with a lower order term (cf. Brezis-Nirenberg type)

— “Symmetric” domains with a hole

“Non-compactness” causes a “singular’ asymptotic profile

(e.g., m = 2* and p = 0).

— Behavior of such singular solutions along a full sequence

— How to extend the notion of asymptotic profiles to singular ones ?
— How to define stability and instability of singular profiles ?

— How is the stability and instability of each sinqular profile ?
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