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1 Introduction

In this note we study the change of the stock exchange from the perspective of
the mathematical finance. In particular, we study option-pricing and arbitrage.
We shall show that the change of stock exchange may make the already traded
options mispriced, and this leads to arbitrage opportunities. Moreover, we give
an explicit strategy illustrating how to benefit from this.

This study is motivated by the following example case: Recently US (Raleigh,
NC) based software developer Red Hat, Inc. departed from NASDAQ Stock
Exchange to be listed to New York Stock Exchange (NYSE). One of the stated
intents of the relisting was to “reduce trading volatility” of the company stock
[4]. The decision seems to be related to the standard Black-Scholes pricing model
[2] used to determine the accounted cost of the stock options the company has
granted.

In our setting we shall assume that the change of the stock exchange yields an
automatic decrease in the volatility of the stock in question. In the last section,
we show evidence that this assumption is feasible.

2 Setting

We assume that the discounted stock-price process follows the classical, non-
homogeneous in volatility if stock exchange is changed, Black-Scholes model:

If no change of stock exchange is done then the discounted stock-price process
Sσ0

(t), 0 ≤ t ≤ T , is given by the dynamics

(2.1) dSσ0
(t) = µ0(t)Sσ0

(t) dt + σ0Sσ0
(t) dW (t), Sσ0

(0) = s0,

where µ0(t), 0 ≤ t ≤ T , is the mean return function of the stock, the constant
σ0 > 0 is the volatility of the stock, and W (t), 0 ≤ t ≤ T , is a standard Brownian
motion. If at some time t1 < T the stock is listed to a new stock exchange then
the stock-price process Sσ(t), 0 ≤ t ≤ T , is given by the dynamics

(2.2) dSσ(t) = µ(t)Sσ(t) dt + σ(t)Sσ(t) dW (t), Sσ(0) = s0,

where

σ(t) =

{

σ0, if t < t1,
σ1, if t ≥ t1.

Motivated by the introduction we assume that σ1 < σ0 . The mean function µ(t),
0 ≤ t ≤ T , must of course satisfy µ(t) = µ0(t) for t < t1 .

The model described above is admittedly somewhat simplistic. However, the
arbitrage we construct in the next section will hold in more complicated models.
Next two remarks elaborate some possible generalizations to the models.

Remark 2.3 It may not be reasonable to assume that the volatility σ1 in the
new stock exchange is deterministic. However, the claims of this note remain
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essentially true if one merely assumes that σ1 is a F(t1)-measurable random
variable, and σ1 < σ0 almost surely. Here F(t1) is the σ -algebra generated by
the stock-price process upto time t1 .

Remark 2.4 The classical Black-Scholes model assumes that the stock-price pro-
cess is driven by a Brownian motion. In particular, this means that the log-returns
are independent and Gaussian. There is, however, a lot of empirical evidence that
the log-returns are neither independent nor Gaussian. Nevertheless, the results
of this note remain essentially true if we consider a more general class of models
where the log-returns are merely continuous, satisfying a certain small ball prop-
erty, having the same volatility as the Brownian driven model. For details on
these generalizations we refer to [1].

Both models (2.1) and (2.2) fit well to the orthodoxy of Arbitrage Pricing
Theory: They are free of arbitrage and complete (see e.g. [3] for details). There
is a problem, however. The prices of the options in model (2.1) and (2.2) do not
coincide, and this gives rise to arbitrage opportunities. Indeed, in the next section
we construct one arbitrage opportunity by short-selling a convex European vanilla
option on the stock.

3 Arbitrage

Let f = f(S(T )) be a European vanilla claim on the stock-price at the terminal
date T . We assume that the function f : R+ → R+ is convex. So, e.g. call and
put options are covered in our considerations.

If the stock exchange is not changed then we are in the domain of classical
homogeneous Black-Scholes model. Indeed, suppose Sσ0

(t) = x . Then the stan-
dard martingale arguments together with Markovianity yield that the price of the
option f(Sσ0

(T )) at the time t < T is

vσ0
(t, x) = E

[

f
(

xeσ0(W (T )−W (t))− 1

2
σ2

0
(T−t)

)]

=
1√
2π

∫ ∞

−∞
f
(

xeσ0

√
T−ty− 1

2
σ2

0
(T−t)

)

e−
1

2
y2

dy(3.1)

(see e.g. [3] for details). Similarly, in the non-homogeneous case the price of the
option f(Sσ(T )) at the time t < t1 < T is

vσ(t, x) = E
[

f
(

xe
R

T

t
σ(s)dW (s)− 1

2

R

T

t
σ(s)2ds

)]

=
1√
2π

∫ ∞

−∞
f
(

xe
√

R

T

t
σ(s)2ds y− 1

2

R

T

t
σ(s)2ds

)

e−
1

2
y2

dy,(3.2)

when Sσ(t) = x (see e.g. [3] for details).

Now we show that for a convex option f the prices satisfy vσ0
(t, x) > vσ(t, x)

for all x ∈ R and t < t1 . This can be shown by using the formulas (3.1) and
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(3.2) directly. We choose an easier path, however. We only show that vσ0
(t, x) >

vσ(t, x) holds for call options and the general claim for convex options follows
then from the representation of a convex function as

(3.3) f(x) = f(0) + f ′(0)x +

∫ ∞

0

f ′′(y)(x − y)+ dy

(f ′ and f ′′ denote, if necessary, generalized derivatives). Indeed, equation (3.3)
says that a convex claim f can be constructed by putting f(0) amount of money
in the money markets, buying f ′(0) shares of stock and for each y > 0 buying
f ′′(y)dy number of call options.

Let us then consider the case of a call option. Using formulas (3.1) and (3.2),
respectively, we see that the price functions of a call option with strike K are

vcall
σ0

(t, x) = xΦ
(

dσ0
(t, x)

)

− KΦ
(

dσ0
(t, x) − σ0

√
T − t

)

,(3.4)

vcall
σ (t, x) = xΦ

(

dσ(t, x)
)

− KΦ



dσ(t, x) −

√

∫ T

t

σ(s)2 ds



 ,(3.5)

where

Φ(x) =
1√
2π

∫ x

−∞
e−

1

2
y2

dy

is the standard normal probability distribution function and

dσ0
(t, x) =

ln x
K

+ 1
2
σ2

0(T − t)

σ0

√
T − t

,

dσ(t, x) =
ln x

K
+ 1

2

∫ T

t
σ(s)2ds

√

∫ T

t
σ(s)2ds

.

But it is well-known that the function in the right-hand-side of (3.4) is strictly
increasing in σ2

0(T − t). So, the claim vcall
σ0

(t, x) > vcall
σ (t, x) follows from the fact

that σ2
0(T − t) >

∫ T

t
σ(s)2ds , since σ0 > σ1 .

Now it is easy to see how to construct an arbitrage opportunity. Indeed, an
informed investor who knows at the time 0 that the stock will be relisted at
a future time t1 < T to a new stock exchange knows that the true model for
the stock-price is (2.2). However, the “market in general” does not know this.
It assumes that the true model is (2.1). Thus it prices options according to
formula (3.1). But the informed investor knows that for convex options the price
(3.1) is too high, and the option can be replicated with a lower price (3.2). So,
the informed investor sells one convex claim short receiving vσ0

(0, s0) amount of
money. Then with capital vσ(0, s0) she replicates the convex claim f(Sσ(T )) by
using the standard Delta-hedging technique (see e.g. [3]). I.e. if Sσ(t) = x she
keeps

gσ(t, x) =
∂

∂x
vσ(t, x)

number of stocks and puts the remaining money

bσ(t, x) = vσ(t, x) − gσ(t, x) x
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in the discounted money market. Her riskless gain is the difference vσ0
(0, s0) −

vσ(0, s0) > 0. So, the informed investor has made not only arbitrage, but strong
arbitrage: She has generated strictly positive wealth with zero capital.

Remark 3.6 If the new volatility σ1 is not known but an F(t1)-measurable ran-
dom variable then the arbitrage opportunity given above will still hold provided
σ1(ω) ≤ σ0 + ε for almost all ω . In this case the informed investor cannot hedge
the claim f completely, but she can super-hedge it assuming that the new volatility
is σ0 − ε. So, the (strong) arbitrage opportunity remains.

Example 3.7 To further illustrate the arbitrage opportunity arising from chang-
ing a stock exchange let us consider a manager of a company who has a call option
on the company’s stock. The manager makes it so that the company’s stock will
change the stock exchange at a future date t1 . She knows that the future volatility
σ1 is smaller than the current volatility σ0 . Also, at time t1 the price of her
call option will decrease, at least in accounted value. Should the manager sell her
call option immediately? Yes. She can replicate the call option with less money
than she receives from selling it immediately. So, the decreased accounted value of
the call option is transferred into an arbitrage opportunity for the manager. So,
the old value of the the call option is equal to the new decreased value of the call
option plus the arbitrage generated by following the strategy described above.

The arbitrage opportunity constructed above was for an informed investor,
i.e. for an insider. But the changing of a stock exchange admits, in principle,
also arbitrage opportunities for the outsiders. Indeed, suppose that the company
announces, as they usually do, at some time t0 < t1 that they will change the stock
exchange at time t1 . Then the outsider will know from this “shock information”
that the market price vσ0

(t0, Sσ0
(t0)) at time t0 for a convex claim f is too

high and the correct replication price is vσ(t0, Sσ(t0)). So, the newly informed
investor can make arbitrage in a similar way as the informed insider investor
does. Of course, if the markets are efficient, the price of the convex option f at
time t0 must decrease to its correct value vσ(t0, Sσ(t0)) “instantaneously” so the
outsider arbitrage opportunity vanishes from the markets. The insider arbitrage
opportunities, however, remain.

4 Empirical Evidence

According to a press release issued on Nov. 17, 2006, Red Hat decided to switch
from NASDAQ into the New York Stock Exchange, on their belief, that it would
reduce trading volatility. The model (2.2) is constructed based on this essential
assumption. To determine its feasibility, we present the empirical evidence below.

The failure to obtain sufficiently good data, from companies which had
switched markets, has restricted our prospects to consider Red Hat stock prices
as our unique reliable source. Also, we could not obtain any data about option
prices on Red Hat’s stock. We collected our data from the Datastream’s global
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database at Helsinki School of Economics and Business Administration. We were
limited to using the data of adjusted closing prices, i.e. revised prices to include
any actions that occurred prior to the next day’s open.

We calculated an annualized historical volatility of total returns with a window
function of 60 points and 255 trading days (estimated number of trade days in a
year). Mathematically,

σ2
k =

1

59

59
∑

j=0

(

rk−j −
1

60

59
∑

j=0

rk−j

)2

× 255,

where rj = ln(Sj+1/Sj) and Sj is the stock price.

We used the so-called Bollinger bands [5] to identify periods of high and low
volatility. Bollinger bands are a technical analysis trading tool introduced in the
early 80’s to adapt trading bands and the concept of volatility as a function of
time, which it was believed to be static at the time. It is considered that prices are
high at the upper band and low at the lower band. The Bollinger Bands consists of
three curves designed to encompass the majority of a security’s price dynamics.
It is calculated according to equation (4.1). The middle band is a measure of
the intermediate term consisting of a convolution with a window function of 20
adjusted closing prices and it serves as a base for the upper and lower bands.
The width of the interval between the upper, the lower and the middle band is
determined by the volatility. In this case, 2.5 times the standard deviation of the
data used to calculate the middle band, the convolution:

(4.1) BB±
k =

1

20

19
∑

i=0

Sk+i ± 2.5σk.
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Figure 1: Bollinger bands along with the adjusted closing prices of Red Hat stock.

Figure 1 presents the Bollinger bands and the historical volatility of the total
returns. The range of time is chosen from 28-Feb-06 until 30-May-08. The an-
nouncement day and the first day of trading at NYSE are shown by two vertical
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lines respectively. The price process exhibits less fluctuations and smoother signal
after changing into the NYSE. This is translated into narrow Bollinger bands, a
sign of stable lower volatility; in contrast with, the wider bands before the release
press day; an indication of higher volatility. For the same reason, the second
subplot shows that the historical volatility drops drastically after joining NYSE
followed by a stable period lasting until now, the longest in Red Hat history, see
Figure 2. However, it may be observed that the change of volatility is not imme-
diate and even Bollinger bands became wider before getting narrow, or that in
the historical volatility there is an intermediate interval of time before reaching
the final level of volatility. This is due to the fast increase in price of the stock
during the period immediately after switching the market.

Mar06 Jul06 Oct06 Jan07 Apr07 Aug07 Nov07 Feb08 Jun08
1

2

3

4

5

6

P
ri

ce

Historical volatility

Mar06 Jul06 Oct06 Jan07 Apr07 Aug07 Nov07 Feb08 Jun08
10

15

20

25

30

35

P
ri

ce

RHT Price Process

Figure 2: The historical volatility drops drastically after joining NYSE followed by a
stable period lasting until now, the longest in Red Hat history.

We also carried out a left-tailed F-test according to [6]. Each set of data
contains 368 realizations from both markets. We formulate the problem as follows:
Consider σ1 be the volatility of NYSE market and σ2 be the one of NASDAQ
market. We test H0 : σ1 = σ2 against H1 : σ1 < σ2 with a significance level of
1%.

The null hypothesis is rejection in favour of the alternative one with a p-value
of 5.1× 10−13 and a confidence interval of [0, 0.5592] for the true ratio σ1 to σ2 .
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Figure 3: Sample sets are constructed from the most recient historical log returns with
368 units each one. The vertical lines shows the regions where each set belongs.

In short, the analysis confirms that the volatility has changed in a significant
manner after switching the trading market and that the structural change in
volatility described by the model (2.2) exits in a practical setting.

5 Conclusions

Options are sophisticated instruments. In the early days the options granted
by the company were not accounted as expenses. Nowadays these contingent ex-
penses are accounted by using the Black-Scholes paradigm. However, quite simple
changes in market conditions can make the Black-Scholes paradigm unapplicable.
In this note we showed that changing of the stock exchange is beyond the scope
of the standard Black-Scholes pricing as the structural change in the volatility
implies arbitrage. In the long run this unapplicability could lead to global unified
stock exchange similar to FX-markets, fixing the problem. In the meanwhile one
should be mindful of arbitrage opportunities.
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On weakening conditions for discrete maximum principles for linear finite

element schemes

August 2008

A548 Kalle Mikkola

Weakly coprime factorization, continuous-time systems, and strong-Hp and

Nevanlinna fractions

August 2008

A547 Wolfgang Desch, Stig-Olof Londen

A generalization of an inequality by N. V. Krylov

June 2008

A546 Olavi Nevanlinna

Resolvent and polynomial numerical hull

May 2008

A545 Ruth Kaila

The integrated volatility implied by option prices, a Bayesian approach

April 2008

A544 Stig-Olof Londen, Hana Petzeltová
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