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1 Introduction

Mixed finite elements are well established methods for second order elliptic
equations and numerous families are known for both two and three dimen-
sional problems [7, 4].

The analysis of mixed methods is traditionally based on the use of two
interpolation operators (for the vector and scalar unknowns, respectively)
which together with the divergence operator satisfy a commuting diagram
property. Recently, the analysis has also been given a differential geometric
framework [2].

The purpose of this paper is to show that for quadratic and higher order
spaces one can modify the methods by imposing the condition that the vector
unknown is continuous at the vertices of the mesh. With this modification the
(local) commuting diagram property is lost, but we show that the method is
still stable and optimally convergent. We perform the analysis starting from
the two dimensional Brezzi-Douglas-Marini spaces (BDM) [8] and the three
dimensional Brezzi-Douglas-Duran-Fortin spaces (BDDF) [6].

The plan of the paper is the following. In the next section we first recall
the mixed formulation and the BDM and BDDF spaces. Then we introduce
our reduced spaces and show the stability and optimal order convergence.
In the final section we recall our postprocessing method and the a posteriori
error analysis based on this.

2 The finite element spaces

We consider the the Poisson problem as an elliptic system

σ −∇u = 0,

div σ + f = 0 in Ω ⊂ R
n, (2.1)

u = 0 on ∂Ω,

and the mixed finite element formulation: find (σh, uh) ∈ Sh × Vh ⊂ H(div :
Ω) × L2(Ω) such that

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Sh, (2.2)

(div σh, v) + (f, v) = 0 ∀v ∈ Vh. (2.3)

Given an an integer k ≥ 1, the BDM and BDDF spaces are

Sh = { τ ∈ H(div :Ω) | τ |K ∈ [Pk(K)]n ∀K ∈ Ch }, (2.4)

Vh = { v ∈ L2(Ω) | v|K ∈ Pk−1(K) ∀K ∈ Ch }. (2.5)

Here Ch is a partitioning of Ω into triangles/tetrahedrons for which we use
the generic notation K. The inter element edges (for n = 2 or faces (for
n = 3) we use the generic notation S and with Γh we denote the collection of
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them. The notation E is reserved for edges of the tetrahedrons in the three
dimensional problem.

For the analysis the following degrees of freedom are used [7]:

∫

S

τ · n z ∀z ∈ Pk(S), ∀S ⊂ ∂K, (2.6)
∫

K

τ · ∇z ∀z ∈ Pk−1(K), (2.7)
∫

K

τ · z ∀z ∈ Ψk(K), (2.8)

with

Ψk(K) =

{

{z |z = curl(bKw), w ∈ Pk−2(K)} for n = 2,

{z ∈ [Pk(K)]3 | div z = 0, z · n|∂K = 0} for n = 3,
(2.9)

where bK is the cubic bubble on the triangle K.
In the family we now present we replace the degrees of freedom (2.6) with

the following:
In two space dimensions, for n = 2,

τ (x) ∀ vertices x of K, (2.10)
∫

S

τ · n z ∀z ∈ Pk−2(S), ∀S ⊂ ∂K, (2.11)

In three space dimensions, for n = 3, we choose the degrees of freedom in
the following way.

τ (x) ∀ vertices x of K. (2.12)

For each face S ⊂ ∂K:

the value of τ · n at k − 2 (2.13)

distinct interior points of every edge E ⊂ S,

and
∫

S

τ · n z ∀z ∈ Pk−3(S). (2.14)

For the collection of vertices in the mesh Ch we introduce the notations Vh.
The space for vector variable we now define as follows for k ≥ 2

Sh = { τ ∈ H(div :Ω) | τ |K ∈ [Pk(K)]n ∀K ∈ Ch (2.15)

τ is continuous at each vertex x ∈ Vh }.

Remark 2.1. The above degrees of freedom are chosen for the analysis. In
an implementation the most straightforward choice would be to start from
the Lagrange nodes and then make coordinate transforms so that the normal
component of the vector is a degree on each node, except the vertices, on each
edge/face is a degree of freedom.
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The space for the scalar variable is kept as (2.5). With this the equilibrium
property

div Sh ⊂ Vh. (2.16)

is valid. When denoting by Ph : L2(Ω) → Vh the L2-projection, this implies
that

(div τ , u − Phu) = 0 ∀τ ∈ Sh. (2.17)

This property is crucial for the error analysis. The other is the stability which
we prove using the mesh dependent norms

‖v‖2

1,h =
∑

K∈Ch

‖∇v‖2

0,K +
∑

S∈Γh

h−1

S ‖[[v]]‖2

0,S (2.18)

and
‖τ‖2

0,h = ‖τ‖2

0 +
∑

S∈Γh

hS‖τ · n‖2

0,S, (2.19)

where [[v]] is the jump in v along interior edges/faces and v on edges/faces on
∂Ω.

By partial integration we have

|(div τ , v)| ≤ ‖τ‖0,h‖v‖1,h ∀(τ , v) ∈ Sh × Vh. (2.20)

We recall that in the subspace the norm for the flux is equivalent to the
L2 norm:

C‖τ‖0,h ≤ ‖τ‖0 ≤ ‖τ‖0,h ∀τ ∈ Sh. (2.21)

Now we prove the Babuška-Brezzi condition for our choice of spaces. Here
and in the sequel we denote with C a generic constant independent of the
mesh parameter h, which may take different values in different occurrences.

Theorem 2.1. There is a positive constant C such that

sup
τ∈Sh

(div τ , v)

‖τ‖0,h

≥ C‖v‖1,h ∀v ∈ Vh (2.22)

is valid for the finite element spaces (2.15) and (2.5).

Proof. We use the macroelement technique and use macroelements consisting
of two elements. To this end, let M = K1∪K2 be an arbitrary macroelement
consisting of the elements K1 and K2 with one common edge/face. Define

S0,M = { τ ∈ H(div :M) | τ |Ki
∈ [Pk(Ki)]

n, i = 1, 2, τ · n|∂M = 0,

τ vanish at each vertex in M} (2.23)

PM = { v ∈ L2(M) | v|Ki
∈ Pk−1(Ki), i = 1, 2 } (2.24)

and
NM = { v ∈ PM | (div σ, v)M = 0 ∀σ ∈ S0,M }. (2.25)

The stability now follows if NM is one-dimensional consisting of the functions
constant on M , cf. [10, 12, 13, 14].
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Hence, let v ∈ PM . For i = 1, 2, choose σi ∈ S0,M such that its support
is in Ki and all other degrees of freedom except the ones given by (2.7). The
condition v ∈ NM leads to

0 = (div σ, v)M = (div σ, v)Ki
= −(σ,∇v)Ki

. (2.26)

From (2.7) it now follows that v is constant on Ki,

v|Ki
= ci, i = 1, 2. (2.27)

For v ∈ NM it thus holds

0 = (div σ, v)M = (c1 − c2)

∫

K1∩K2

σ · n1. (2.28)

For the two dimensional case the degrees of freedom (2.11) immediately im-
plies that c1 = c2. For n = 3, we use (2.13) to choose σ such that its
restriction of its normal component (i.e. n1) to K1 ∩ K2 is the quadratic
polynomial that is equal to one at the midpoints of each edge common to K1

andK2 and vanish at the vertices. Then it holds
∫

K1∩K2

σ · n1 = area(K1 ∩ K2) (2.29)

which implies c1 = c2. The macroelement condition is hence fulfilled.

The stability and equilibrium property give the following quasi-optimal
error estimate.

Theorem 2.2. Suppose that the solution to (2.1) satisfies u ∈ Hk+2(Ω).
Then we have the error estimate

‖σ − σh‖0 + ‖Phu − uh‖1,h ≤ Chk+1|u|k+2. (2.30)

Proof. Let Ihσ ∈ Sh ∩ [C(Ω)]n be the Lagrange interpolant to σ. From
the inf-sup condition (2.22) and the consistency it follows that there exists
(τ , v) ∈ Sh × Vh, with ‖τ‖0,h + ‖v‖1,h ≤ C, such that

‖σh − Ihσ‖0,h + ‖uh − Phu‖1,h (2.31)

≤ (σ − Ihσ, τ ) + (div τ , u − Phu) + (div (σ − Ihσ), v).

Using (2.17), (2.20), (2.21) and the triangle inequality we get

‖σ − σh‖0 + ‖uh − Phu‖1,h ≤ C‖σ − Ihσ‖0,h. (2.32)

Standard interpolation estimates then give

‖σ − σh‖0 + ‖uh − Phu‖1,h ≤ Chk+1‖σ‖k+1 ≤ Chk+1‖u‖k+2. (2.33)
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We end this section with some remarks on the method.

Remark 2.2. Note that all degrees of freedom of the type (2.7) and (2.8)
can be locally condensed.

Remark 2.3. For the lowest order method with k = 2 the decrease of degrees
of freedom, after condensing, is near one half. This is roughly estimated as
follows.

For n = 2 let T be the number of triangles. Since each edge is shared by
two triangles, the degrees of freedom (2.6) for BDM are of the order O(9T/2).
A vertex, however, is shared by an average of six triangles. This leads the
order O(5T/2) for the present method.

In three dimensions the number of degrees of freedom for the BDDF family
is O(12T ). For our method the estimate is obtained by using Eulers formula:
V + F = E + T + 1, for the number of vertices, faces, edges and triangles,
respectively. Again, each face is shared by two tetrahedrons, i.e. F = O(2T ).
This gives O(6T ) degrees of freedom of the type (2.13). Now, E = O(7V ).
Substituting into Eulers formula and solving gives V = O(T/6). The number
of vertex degrees of freedom is hence O(T/2), which gives a total of O(13T/2).

Remark 2.4. Due to the imposing of the continuity at the vertices the Fraijs
de Veubeke hybridization cannot be used for solving the discretized equations.
There exist, however, other techniques for solving saddle point problems, such
as the preconditioning by the interior penalty method [11] (see also the survey
[3]), and then the lower number of degrees of freedom can be an advantage.

3 Postprocessing and a posteriori estimates

The estimate (2.30) for the deflection is a supercovergence result. This,
together with the fact that σh is a good approximation of ∇u, implies that
an improved approximation for the displacement can be constructed by local
postprocessing [1, 5, 15, 14].

In the method of [15, 14] the postprocessed displacement is sought in the
FE space

V ∗

h = { v ∈ L2(Ω) | v|K ∈ Pk+1(K) ∀K ∈ Ch }. (3.1)

Postprocessing method. Find u∗
h ∈ V ∗

h such that

Phu
∗

h = uh (3.2)

and

(∇u∗

h,∇v)K = (σh,∇v)K ∀v ∈ (I − Ph)V
∗

h |K . (3.3)

The error analysis of [15, 14] directly applies to the present method and it
gives the following error estimate.

7



Theorem 3.1. Suppose that the solution to (2.1) satisfies u ∈ Hk+2(Ω).
Then it holds

‖u − u∗

h‖1,h ≤ Chk+1|u|k+2. (3.4)

In [9] it was shown that the postprocessed solution can be used for con-
structing a posteriori estmators. Also, this analysis covers our method and
we will summarize the results.

We define the following local error indicators on the elements

η1,K = ‖∇u∗

h − σh‖0,K , η2,K = hK‖f − Phf‖0,K , (3.5)

and on the edges

ηS = h
−1/2

S ‖[[u∗

h]]‖0,S. (3.6)

Using these quantities, the global estimator is

η =
(

∑

K∈Ch

(

η2

1,K + η2

2,K

)

+
∑

S∈Γh

η2

S

)1/2

. (3.7)

The efficiency of the estimator is given by the following lower bounds,
which directly follow from (2.1) using the triangle inequality, and from (3.6)
noting that [[u]] = 0 on each edge S.

Theorem 3.2. It holds

η1,K ≤ ‖∇(u − u∗

h)‖0,K + ‖σ − σh‖0,K ,

ηS = h
−1/2

S ‖[[u − u∗

h]]‖0,S.
(3.8)

The upper bound is given by the following theorem.

Theorem 3.3. There exists a positive constant C such that

‖σ − σh‖0 + ‖u − u∗

h‖1,h ≤ Cη. (3.9)
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