
Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2008 A549

ON WEAKENING CONDITIONS FOR DISCRETE MAXIMUM

PRINCIPLES FOR LINEAR FINITE ELEMENT SCHEMES

Antti Hannukainen Sergey Korotov Tomáš Vejchodský

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2008 A549

ON WEAKENING CONDITIONS FOR DISCRETE MAXIMUM

PRINCIPLES FOR LINEAR FINITE ELEMENT SCHEMES

Antti Hannukainen Sergey Korotov Tomáš Vejchodský
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sufficient conditions due to Ph. Ciarlet [4, 5] for matrices associated to
linear finite element schemes, which is commonly used for proving validity of
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1 Model problem and maximum principle

We consider the following test problem: Find a function u such that

− div(A∇u) + cu = f in Ω, (1)

u = g on ∂Ω, (2)

where Ω ⊂ Rd is a bounded polytopic domain with Lipschitz boundary ∂Ω.
The diffusive tensor A is assumed to be a symmetric and uniformly positive
definite matrix. The reactive coefficient c is assumed to be nonnegative in Ω.

The classical solutions of elliptic problems of the second order are known
to satisfy the so-called maximum principles (MPs), see e.g. [11, 7]. For our
test problem the corresponding MP is the following implication:

f ≤ 0 =⇒ max
x∈Ω

u(x) ≤ max{0 , max
s∈∂Ω

g(s)}. (3)

To the authors’ knowledge the first reasonable DMP and conditions pro-
viding its validity were formulated in 1966 by R. Varga [14] for the finite dif-
ference method. Later, in 1970 in [4] (and [5]), Ph. Ciarlet presented a more
general form of DMP suitable for finite element (FE) and finite difference
types of discretizations. He also proposed a practical set of (sufficient) con-
ditions on matrices involved, providing a validity of his DMP. Since that time
these conditions became popular in numerical community, see e.g. [7, 8, 9, 10]
and references therein, for proving various DMPs for problems of elliptic type.
In this work we consider the issue of weakening the conditions proposed by
Ciarlet.

2 Finite element discretization

Standard (linear) schemes for construction of FE approximations for the
(unknown) solution u of (1)–(2) are based on the so-called weak formulation:
Find u ∈ g + H1

0 (Ω) such that

a(u, v) = F(v) ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫

Ω

A∇u · ∇v dx +

∫

Ω

cuv dx and F(v) =

∫

Ω

fv dx.

Here, the matrix A is assumed to be in [L∞(Ω)]d×d, c ∈ L∞(Ω), g ∈ H1(Ω),
and f ∈ L2(Ω). The existence and uniqueness of the weak solution u is
provided by the standard Lax-Milgram lemma.

Let Th be a FE partition (mesh) of Ω with interior nodes B1, . . . , BN lying
in Ω and boundary nodes BN+1, . . . , BN+N∂ lying on ∂Ω. Further, let Vh be
a finite-dimensional subspace of H1(Ω), associated with Th and its nodes,
being spanned by the basis functions φ1, φ2, . . . , φN+N∂ with the following

properties: φi ≥ 0 in Ω, i = 1, . . . , N + N∂, and
∑N+N∂

i=1
φi ≡ 1 in Ω.
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We also assume that the basis functions φ1, φ2, . . . , φN vanish on the
boundary ∂Ω. Thus, they span a finite-dimensional subspace V 0

h of H1
0 (Ω).

Let, in addition, gh =
∑N+N∂

i=N+1
giφi ∈ Vh be a suitable approximation of the

function g, for example its nodal interpolant.
The FE approximation is defined as a function uh ∈ gh + V 0

h such that

a(uh, vh) = F(vh) ∀vh ∈ V 0
h ,

whose existence and uniqueness are also provided by the Lax-Milgram lemma.

Algorithmically, uh =
∑N+N∂

i=1
yiφi, where the coefficients yi are the entries

of the solution ȳ = [y1, . . . , yN+N∂ ]⊤ of the following square system of N +N∂

linear algebraic equations
Āȳ = F̄, (4)

where

Ā =

[

A A∂

0 I

]

, F̄ =

[

F

F∂

]

, and Ā−1 =

[

A−1 −A−1A∂

0 I

]

. (5)

In the above, blocks A and A∂ are matrices of size N × N and N × N∂,
respectively, I stands for the unit matrix, and 0 – for the zero matrix. The
entries of Ā are denoted by aij = a(φj, φi), i = 1, . . . , N, j = 1, . . . , N +N∂.
The block-vector F consists of entries fi = F(φi), i = 1, . . . , N , and the
block-vector F∂ has entries fi = gi, i = N + 1, . . . , N + N∂, given by the
boundary data. For the later reference we also include the formula for Ā−1

in (5). Notice that Ā is nonsingular if and only if A is nonsingular.

3 Sufficient algebraic conditions of Ph. Ciarlet

We will distinguish two essentially different types of DMPs.

Algebraic DMP: A natural algebraic analogue of (3) is as follows (cf. (4)):

F ≤ 0 =⇒ max
i=1,...,N+N∂

yi ≤ max {0 , max
j=N+1,...,N+N∂

yj}.

Functional DMP: A natural functional imitation of (3) is as follows:

f ≤ 0 =⇒ max
Ω

uh ≤ max {0 , max
∂Ω

uh}.

Remark 1. It is easy to see that the above types of DMPs are equivalent in
the case of linear and multilinear finite elements. However, these DMPs are
not equivalent, in general, for higher-order finite elements.

In [4], Ciarlet formulated and proved the following theorem:

Theorem 1. The algebraic DMP is satisfied if and only if

(A) Ā is monotone (i.e., Ā nonsingular and Ā−1 ≥ 0)

(B) ξ + A−1A∂ξ∂ ≥ 0, where ξ and ξ∂ are vectors of all ones of sizes N
and N∂, respectively.
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Since conditions (A) and (B) are difficult to verify, Ciarlet proposed in [4]
the following standard set of sufficient conditions which is more practical.

Theorem 2. The algebraic DMP is valid provided the matrix Ā satisfies

(a) aii > 0, i = 1, . . . , N ,

(b) aij ≤ 0, i 6= j, i = 1, . . . , N, j = 1, . . . , N + N∂,

(c)
N+N∂
∑

j=1

aij ≥ 0, i = 1, . . . , N ,

(d) A is irreducibly diagonally dominant.

Ciarlet essentially proposed the above conditions in order to utilize the
following result of Varga [13, p. 85]:

Lemma 3. If A ∈ RN×N is an irreducibly diagonally dominant matrix with
strictly positive diagonal and nonpositive off-diagonal entries then A−1 > 0.

Now, we can easily demonstrate the proof of Theorem 2. We follow the
steps of Ciarlet [4]. Conditions (a), (b), and (d) together with Lemma 3 imply
A−1 ≥ 0 and, hence, condition (A). Further, condition (c) is equivalent to
Aξ + A∂ξ∂ ≥ 0 and since A−1 ≥ 0 we conclude that (B) is valid as well.
Theorem 1 then guarantees the algebraic DMP.

Remark 2. In the case of homogeneous Dirichlet boundary conditions system
(4) reduces to a simpler form Ay = F (cf. [10]). Then the algebraic DMP
holds if and only if A−1 ≥ 0, i.e., if and only if A is monotone.

4 Associated geometrical conditions on FE meshes

For some types of finite elements, the entries of Ā can be computed explicitly,
therefore condition (b) can often be guaranteed a priori by imposing suitable
geometrical requirements on the shape (and size) of FE meshes employed.

For example, if A is a diagonal matrix then there exist the following
popular geometrical conditions providing (b):

(i) for simplicial finite elements (d ≥ 2) – all dihedral angles between facets
of simplices have to be nonobtuse or acute [5, 2, 7, 8, 10];

(ii) for bilinear elements – all rectangular elements have to be nonnarrow
(
√

2/2 ≤ b1/b2 ≤
√

2, where b1, b2 are the edges of the rectangle),
trilinear elements have to be cubes, see [8];

(iii) for 3D meshes consiting of right triangular prisms the altitudes of
prisms are limited from both sides by certain quantities dependent on
the area and angles of the triangular base (and the magnitude of the
reactive coefficient c) [6].
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Figure 1: Examples of meshes leading to reducible matrix A for the Poisson
problem with Dirichlet boundary conditions. The angles with dots are right.

5 Typical problems with standard conditions

Not only condition (b) but also the other conditions (a), (c), and (d) have to
be addressed. The positivity of diagonal entries (a) is trivially satisfied for
elliptic problems. Also the row sums (c) are nonnegative automatically for
problem (1)–(2), because the basis functions form a partition of unity:

N+N∂

∑

j=1

aij = a

(

N+N∂

∑

j=1

φj, φi

)

= a(1, φi) =

∫

Ω

cφi ≥ 0, i = 1, . . . , N. (6)

On the other hand, the irreducibility of A required in (d) is not always
obvious. For illustration, we present three examples of triangulations which
lead to reducible matrices in Figure 1.

It might be a difficult task to satisfy all conditions (a)–(d) practically,
especially in 3D. For example, the existence of a face-to-face partition of a
cube into acute tetrahedra is still an open problem, see (i). Another practical
problem in 3D is to keep the desired geometrical limitations on the elements
during global and local refinements of meshes. Condition (b) leads to severe
limitation in the case of 3D rectangular blocks (only cubes are allowed), see
the point (ii) above. Moreover, if the diffusive tensor A is not diagonal then
proving the irreducibility (d) could be a nontrivial task.

6 Less severe conditions: Stieltjes matrices

Conditions (a)–(d) can be weakened using the concept of M-matrices and
Stieltjes matrices [13]. A real square matrix A is an M-matrix if all its off-
diagonal entries are nonpositive and if it is nonsingular and A−1 ≥ 0. A
real square matrix A is a Stieltjes matrix if all its off-diagonal entries are
nonpositive and if it is symmetric and positive definite. The following lemma
[13, p. 85] enables to eliminate conditions (a), (c), and (d) from the standard
set as we state in Theorem 5 below.

Lemma 4. If A is a Stieltjes matrix then it is also an M-matrix.

Theorem 5. If the finite element matrix Ā, associated to (1)–(2), satisfies
condition (b) from Theorem 2 then the algebraic DMP is valid.
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Proof. We verify conditions (A) and (B) of Theorem 1. (A) For problem (1)–
(2), the FE matrix A is always symmetric and positive definite and hence if
condition (b) is satisfied then A−1 ≥ 0 by Lemma 4. Further, since A∂ ≤ 0 by
(b), we obtain −A−1A∂ ≥ 0 and therefore Ā−1 ≥ 0, see (5). (B) Condition
(c) is satisfied for problem (1)–(2) due to (6) and, as we already mentioned,
(c) implies (B).

7 Testing the sharpness of theoretical conditions

The standard DMP results [2, 5, 7, 8] provide conditions which guarantee
condition (b) and consequently that A is a Stieltjes matrix. However, the
Stieltjes matrices form only a certain subclass of monotone matrices. In
this section we test how sharp the conditions based on the Stieltjes matrix
concept are, i.e., we try to test how wide is the class of meshes which lead
to A being monotone but not Stieltjes. For this purpose we solve the 2D
Poisson problem with homogenous Dirichlet boundary conditions on various
domains using various triangulations.

We present three tests. In each test we construct a simple triangulation
which is characterized by two parameters (angles) 0 < α < π and 0 <
γ < π, see Figure 2. We prepare N sampling points and we go through all
values αi = iπ/(N + 1), γj = jπ/(N + 1), i, j = 1, 2, . . . , N . For each pair
αi, γj, we construct the basic mesh as indicated in Figure 2, provided it is
possible. Then we refine each triangle in the basic mesh into 100 similar
subtriangles (each edge in the original mesh is divided into 10 segments).
Then we assemble the stiffness matrix A on the refined mesh and we compute
the inverse A−1. Finally, we investigate the entries of A and A−1. If all off-
diagonal entries of A are nonpositive we mark the pair αi, γj by 1. Otherwise,
we check the nonnegativity of A−1. We mark the pair αi, γj by 2 if A−1 ≥ 0
and by 3 if it is not.

The results of the computations are visualized in Figure 3, where we used
N = 200 sampling points for each of the angles α and γ. The white areas
correspond to the angles αi, γj for which the indicated triangulation does not
exist.

The stiffness matrix A for the Poisson equation in 2D is well-known to be
Stieltjes matrix if and only if the sum of the two angles opposite to each inte-
rior edge in the mesh is at most π. For the investigated meshes this sufficient
and necessary condition reduces to the requirement of non-obtuseness of the
greatest angle in the triangulation, see the point (i) above. If we compare
the sizes of domains 1 with domains 2 in Figure 3 we may conclude that the
standard sufficient condition (b) is not very sharp. There is a wide space for
its generalization. However, any generalization have to utilize more general
criteria for the monotonicity of a matrix. These criteria, see e.g. [1], are
more complicated and their application for the DMP is not straightforward.
Certain success in this respect was reported in [3, 9, 12].
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Figure 2: The basic meshes for the three tests. The meshes used for the
actual computations are 10-fold refined basic meshes.

Figure 3: Results of three DMP tests. Domain 1: triangulations with non-
obtuse maximal angle (matrix A is a Stieltjes matrix). Domain 2: triangula-
tions with obtuse maximal angle providing the DMP (matrix A is monotone
but not Stieltjes). Domain 3: triangulations with obtuse maximal angle,
DMP is not valid (matrix A is not monotone).

8 Conclusions

We have analyzed the standard approach for proving the DMP for elliptic
problems and showed that the positivity of the diagonal entries (a), the non-
negativity of the row sums (c), and the irreducibility and diagonal dominance
(d) are, in fact, not needed as sufficient conditions. Moreover, the presented
numerical experiments indicate that the known geometric conditions guar-
anteeing A−1 ≥ 0 are not very sharp and that there is a space for possible
generalization and further research.
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