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AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2007 A525

The discrete maximum principle for linear simplicial finite element

approximations of a reaction-diffusion problem

Jan Brandts Sergey Korotov Michal Křı́žek
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1 Introduction

Given d ≥ 1, let Ω ⊂ Rd be a bounded polytopic domain with Lipschitz
boundary ∂Ω, and let f ∈ C(Ω). Write

C = {g ∈ C(Ω) | 0 ≤ g}, (1)

and consider for given g ∈ C the reaction-diffusion problem to find ug =
u(g) ∈ C2(Ω) for which

−∆ug + gug = f in Ω, and ug = 0 on ∂Ω. (2)

We assume that for each g ∈ C a solution ug of (2) exists. Notice that u0

corresponds to g = 0, the pure diffusion problem.

1.1 Maximum principle and comparison principle

It is well-known that each ug satisfies the maximum principle [14, 16, 17],
which is the implication

f ≤ 0 ⇒ ug ≤ 0. (3)

The maximum principle induces a comparison principle: if f ≤ 0 and g, h ∈
C(Ω) then

0 ≤ h ≤ g ⇒ u0 ≤ uh ≤ ug ≤ 0. (4)

Indeed, the middle inequality in the right-hand side follows from the fact
that

−∆(uh−ug)+h(uh−ug) = (g−h)uh in Ω, and uh−ug = 0 on ∂Ω (5)

and the observation that (g− h)uh ≤ 0, which implies uh − ug ≤ 0 according
to (3). The first inequality follows similarly.

1.2 History and relevance of discrete maximum prin-
ciples

Already during the early development of numerical methods for problems like
(2), it was realized that if a numerical approximation U g of ug satisfies the
corresponding discrete maximum principle,

f ≤ 0 ⇒ U g ≤ 0, (6)

uniform error bounds for the method could be derived. For the finite differ-
ence method, we refer to [2, 4, 7, 9, 15, 19]. Later, similar discrete maximum
principles were proved for finite volume and finite element approximations of
elliptic and parabolic problems: see [11] and the references therein. In partic-
ular, conditions on the simplicial finite element partitions of Ω were given in
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order for discrete maximum principles to hold. For linear and nonlinear diffu-
sion problems this led to the condition that all dihedral angles between facets
of simplices in the finite element partition should be non-obtuse, whereas for
reaction-diffusion problems (2), the dihedral angles were even supposed to
be acute [6, 10]. With the goal to derive uniform error bounds for the finite
element method, (6) was proved in [6] provided that all dihedral angles of
the simplices in the finite element partition are acute, and their diameters
small enough.

1.3 Motivation and outline of this paper

Our main contribution is in Section 3. We will make the conditions in [6]
explicit and verifiable in terms of dihedral angles and heights of simplices on
the one hand, and the magnitude of the reaction coefficient ‖g‖∞ and the
spatial dimension d on the other. Moreover, in Section 4 we discuss their
concrete realization: as a matter of fact, it turns out that the conditions can
never be satisfied for d ≥ 5. Before that, in Section 2 we discuss a particular
type of numerical integration that leads to a fully discrete finite element
method. This is necessary because the conditions for (6) turn out to depend
on g, whereas g needs to be integrated in the finite element formulation. This
can, in general, not be done exactly.

1.4 Why the discrete maximum principle can fail

First however, we will show that the complications with the discrete maxi-
mum principle for g 6= 0 are already present for d = 1. For j ∈ {0, . . . , 15},
we apply the method of Section 2.2 to problem (2) on the unit interval with
choices for fj and gj for f and g, defined by

fj(x) = 2jf(x) with f(x) = −(2x − 1)2, and gj(x) = 2j. (7)

Due to their simplicity, the computations could be performed in exact arith-
metic. Left in Figure 1, all the finite element approximations U gj are shown
in the same picture, together with f , marked by circles (’o’). Each U gj is
continuous on [0, 1] and linear on each sub-interval Ik = [(k − 1)/4, k/4],
where k ∈ {1, . . . , 4}. For j → 15, the values U gj(1

2
) tend to a substantially

positive value of about 0.2, while the graphs of U gj seem to converge to the
W-shape with vertical coordinates 0,−0.54, 0.2,−0.54, 0. This phenomenon
is not hard to understand. The scaling of f in (7) with a factor 2j = g yields,
by linearity, a scaling of U gj by 2j as well. In particular, it does not influence
positivity and negativity. But it does turn the problem into an equivalent
family of singularly perturbed problems

−ε∆uε + uε = f in Ω, and uε = 0 on ∂Ω, with ε = 2−j, (8)
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of which the solution uε in this simple one-dimensional example can be given
exactly as

uε(x) = (1 + 8ε)

[

eε
−

1

2

1 + eε
−

1

2

e−xε
−

1

2 +
1

1 + eε
−

1

2

exε
−

1

2

]

+ f(x) − 8ε. (9)

The graphs of the functions uε with the values of ε = 2−j for j ∈ {0, . . . , 15}
are shown in the right picture of Figure 1. Clearly, for x ∈ (0, 1), uε(x) tends
to f(x) for ε → 0.

Figure 1. Violation of the discrete maximum principle for a 1d
reaction-diffusion problem.

On a fixed partition, as ε tends to zero, the finite element approximations
U gj will tend to the L2-orthogonal projection U∞ of u0 onto the space of
continuous piecewise linear functions that vanish at the boundary. This is
so because the discretized diffusion disappears for ε → 0 and the reaction
term remains. To minimize the L2-distance between U∞ and u0, a logical
overshoot must take place at the midpoint, violating the discrete maximum
principle.

2 Preliminaries

We will use the standard notation Hk(Ω) for the Sobolev space of order k,
with norm and semi-norm ‖ · ‖k and | · |k, respectively. Moreover, we write
H−1(Ω) for the topological dual of H1

0 (Ω) with norm

‖w‖−1 = sup
06=v∈H1

0
(Ω)

〈w, v〉
‖v‖1

, (10)

where 〈·, ·〉 is the dual pairing between H−1(Ω) and H1
0 (Ω).
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2.1 Weak formulation

Consider the weak formulation of (2) aiming to find u ∈ H1
0 (Ω) such that for

all v ∈ H1
0 (Ω),

a(g; ug, v) = (f, v), (11)

where the bilinear form

a(g; ·, ·) : H1
0 (Ω) × H1

0 (Ω) → R : a(g; w, v) = (∇w,∇v) + (gw, v) (12)

is easily verified to be continuous. The Poincaré inequality guarantees that
there exists a constant α > 0 such that for all g ∈ C and all v ∈ H1

0 (Ω),

α‖v‖2
1 ≤ a(g; v, v), (13)

hence a(g; ·, ·) is also coercive. Consequently, the Lax-Milgram lemma pro-
vides unique weak solutions ug of (11) that coincide with the classical solu-
tions ug of (2).

2.2 Finite element discretization

Let T be a face-to-face simplicial finite element partition of Ω. Denote the
vertices in T by v1, . . . , vn+m, and such that

vj ∈ ∂Ω ⇔ n + 1 ≤ j ≤ n + m. (14)

Let V ⊂ H1(Ω) be the space of continuous piecewise linear functions relative
to T with the usual nodal basis φ1, . . . , φn+m and set

V0 = V ∩ H1
0 (Ω). (15)

Then φ1, . . . , φn is the nodal basis for V0, and the finite element approxima-
tion U g of ug is the unique function from V0 such that for all v ∈ V0,

a(g; U g, v) = (f, v). (16)

Notice that if g ∈ C, due to (13) and (16), we have that

α‖U g‖2
1 ≤ a(g; U g, U g) = (f, U g) ≤ ‖f‖−1‖U g‖1, (17)

and hence, irrespective of g,

‖U g‖1 ≤
1

α
‖f‖−1. (18)

In the next section, this bound will be used to control the error introduced
by the following fully discrete formulation, which includes a convenient type
of quadrature.
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2.3 Fully discrete finite element method

Define the usual nodal interpolation operator

Π : C(Ω) → V : w 7→ Πw =
n+m
∑

j=1

w(vj)φj. (19)

Clearly, if g ∈ C then Πg ∈ C. Thus, if we consider the problem to find
UΠg ∈ V0 such that for all v ∈ V0,

a(Πg; UΠg, v) = (Πf, v), (20)

then due to (18) we have that

‖UΠg‖1 ≤
1

α
‖Πf‖−1. (21)

We can now provide a bound for the difference between U g and the actually
computed UΠg.

Proposition 2.1 Let U g solve (16) and UΠg solve (20). Then,

‖U g − UΠg‖1 ≤
1

α
‖f − Πf‖−1 +

1

α2
‖g − Πg‖∞‖Πf‖−1. (22)

Proof. From (20) we observe that for all v ∈ V0,

a(g; UΠg, v) = (Πf, v) + ((g − Πg)UΠg, v). (23)

Write Zg = U g −UΠg. Then together with (13) and (16), equality (23) gives
that

α‖Zg‖2
1 ≤ a(g; Zg, Zg) = (f − Πf, Zg) − ((g − Πg)UΠg, Zg). (24)

Using the rather crude bound

|((g − Πg)UΠg, Zg)| ≤ ‖g − Πg‖∞‖UΠg‖1‖Zg‖1, (25)

completes, after applying (21), the proof. 2

This result shows that for f and g smooth enough, the proposed fully discrete
scheme (20) results in an approximation UΠg of U g with similar approxima-
tion quality.

In Section 3 we will show that if f ≤ 0, and the elements of the triangulation
T satisfy certain angle properties, then U g ≤ 0. Since f ≤ 0 immediately
implies that Πf ≤ 0, and similarly that g ≥ 0 implies that Πg ≥ 0, we will
also have that UΠg ≤ 0.
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3 Conditions for the discrete maximum prin-

ciple

With respect to the nodal basis, U g can be written as

U g =
n

∑

j=1

ug
jφj, with ug

j = U g(vj) for all j ∈ {1, . . . , n}. (26)

Define for i, j ∈ {1, . . . , n} the matrices A and M g by

A = (aij)
n
i,j=1, M g = (mg

ij)
n
i,j=1, with aij = (∇φi,∇φj), mg

ij = (gφi, φj).

Then the vector Ug = (ug
1, . . . , u

g
n)∗ of coordinates ug

j of U g defined in (26)
satisfies

BgUg = F, where Bg = A + M g, (27)

and F = (f1, . . . , fn)∗ with fj = (f, φj) for each j ∈ {1, . . . , n}. Since φj ≥ 0
for all j ∈ {1, . . . , n}, the inequality f ≤ 0 in (28) implies that F ≤ 0 in
(27), where here and further on, a matrix- or vector inequality is meant to
be taken entry-wise. Moreover, because U g ∈ V0, its extrema are taken at
certain vertices of T . Thus, in view of (26), the discrete maximum principle
(6) can be rephrased linear algebraically as

F ≤ 0 ⇒ Ug ≤ 0. (28)

In the following, we will study the discrete maximum principle in terms of
linear algebra.

3.1 The discrete maximum principle in terms of linear
algebra

A sufficient condition for (28) to hold is obviously that

(Bg)−1 ≥ 0, (29)

because Ug is then a linear combination of columns of (Bg)−1 with non-
positive coefficients.

Remark 3.1 It is not clear if condition (29) is necessary: if f is non-zero
on T ∈ T with T ∩ ∂Ω = ∅, then F will have at least d + 1 non-zero entries,
in general. In that case, the product (Bg)−1F will not be a single column of
Bg but a non-trivial linear combination of d + 1 columns.

Condition (29) is satisfied if Bg is a so-called Stieltjes matrix (see Varga [18,
p. 85]). We will work with this concept because it avoids irreducibility of Bg,
which does not always hold [8].

Definition 3.2 (Stieltjes Matrix) A matrix is called a Stieltjes matrix if
it is symmetric positive definite and has non-positive off-diagonal entries.
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Notice that Bg is symmetric positive definite due to (12) and (13). Hence,
it remains to prove that it has non-positive off-diagonal entries. First, we
introduce some additional notations.

Definition 3.3 Let d ≥ 1. For a given d-simplex T with facets Fi and Fj,
denote their proper volumes by |Fi|, |Fj|, and |T |, where we use the convention
that |Fi| = |Fj| = 1 if d = 1. For d > 1 the interior dihedral angle αij between
Fi and Fj is defined as

αij = π − γij, (30)

where γij ∈ [0, π] is the angle between outward normals qi and qj to Fi and Fj,
respectively. To stress the dependence on the facets, we will write cos(Fi, Fj)
for cos(αij). Finally, we write hj for the (positive) height of T above Fj,
which satisfies

hj =
d|T |
|Fj|

, (31)

relating the volume of T to that of its facets.

3.2 The pure diffusion problem

First we recall the case g = 0, that corresponds to the pure diffusion problem.
The results for d ≤ 3 are well-known [13]. For arbitrary d we refer to [3, 20].

Proposition 3.4 Let i, j ∈ {1, . . . , n} be distinct, and choose a d-simplex
T ∈ T with

T ⊂ supp(φi) ∩ supp(φj). (32)

Write Fi and Fj for the facets of T opposite vi and vj, respectively. Then

(∇φi,∇φj)T = −cos(Fi, Fj)

hihj

|T |. (33)

Corollary 3.5 If T contains no simplices with obtuse dihedral angles, then
B0 has non-positive off-diagonal entries. Hence, B0 is a Stieltjes matrix and
(6) holds.

Proof. Follows immediately from (33) and the fact that

aij =
∑

T∈T

(∇φi,∇φj)T . (34)

The non-obtuseness condition on T guarantees that each term in the sum is
non-positive. 2

Remark 3.6 The outward normals to an interval make an angle of γij = π.
Therefore, using (30), we find that if d = 1,

cos(Fi, Fj) = 1, (35)

showing that (6) holds for any partition T . In fact, the finite element ap-
proximation U0 is then equal to Πu0, which proves the discrete maximum
principle in an alternative way.
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3.3 The reaction-diffusion problem

Now we will continue with the general case g 6= 0 and consider Bg. The
complication is that the off-diagonal entries of mg

ij are positive. Indeed, [5,
p. 201] yields that for i 6= j,

(φi, φj)T =
|T |

(d + 1)(d + 2)
. (36)

The requirement aij +mg
ij ≤ 0 results in the following restriction on the shape

of the simplices.

Theorem 3.7 If for each pair of distinct facets Fi and Fj of any simplex
T ∈ T we have that

cos(Fi, Fj)

hihj

≥ ‖g‖∞
(d + 1)(d + 2)

, (37)

then Bg has non-positive off-diagonal entries aij + mg
ij and is therefore a

Stieltjes matrix.

Proof. Let i, j ∈ {1, . . . , n} be distinct. Due to φi ≥ 0, φj ≥ 0, and g ≥ 0
we infer that

aij + mg
ij =

∑

T∈T

(∇φi,∇φj)T + (gφi, φj)T ≤
∑

T∈T

(∇φi,∇φj)T + ‖g‖∞(φi, φj)T .

(38)
The statement follows from combining (33) with (36), which shows that for
a given T ∈ T ,

(∇φi,∇φj)T + ‖g‖∞(φi, φj)T = −|T |
(

cos(Fi, Fj)

hihj

− ‖g‖∞
(d + 1)(d + 2)

)

, (39)

where Fi and Fj are the facets of T opposite vi and vj, respectively. 2

Remark 3.8 In [6] the authors derived the similar, though less sharp con-
dition

cos(Fi, Fj)

h2
≥ ‖g‖∞, (40)

where h is the maximum diameter of all simplices in T . For instance, for a
planar triangulation into equilateral triangles (see also Section 4.1) this forces
h to be four times smaller as required in (37). Solving the corresponding finite
element system would then cost at least sixteen times more.

Remark 3.9 If g > 0 is constant, the inequality in (38) becomes an equal-
ity. Nevertheless, (37) may not be necessary for non-positivity of aij + mg

ij,
because a positive term (39) in the sum in (38) may be compensated for by
the other terms. Moreover, Bg does not need to be a Stieltjes matrix for (29)
to hold, and even (29) may not be a necessary condition (see Remark 3.1).
Still, (37) seems to be necessary for d = 1 and d = 2 in the experiments of
Section 4.
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3.4 Discrete comparison principle

Let g, h ∈ C(Ω) with 0 ≤ h ≤ g. Consider the finite element problems to
find Uh, U g ∈ V0 such that for all v ∈ V0,

a(h; Uh, v) = (f, v) and a(g; U g, v) = (f, v). (41)

Similarly as in Section 1.1, we are now able to derive a discrete comparison
principle.

Theorem 3.10 Let g, h ∈ C(Ω). Assume that T is a finite element partition
satisfying (37). Then the solutions U g and Uh of (41) satisfy

(f ≤ 0 and 0 ≤ h ≤ g) ⇒ Uh ≤ U g ≤ 0. (42)

Proof. Subtracting the second equality from the first shows that for all
v ∈ V0,

a(h; Uh − U g, v) = a(g; U g, v) − a(h; U g, v) = ((g − h)U g, v). (43)

Since ‖g‖∞ ≥ ‖h‖∞, the partition T also satisfies (37) with g replaced by
h. Thus, both problems in (41) satisfy the discrete maximum principle.
Therefore, f ≤ 0 implies that U g ≤ 0. From this we get that (g − h)U g ≤ 0,
which in turn implies that Uh ≤ U g. 2

4 Numerical experiments

For d = 1, all dihedral angles are zero, and the condition of Theorem 3.7
reduces to the requirement that

h2 ≤ 6

‖g‖∞
, (44)

where h is the length of the largest sub-interval in the partition. Notice that
the bound on h2 resulting from (40) is six times smaller. Returning to the
experiments in Section 1.4, where we fixed h = 1/4, condition (44) is violated
if ‖g‖∞ > 96. In the picture in Figure 2 below, we plotted the maximum
value of U g against j in the graph with circles (’o’), and (for clarity 16 times)
the minimal entry of (Bg)−1 in asterisks (’*’). At the right, the minimal
entries of (Bg)−1 are given around the critical value 96. Even though the
discrete maximum principle is not violated immediately, the non-negativity
of (Bg)−1 is lost straight away.
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g min (Bg)−1

91 3.4914e − 006
92 2.1868e − 006
93 1.2040e − 006
94 5.2389e − 007
95 1.2824e − 007
96 0
97 −7.1344e − 005
98 −1.4074e − 004
99 −2.0826e − 004

Figure 2. Verifying if ‖g‖∞ > 96 violates the non-negativity of (Bg)−1.

Remark 4.1 Without giving numerical evidence, we note that by taking for
f the function

f(x) = −(2x − 1)10, (45)

instead of (7), and using the fully discrete method of Section 2.3, the dis-
crete maximum principle was violated already for g = 97. We suspect that
raising the power in (45) further will show that (44) is indeed necessary for
the discrete maximum principle to hold, though round-off may obscure the
results.

4.1 An experiment with equilateral triangles

It is easily verified that (37) results in a similar requirement as in (44) for
planar partitions into equilateral triangles, namely,

h2 ≤ 8

‖g‖∞
. (46)

Again, h stands for the edge length in the partition. As already mentioned in
Remark 3.8, the bound from [6] would force h to be four times smaller. We
test (46) by taking for Ω the equilateral triangle with vertices (0, 0), (1, 0),
and (1

2
, 1

2

√
3). As in the one-dimensional case, we take g to be constant, and

scale the right-hand side with g,

fg(x, y) = −f(x, y)10g, where f(x, y) = −1+6
√

3y(y−x
√

3)(y−(1−x)
√

3).
(47)

The function f , which is depicted in Figure 3, is the natural generalization of
(45). We use the method of Section 2.3, which includes numerical integration
of the right-hand side.
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g min (Bg)−1 max U g

508 1.7453e − 017 0
509 4.1074e − 018 0
510 5.3640e − 019 0
511 1.6624e − 020 0
512 −1.3878e − 017 0
513 −2.3443e − 005 4.6807e − 005
514 −4.6787e − 005 1.1783e − 004
515 −7.0032e − 005 2.2662e − 004
516 −9.3180e − 005 3.3527e − 004

Figure 3. Verifying if ‖g‖∞ > 512 violates the non-negativity of (Bg)−1.

Subdividing Ω into 64 equilateral triangles by three consecutive uniform re-
finements, gives that h = 1/8. Thus, condition (46) becomes

‖g‖∞ ≤ 512. (48)

As is clear from the tabular in Figure 3, this can indeed be confirmed, if we
consider the small negative value for g = 512 an effect of rounding errors.
Also, similarly as for (45), the discrete maximum principle is violated already
at g = 513. Again without presenting evidence, we note that without the
exponent 10 in (47), this took much larger values of g.

4.2 An experiment with right triangles

Even though the previous experiment shows, that there exist triangulations
for which (37) is a necessary condition, we will conclude our investigations
with showing that for a triangulation into right triangles as in the left of
Figure 4, the discrete maximum principle may still hold.

Figure 4. Right triangles do not necessarily violate the discrete
maximum principle.

The right-hand side functions for this experiment were again scaled with g,
where g = 2j for j ∈ {0, . . . , 15}, and

fg(x, y) = f(x, y)g, where f(x, y) = −1+16x(1−x)y(1−y) on [0, 1]×[0, 1].
(49)
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We use the method of Section 2.3. The middle picture in Figure 4 shows
that the minimum entry of (Bg)−1 becomes negative around g = 14, whereas
the discrete maximum principle is lost around g = 256. In fact, g = 264 is
the smallest integer for which U g has a positive value. In the right picture
we see the discrete solution for j = 15, which is a two-dimensional version of
the discrete solution for j = 15 in Figure 1.

The fact that the discrete maximum principle holds for moderate reaction
coefficients g even though h and ‖g‖∞ do not satisfy (37) may be explained
by observing that acute simplices are not needed for convergence of the fi-
nite element method. Thus, for h tending to zero, U g converges to ug, and
ug satisfies the maximum principle. Complication in this argument is that
convergence takes place only in H1(Ω) and not in L∞(Ω). In fact, for the
latter, the discrete maximum principle was used [6].

Remark 4.2 The recent paper [1], which came to our attention while finish-
ing this paper, may explain the above situation in an alternative way. Here,
it is studied linear algebraically which perturbations of A keep the property
A−1 ≥ 0 intact. A moderate reaction term gM g may be such a perturbation.

Remark 4.3 For d = 3 and for regular tetrahedra, it can also be explicitly
computed which relation h and ‖g‖∞ should satisfy in order for the discrete
maximum principle to hold. However, space cannot be filled with regular
tetrahedra.

5 Conclusions and final remarks

In the implementation of the finite element method it can be verified if Bg

will be a Stieltjes matrix by checking if for each T ∈ T , the (d + 1)× (d + 1)
element matrix Eg

T happens to have a positive off-diagonal entry. Those
matrices Eg

T are explicitly and easily computed to form Bg from the affine

invertible transforms FT : T̂ → T, x 7→ p0 + Px, where p0 together with p0

plus each of the columns p1, . . . , pd of P are the vertices of T , and T̂ is the
reference simplex with as vertices the canonical basis vectors of Rd together
with the origin. The computational costs of this verification is only of order
d2t, where t is the number of simplices T ∈ T , which is modest in comparison
to solving the linear system BgU g = F in optimal complexity. This approach
is however rather naive and only provides an answer to the question if the
discrete maximum principle is satisfied or not. In particular, it does not tell,
given the partition, which reaction terms could be allowed. Ranging over the
partition and computing the quotients in the left-hand side of (37) does.

Condition (37) can only be satisfied if all dihedral angles in the partition
are acute, and then only if all products of distinct pairs of heights are small
enough. This shows for instance that uniform refinement of a planar triangu-
lation satisfying (37) results in a triangulation that can cope with a reaction
term that is even four times larger. In higher dimensions, the situation is
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less clear. In [12], it was proved that there are no partitions of R5 into acute
simplices, and in R3 and R4 there are no algorithms yet known to decompose
even a simple polyhedron or polytope like a simplex or a (hyper)cube into
acute simplices. This shows that much research remains to be done, both in
the area of finding weaker, or alternative, conditions on the partition and in
the area of mesh generation and refinement.
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