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1. Introduction

A simplex (d-simplex) in the Euclidean space R
d, d ∈ {1, 2, 3, . . . }, is a

convex hull of d+1 points, all of which do not belong to the same hyperplane.
Those points are said to be the vertices of the simplex. Opposite each vertex
lies a (d − 1)-dimensional facet. For d > 1 the dihedral angle α between two
facets is defined by means of the inner product of their outward unit normals
n1 and n2,

cos α = −n1 · n2.

If all dihedral angles of a given simplex are less than 90◦ (less than or equal
to 90◦) we say that the simplex is acute (nonobtuse). Each simplex in R

d has
(

d+1
2

)

dihedral angles.

Let Ω ⊂ R
d be a closed domain (i.e., the closure of a domain). If the

boundary ∂Ω is contained in a finite number of (d − 1)-dimensional hyper-
planes, we say that Ω is polytopic. Moreover, if Ω is bounded, it is called a
polytope; in particular, Ω is called a polygon for d = 2 and a polyhedron for
d = 3.

Definition 1. By a partition (or triangulation) of a closed polytopic
domain Ω we mean a set of simplices whose union is Ω, any two simplices
have disjoint interiors and any facet of any simplex is a facet of another
simplex from the partition or belongs to the boundary ∂Ω. Moreover, we
assume that the set of all simplices from the partition is countable without
accumulation points in R

d. A partition is called acute (nonobtuse), if all its
elements are acute (nonobtuse).

2. Acute partitions

First we present an important characterization of acute simplices (see,
e.g., [18], [20, p. 110], [8]):

Theorem 1. If d > 2 then each facet of an acute d-simplex is an acute
(d − 1)-simplex.

The converse implication does not hold. For instance the tetrahedron
with vertices A = (−1, 0, 0), B = (1, 0, 0), C = (0,−1, 1

2
), and D = (0, 1, 1

2
)

has congruent acute triangular faces, but the dihedral angles at the edges
AB and CD are obtuse.

Figure 1 shows a triangulation of an obtuse triangle (see [44]) and a
square (see [22]) into 7 and 8 acute triangles, respectively. In 1964 Lindgren
(see [41]) showed that these numbers are optimal, i.e., that they cannot be
reduced. Later, Cassidy and Lord (see [10]) proved that for any n ≥ 10 there
exists a triangulation of a square into n acute triangles, whereas for n = 9
such a triangulation does not exist.
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Fig. 1. Partition of an obtuse triangle and square into acute triangles.

Each triangle and also quadrangle is a plane-filler. Using this fact we can
easily construct acute “periodic” triangulations of the plane. Dividing the
Penrose rhombic tiles (see [47]) into 2 isosceles triangles, we can generate
acute “aperiodic” triangulations with maximal angle 72◦. Paper [23] presents
an algorithm that enables us to decompose special polygons into “almost
equilateral triangles” with the maximal angle 72◦.

It is obvious that in acute (nonobtuse) triangulations of planar domains,
each inner vertex is surrounded by at least five (four) triangles (cf. Fig. 1).
The ratio between the corresponding numbers in R

3 is much bigger. In [37,
p. 165] it was proved that:

Theorem 2. In any acute and nonobtuse partition of a polyhedral do-
main in R

3 each inner vertex is surrounded by at least twenty and eight
tetrahedra, respectively.

These numbers are attainable, because the regular icosahedron and octa-
hedron (see Fig. 2) can be divided into 20 acute and 8 nonobtuse tetrahedra,
respectively. Their common vertex is the center of gravity in both cases.
For d = 4, the above numbers seem to be 600:16 (cf. Conjecture 5). In
fact, around 1852, Ludwig Schläfli (see [49]) studied regular polytopes in
R

4, in particular the regular 600-cell and 16-cell (also called 4-orthoplex).
Their three-dimensional surfaces are formed by regular tetrahedra (see, e.g.,
[50]) whose convex hulls with the center of gravity G of the regular polytope
form 600 acute and 16 nonobtuse 4-simplices surrounding G. For d ≥ 5 the
situation is different, due to Theorem 5 below.

Fig. 2. The regular octahedron and icosahedron.

Generating acute partitions in R
3 is much harder than in R

2. For instance,
it is not even known whether a cube can be decomposed into acute tetrahedra.
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Aristotle in his treatise On the Heaven (350 BC) incorrectly conjectured that
the regular tetrahedron is a space-filler (see [1, Vol. 3, Chapt. 8]). This would
require the dihedral angle between its faces to be equal to 72◦. Since Aristotle
was a recognized person, nobody doubted his statement. Only in the Middle
Ages it was realized that he was mistaken (see Fig. 3). All dihedral angles of
the regular tetrahedron are equal to arccos 1

3
which, rounded to entire degrees,

gives 71◦. Also, Averroes (1126–1198) calculated (see [51, p. 127]) that the
length of each edge of the regular icosahedron, inscribed to the unit ball, is

1

5

√

10(5 −
√

5)
.
= 1.05,

which is not 1 as it would follow from the Aristotle conjecture.

Fig. 3. The regular tetrahedron is not a space-filler. To a given face of
the regular tetrahedron we may join face-to-face another regular tetrahedron
in a unique way. Repeating this process, 5 regular tetrahedra may surround
a common edge, but a small gap will appear, since all dihedral angles are
approximately 71◦ only.

An algorithm for partitioning R
3 into acute tetrahedra was given only very

recently. In 2004 Eppstein, Sullivan and Üngör [15] published the following
theorem.

Theorem 3. There exists an acute partition of R
3.

Their elegant constructive proof of this theorem is based on the fact that
the regular icosahedron (see Fig. 2) can be decomposed into 20 acute tetrahe-
dra whose common vertex is the center of gravity of the icosahedron. Notice,
moreover, that the projection of the regular icosahedron onto the plane on
which it stands (on one triangle), is the regular hexagon which is a plane-filler
(see Fig. 4). Congruent regular icosahedra thus may be placed into a spatial
regular lattice so that two neighboring isocahedra have a common edge, but
not a face. The remaining gaps can be partitioned by four different types of
acute tetrahedra (see Fig. 4).
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Fig. 4. Construction of an acute partition of R
3 by means of the regular

icosahedra.

Paper [15] introduces four more algorithms for generating acute partitions
of R

3 which use information about the position of atoms in crystals of zeolites.
The volume of these minerals increases with pressure due to a special dense
arrangement of atoms, e.g., in a silicon dioxide. Their chemical structure was
studied already in 1958 (see [17]). Half a century later it was found that they
could be used in the construction of acute partitions of R

3.
The main idea is the following: Denote the centers of the particular atoms

by A1, A2, . . . . For each i ∈ {1, 2, . . . } define the corresponding Voronoi
cells in R

d. Properties of these convex polytopes were studied by Georgij
Voronoi (1868–1908), e.g., in [56], but they were previously already defined
by P. G. L. Dirichlet (1805–1859), see Fig. 5, as

Vi = {x ∈ R
d | ‖x − Ai‖ ≤ ‖x − Aj‖ for all j = 1, 2, . . . },

where ‖ ·‖ stands for the Euclidean norm. The set Vi thus contains all points
x ∈ R

d whose distance from Ai is less than or equal to the distances to
each of the other points Aj. Then one can show that the associated dual
Delaunay triangulation (its definition is given below) is the required acute
triangulation, whose vertices form the set {A1, A2, . . . } and each edge is
surrounded by 5 or 6 tetrahedra.

Fig. 5. Voronoi cells in R
3 corresponding to atoms of special chemical

compounds.
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Definition 2. Let D ⊂ R
d be the set of all vertices of all simplices from

a given triangulation. If the interiors of the circumscribed balls about any
simplex from the triangulation do not contain points from D (see Fig. 6),
then the triangulation is said to be Delaunay.

In the pioneering paper Sur la sphère vide (see [14]) by Boris Nikolajevič
Delone1 it was shown that for n points, which do not all belong to the same
hyperplane, such a triangulation always exists. Moreover, if no d + 2 points
from D lie on the surface of a d-dimensional ball, the Delaunay triangulation
is determined uniquely. Note that there are also other constructive definitions
of Delaunay triangulations, e.g., in [45], [46], [52].

Fig. 6. Voronoi cells in R
2 are indicated by broken lines. Notice that the

vertices of the dual Delaunay triangulation are not contained in the interiors
of the circumscribed balls about the particular triangles. This triangula-
tion maximizes the minimal angle among all triangulations having the same
vertices for d = 2.

It should be noted that one of the four above-mentioned algorithms, which
uses the crystal lattice of zeolites, has the maximal dihedral angle not greater
than 74.2◦ (see [13]). It is not known whether there exists an acute partition
of R

3 with a smaller value of the maximal dihedral angle. This angle cannot
be less than 72◦. This is due to the following theorem (see [35]).

Theorem 4. In any tetrahedral partition of R
3 there exist an edge, which

is surrounded by at least 6 tetrahedra, and an edge, which is surrounded by
at most 5 tetrahedra.

Corollary. In any tetrahedral partition of R
3 there exist a dihedral angle

less than or equal to 60◦ and a dihedral angle greater than or equal to 72◦.

From this we again see why the Aristotle conjecture cannot hold. In
[13] an algorithm is given, which enables us to decompose an infinite slab
of constant thickness into acute tetrahedra with maximal angle not greater
than 87.7◦. To divide an arbitrary tetrahedron into acute tetrahedra is still
an open problem. It is also not known how to refine acute partitions in R

3

to keep all dihedral angles acute. The main obstacle here is the fact that we

1His surname sounds French and therefore it is usually spelt Delaunay.
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cannot use bisection of an edge, since then at least one the new angles would
be not acute.

Let us point out that the dihedral angle of the regular simplex in R
d is

α(d) = arccos
1

d
< 90◦.

For d ≥ 4 this angle is greater than 72◦, since α(4) ≈ 76◦ and the sequence
{α(d)}∞d=2 is increasing. Consequently, kα(d) 6= 360◦ for any integer k and
d > 2. This means that the regular simplex is not a space-filler of higher
dimensional spaces. However, a more surprising assertion holds.

Theorem 5. For d ≥ 5 there is no acute partition of R
d.

Its inductive proof (see [36]) resembles Fermat’s method of infinite de-
scent. It uses Euler-Poincaré formula [43] which implies that in five-dimensional
space a point cannot be surrounded by acute simplices. On the other hand, in
R

4 a point can be surrounded by at least 600 acute simplices due to the exis-
tence of the 600-cell. In spite of that we believe that the following conjecture
is true.

Conjecture 1. There is no acute partition of R
4.

3. Path-simplices and nonobtuse partitions

We start with a useful characterization of nonobtuse simplices (see, e.g.,
[8]):

Theorem 6. Let d > 2. If a d-simplex is nonobtuse, then each of its
facets is a nonobtuse (d − 1)-simplex.

Now we introduce two notions, which are not always consistently defined
in the literature (cf., e.g., [49]).

Definition 3. An ortho-simplex in R
d is a simplex having d mutually

orthogonal edges. A path-simplex is R
d is an ortho-simplex whose d orthogo-

nal edges form a path (in the sense of graph theory); in particular, for d = 3
we shall speak about a path-tetrahedron.

CC
B

A

D

A

B

D

Fig. 7. Two types of ortho-simplices in R
3. The one on the right is a

path-tetrahedron whose three mutually orthogonal edges AB, BC, and CD

form a path. All its faces are right triangles.
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Examples. A right triangle in R
2 is an ortho-simplex and also a path-

simplex. In Fig. 7 we see two types of ortho-simplices in R
3. The first one

has three mutually orthogonal edges that share a common point B. Three
of its faces are right triangles and the fourth face ACD is an acute triangle.
The second type of ortho-simplex only has right triangular faces (see Fig. 7
on the right). We observe that its 3 orthogonal edges form a path. Therefore,
it is a path-tetrahedron.

The following three theorems (cf. Fig. 7) can be found in the work by
Fiedler [20] (see also [4], [8], [30]).

Theorem 7. Each ortho-simplex is nonobtuse.

Theorem 8. Each simplex has at least d acute dihedral angles. Each
ortho-simplex has exactly d acute dihedral angles.

This theorem (see [16, p. 315 and 320]) is so nice that it was rediscov-
ered and published fifty years later as [39], even though it can be found in
Mathematical Reviews 0069507.

Theorem 9. Let d > 2. A d-simplex is a path-simplex if and only if
each of its facets is a path (d − 1)-simplex.

From this we inductively find that a d-simplex is path if and only if each
of its two-dimensional faces is a right triangle (see [17], [20]).

Let us present further interesting results. We observe that the tetrahedron
on the left of Fig. 7 does not contain its circumcenter. (A formula for the
radius of the circumscribed ball of a simplex in R

d is derived in [16, p. 316].)
On the other hand, the circumcenter of the tetrahedron right in Fig. 7 lies at
the midpoint of the longest edge AD. This is also true in R

d (see [4, p. 194],
[17], [20]):

Theorem 10. An ortho-simplex contains its circumcenter if and only if
it is a path-simplex.

Notice that the circumscribed ball about a path-simplex for d = 2 is,
in fact, the Thales circle. In 1994 Rajan proved (see [48, p. 200]) another
remarkable assertion.

Theorem 11. If each simplex in a given triangulation in R
d contains its

circumcenter, then the triangulation is Delaunay.

In particular, each nonobtuse triangulation in the plane is Delaunay (cf.
Fig. 6). The converse implication does not hold. I.e., there exists a Delaunay
triangulation in R

2 containing obtuse angles. A combination of the previous
two theorems gives the following elegant consequence.

Theorem 12. A triangulation into path-simplices is Delaunay.

Another interesting theorem was proved by Freudenthal in his paper [21]
from 1942.

Theorem 13. The unit cube [0, 1]d can be decomposed into d! path-
simplices.

Indeed, the path-simplices from the above theorem can be defined as (see
Fig. 8 for d = 2, 3):

Sσ = {x = (x1, . . . , xd) ∈ R
d | 0 ≤ xσ(1) ≤ · · · ≤ xσ(d) ≤ 1},
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where σ ranges over all permutation of the numbers 1, 2, . . . , d.

x1

0

2

1x2x

10 x

1

Fig. 8. Triangulation of a square and cube into 2 and 6 path-simplices,
respectively.

Thus, R
d can be first be decomposed into d-cubes and also into path-

simplices. Let us point out that the Freudenthal triangulation is also called
the Kuhn partition due to the paper [38]. Another elegant idea was published
by Michael Goldberg in [24]. He divided the space R

3 into congruent infi-
nite prisms having an equilateral triangle as cross-section. Then each prism
was decomposed into congruent simplices (see Fig. 9), which can be chosen
nonobtuse. If the division of each triangular prism is a mirror image of an
adjacent prism, we get a nonobtuse partition of the three-dimensional space
in the sense of Definition 1.

A special tetrahedral space-filler was found in 1923 by Sommerville (see
[24]). The length of its two opposite edges is 2 and the other four edges
have length

√
3. Dihedral angles at the two longer edges are right, whereas

the other four dihedral angles equal to 60◦. This tetrahedron can be easily
decomposed into 8 congruent tetrahedra that are similar to the original one.
It can also be partitioned into four path-tetrahedra.

c

b

e

e

b

b

3a b

c

e

e

e

2a

e

b

a

3a

c

c

3a

Fig. 9. Goldberg’s division of an infinite triangular prism into congruent
tetrahedra. If

√
2b ≥ c, then no dihedral angle exceeds 90◦ (see [24, p. 353]).
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Theorem 14. Each path-simplex in R
d can be subdivided into d smaller

path-simplices.

B

A

D

C

Q
P

Fig. 10. Coxeter’s trisection of a path-tetrahedron ABCD into smaller
path-tetrahedra. The points P and Q are the orthogonal projections of the
points B and P on the segment AC and AD, respectively.

If d = 2 then any right triangle can be divided by the altitude on the
hypotenuse into two smaller right triangles. Partition of a path-tetrahedron
into 3 smaller path-tetrahedra (see Fig. 10) was described by Coxeter [11]
in 1989. The same construction was, in fact, implicitly used by Lenhard
already in 1960 to trisect tetrahedra of the so-called class T1c (see [40]) to
which path-simplices belong.

In [8] each path-simplex in R
d is decomposed into d (and also d+1) smaller

path-simplices. The geometric interpretation of this procedure resembles the
Gram-Schmidt orthogonalization process.

By Theorem 13, each d-dimensional cube can be decomposed into d! path-
simplices (cf. Fig. 8). However, the smallest number of simplices into which
the d-dimensional cube can be decomposed is given by (see [7], [27]):

1, 2, 5, 16, 67, 308, 1493, . . .

The four-dimensional cube can be thus divided into 16 simplices and this
number cannot be reduced (see [26]). In Fig. 11 we see 5 tetrahedra that
form a cube. One of them is the regular tetrahedron. The other four are
ortho-simplices, but not path-tetrahedra, since they do not contain the center
of the circumscribed ball. The circumcenter lies in the centre of the cube and
it is common to all 5 tetrahedra.

Fig. 11. Division of a cube into 5 tetrahedra.
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In 1957 Hugo Hadwiger [25] stated the following conjecture:

Conjecture 2. Each simplex in R
d can be subdivided into a finite num-

ber of path-simplices.

Its validity was proven only for small values of d. If d = 2, then each
triangle can be divided into 2 right triangles by means of the altitude to the
longest edge.

In 1960 Lenhardt [40] described for d = 3 a method to decompose each
tetrahedron into 12 path-tetrahedra. Later Böhm [6] showed that this num-
ber cannot be generally reduced.

The case d = 4 was solved in 1982, when A. B. Charsischwili divided a
general 4-simplex into at most 730 path-simplices (see [28]). This number
was reduced in 1986 by H. Kaiser to 610 path-simplices (see [29]) and in 1993
by Katrin Tschirpke to 500 path-simplices (see [53]). However, the smallest
possible number is yet unknown.

K. Tschirpke also investigated the case d = 5. In [55] (based on her dis-
sertation [54]) she showed that it is sufficient to use 12 598 800 path-simplices.

Each nonconvex polytope can be cut into convex polytopes by a finite
number of planes whose union contains ∂Ω. Each convex polytope can be
easily decomposed into simplices. If the Hadwiger conjecture is valid, then
each polytope can be decomposed into a finite number of path-simplices.
Path-simplices in geometry of polytopes are thus basic building blocks like
atoms in nature. They are even more elementary than simplices themselves.

4. Applications

Acute and nonobtuse simplices play an important role in many areas:

I. Algebra. Consider groups of symmetries of the Platonic bodies and
their generators. For instance, there are 4 generators for the cube. The
corresponding 4 planes of symmetries bound a path-tetrahedron which is
called the fundamental domain. All planes of symmetry divide the Platonic
bodies into path-tetrahedra (see Fig. 12).

Fig. 12. Division of the Platonic bodies into path-tetrahedra.
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II. Mathematical analysis. Ortho-simplices may serve as a tool for
the evaluation of some integrals. For instance, by the trisection of a path-
tetrahedron (see Fig. 10) into 3 smaller path-tetrahedra Coxeter proved [11]
that

∫ 6

1

sec−1 x

(x + 2)
√

x + 1

(

1√
x + 3

+ 2

)

dx =
2

15
π2.

III. Discrete geometry. A large amount of geometric applications of
nonobtuse simplices (in particular, path-tetrahedra) is given in Geometry
Junkyard [59].

IV. Graph theory. In [20, Chapt. 14] it is shown how to use path-
simplices to establish the structure of electric networks. The main theorem
(based on paper [19]) solves the following problem: Which are the possible
networks composed only from resistors inside a “black box”, which has n ∈
{2, 3, . . . } outlets.

V. Numerical mathematics. A large amount of applications of nonob-
tuse partitions are in numerical mathematics. Since such partitions have all
dihedral angles less than or equal to 90◦, the Lagrange and Hermite finite
element interpolation operators have optimal approximation orders. More-
over, the standard reference simplex is an ortho-simplex. Nonobtuse and
acute partitions enable us to fulfill the discrete maximum principle in solv-
ing nonlinear elliptic problems [30], [31], semiconductor equations [58], and
convection-diffusion problems by means of linear finite elements. Namely,
the associated stiffness matrix A is monotone (i.e., A−1 exists and A−1 ≥ 0).
The sign of particular entry of the stiffness matrix depends (see [8], [34]) on
cosines of dihedral angles in the partition. Indeed, for d ≥ 2 we have

(∇vi)
>∇vj = −measd−1Fi measd−1Fj

d2meas2
dS

cos αij, i, j = 1, . . . , d + 1, i 6= j,

where αij is the dihedral angle between faces Fi and Fj of a simplex S, vi is
a linear function that vanishes on Fi, Fi(Bi) = 1, and Bi is the vertex of S

opposite Fi (cf. Fig. 13).
B

j

F

F

B

i

i jα

i

j

Fig. 13. Illustration of the above formula for d = 3.

Acute simplicial partitions are very useful in finite element analysis, since
they yield irreducible and diagonally dominant stiffness matrices, when solv-
ing the equation

−∆u + bu = f
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by linear elements in a bounded polytopic domain with given boundary con-
ditions and b ≥ 0 small enough. On the other hand, d-linear block elements
do not guarantee, in general, the discrete maximum principle for d ≥ 2, and
for d ≥ 4 the stiffness matrix is never irreducible and diagonally dominant
(see [31]).

Such problems with d ≥ 4 are encountered in financial mathematics and
theoretical physics. In [33] the Coxeter trisection from Fig. 10 is used re-
cursively to construct local refinements of partitions in a neighbourhood of
vertices of a polyhedron by means of path-tetrahedra. Kuhn triangulation is
employed for preconditioning of large problems solved by multigrid methods
(see [3], [5]). In [9] it is used to prove gradient superconvergence of linear
finite elements.

Nonobtuse partitions (sometimes called of weakly acute type) are also
applied in the finite volume method [2]. For a weakened acute type condition
for tetrahedral partitions see [34]. The finite volume method proposed in [16]
requires a strict Delaunay condition, i.e., the closure of the circumscribed ball
about each simplex from the partition does not contain any other simplex
from the partition.

VI. Geodesy. In triangulations used in geodesy it is convenient to use
acute triangles. The closer the triangle is to an equilateral triangle, the more
accurately we can establish the coordinates of particular triangulation points
by means of measurement of lengths of edges (and angles).

Nonobtuse simplicies are also used in mathematical genetics [42], in the
Monte Carlo method for solving partial differential equations [57, p. 210],
etc.

5. Open problems

Finally, we present some more conjectures to be solved.

Conjecture 3. Each tetrahedron (or cube) can be partitioned into acute
tetrahedra.

Conjecture 4. Each polyhedron allows a face-to-face partition into
nonobtuse tetrahedra.

Conjecture 5. A vertex in R
4 cannot be surrounded by less than 600

acute simplices.
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Mat. 81 (1956), 182–223.
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men konstanter Krümmung, Dissertation, Univ. Jena, 1993.

[55] K. Tschirpke, The dissection of five-dimensional simplices into or-
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