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1 Introduction

1.1 Reaction diffusion equations

By a reaction diffusion equation we mean an equation of the form

ut − ∆u = f(u,∇u; x, t), (1.1)

where the solution u = u(x, t) is real valued and defined for (x, t) ∈ Ω ×
[0, T ], 0 < T ≤ ∞ and Ω ⊂ RN . The term ∆u is the diffusion term, and
f(u,∇u; x, t) is the reaction term. More generally, the diffusion term may
be of type A(u), where A is a second-order elliptic operator, which may be
nonlinear and degenerate. In this work, however, we are only interested in
the case where the diffusion term equals the Laplacian. We take Ω to be a
bounded subset of RN and assume Cauchy-Dirichlet data, i.e., u is given on
the boundary ∂Ω and at the initial time t = 0.

Of primary interest to us are reaction terms f = f(u), i.e., terms not ex-
plicitly depending on ∇u, x or t. Write, formally, et∆ to denote the semigroup
generated by the operator ∆ with Dirichlet boundary conditions in a certain
function space. Then the variation of constants formula for the equation
(1.1) is

u(t) = et∆u0 +

∫ t

0

e(t−s)∆f(u(s))ds. (1.2)

A method to prove local existence and uniqueness for the equation (1.1) is
to use the contraction mapping principle in (1.2). The crucial property on f
is then that f be locally Lipschitz continuous.

This solution may be locally continued. In some cases, the solution exists
for all subsequent time (global existence). However, for certain f and u0

there is a time T < ∞ such that ‖u(t)‖∞ → ∞, as t ↑ T . This phenomenon
is called blowup.

In the simple case with f = 0 in (1.1), the equation (1.1) is the (linear)
diffusion or heat equation. Take, for example, u = 0 on the boundary and
u0 ∈ C(Ω). Then we can write the solution in the closed form u(t) = et∆u0.
From this expression we can easily verify several qualitative properties of
u(t). In particular we observe that u(t) exists globally and no blowup can
occur.

This example obviously tells us that a (possible) blowup in the equation
(1.1) is a consequence of the cumulative effect of the nonlinearity f(u). Ac-
tually this is elementary for ordinary differential equations. Namely, if we
set ∆u = 0 and f(u) = up with p > 1 in (1.1), and study the ODE:

u′ = up, t > 0; u(0) = 1, (1.3)

we get u(t) =
[

1 + (1− p)t
]

1
1−p . Thus the solution is smooth for t ∈ (0, 1

p−1
)

and u(t) → ∞ as t ↑ 1
p−1

, i.e., u blows up.
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For partial differential equations, as (1.1), the situation is much more
complicated. In general, we cannot solve the equations explicitly, and the
possibility of blowup is therefore difficult to examine.

The first fundamental paper concerning the blowup problem for the re-
action diffusion equation was written by Fujita [22]. He studied the Cauchy
problem for the equation ut − ∆u = u1+α, α > 0 and proved that if 0 <
Nα < 2 (N is the space dimension), then the initial value problem had
no nontrivial global solutions while if Nα > 2, there were nontrivial global
solutions. In this second case it was essential that the initial values were suf-
ficiently small. After the publication of this paper the blowup phenomenon
for the reaction diffusion equations has been the object of intensive research.
See, for example, the review articles [25] and [44], and the references therein.

Another type of situation where the reaction diffusion equation does not
have a global (smooth) solution are the equations in which the reaction term
is in some sense singular for finite u. A typical example is (1.1) with f(u) =
−u−p, p > 0. In this case it is conceivable that there exists a time T such
that infx∈Ω u ↓ 0, as t ↑ T . Then the reaction term blows up, and the smooth
solution ceases to exist. This phenomenon is called quenching (or in some
papers [25] extinction).

As in the case of the blowup problem, the quenching behavior is also
caused by a nonlinear reaction term. We can conclude, by the parabolic
Harnack’s inequality, that quenching is impossible if, e.g., we have a uniformly
elliptic operator as the diffusion term in (1.1) and f ≡ 0 with u = 1 on the
boundary.

In the case of ordinary differential equations we can demonstrate quench-
ing by a simple example. We replace the term up in (1.3) by −u−p, p > 0, and

solve it to get u(t) =
[

1− (1+p)t
]

1
1+p . From this we obtain that the solution

is smooth for t ∈ (0, 1
p+1

) and u(t) → 0 as t ↑ 1
p+1

, i.e., u quenches. When

we move on to study the quenching for the partial differential equation (1.1),
we observe that the diffusion term ∆u resists quenching, and the situation is
consequently harder to analyze.

Although the blowup and the quenching problems somewhat resemble
each other, a qualitative difference is that in the blowup problem the solu-
tion u(t) becomes unbounded while in the quenching problem some derivative
of the solution u(t) blows up. Typically the time derivative ut blows up in
quenching problems, a fact which makes these equations challenging. The
changes with respect to time happen faster and faster. Therefore (for ex-
ample) the analysis by using the contraction mapping principle in (1.2) does
not tell us much about the qualitative properties of the solution near the
quenching point, because the size of the time steps tends to zero.

The original paper concerning the quenching problem was written by
Kawarada [37]. This paper did initiate a wide study of the quenching problem
by many authors, including work on existence and nonexistence, structure or
size of quenching points, asymptotic behavior of the solutions in space and
time near the quenching points etc.. In the next section we give an overview
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of the results. See also the review articles [25, 38, 43, 44].
In this work we concentrate on the quenching problem for equations of

type (1.1). We also analyze the blowup problem for equations of type (1.1).
The equation (1.1) has many applications in physics, chemistry and bio-

logy (see [30, 34, 58]). Below we present some situations where blowup or
quenching behavior are possible and which are essentially connected to this
work.

(a) The theory of combustion and population genetics (see [25, 44, 55, 62]
and references therein). There are two classical scalar models. One of them
is the exponential reaction model where f(u) = δeu in (1.1). This model
is important in combustion theory where it is also known as the Frank-
Kamenetsky equation [62]. For instance, combustion of a one-dimensional
solid fuel is described by the set of equations:

Tt = Txx + δεc exp
(

T−1
εT

)

, ct = −εΓδc exp
(

T−1
εT

)

,

where T and c represent respectively the fuel temperature and concentration,
and δ, Γ, ε are (positive) physical constants. Typically, ε represents the
inverse of the activation energy. If we assume 0 < ε ¿ 1, and look for
solutions in the form T = 1 + εu + ... and c = 1 − εC1 + ..., we are led to
ut = uxx + δeu and (Ci)t = Γδeu.

The other classical blowup equation is (1.1) with f(u) = up.
(b) Population dynamics (see [55]). In this case the equation (1.1) was

first introduced with f(u) = |u|p−1u − b|∇u|q (p > 1, q ≥ 1) (see [10]). In
this model it was studied how the gradient damping term b|∇u|q affects the
possible blowup behavior. The term f1 = |u|p−1u describes the births and the
term −b|∇u|q describes the deaths within a population. In particular, the
dissipative gradient term represents the action of a predator which destroys
the individuals during their displacements. The births can also be described
by an exponential term, i.e., f1(u) = eu or f1(u) = ueu.

(c) In connection with the diffusion equation generated by a polarization
phenomena in ionic conductors (see [37] and references therein). In the paper
[37] the equation (1.1) was studied in one space dimension with f(u) = 1

1−u

and u ≡ 0 on the parabolic boundary. In this case quenching means that
u ↑ 1. Note that these equations are usually written in the form where the
singularity appears at u = 0, i.e., f(u) = − 1

u
.

(d) As a limiting case of models in chemical catalyst kinetics (Langmuir-
Hinshelwood model) or of models in enzyme kinetics (see [17, 49] and refer-
ences therein): In this case f = f(u, ε) is a smooth function for ε > 0, and
f(u, ε) → f(u), as ε → 0, where f(u) is negative for u > 0 and singular at
u = 0. Actually the reaction term is denoted by f = f(u)χ({u > 0}) to
emphasize that the reaction ceases at u = 0.

(e) The problem of a superconducting vortex intersecting with the bound-
ary between vacuum and a superconducting material (see [9, 47]). In the
paper [47], a vortex line at time t ≥ 0 is viewed as

L(t) = {(x, y, z) = (x, 0, u(x, t))|x ∈ Ω},

8



where Ω = (−1, 1) or Ω = R, and u > 0 is a regular function. The physical
derivation gives that u(x, t) satisfies (1.1) with f(u) = e−uH0 −F0(u), where
H0 is the applied magnetic field assumed to be constant, F0 is a regular
function satisfying F0(u) ∼ 1

u
and F ′

0(u) ∼ − 1
u2 as u → 0. In this model , a

vortex reconnection with the boundary (the plane z = 0) means quenching.

(f) In connection with phase transitions, when we study the motion of
the borderline between liquids and solids (see [16, 39]). In this application,
also the diffusion term is nonlinear and the equation takes the form

ut −∇ · ∇u√
1+|∇u|2

= − 1
u
.

(g) In connection with detonation theory (see [23] and references therein):
In this case both the diffusion term and the reaction term are nonlinear.
Thus,

ut − ln
(

ecuuxx−1
cuuxx

)

= ln(u) − 1
2
u2

x

where c is a nondimensional positive constant representing the chemical prop-
erties. This equation was studied in [23] with Neumann boundary conditions.

In models (a) and (b) it is possible that u blows up in finite time. Cor-
respondingly, in models (c)-(g) it is possible that u quenches in finite time.

We shall now briefly explain some general aspects of the equations (1.1)
and comment on the literature concerning the subject.

The equation (1.1) has been studied extensively (see the books [12, 30, 34,
41, 45, 54, 58], and references therein). The results obtained concern exist-
ence, uniqueness, continuous dependence, stability, smoothness and asymp-
totics of solutions etc.

The geometric theory for the equations (1.1) has been handled in [34].
In this context, a basic approach is to write the partial differential equation
as an ordinary differential equation in a Banach space (involving unbounded
operators), and then try to extend the ideas and theorems from the theory
of finite dimensional dynamical systems to this infinite dimensional setting.

This approach has led to the development of the theory of C0-semigroups
[29, 48]. The problem is to give necessary and sufficient conditions un-
der which the problem is well posed. This means that the equation has
a unique solution, which depends continuously on the initial function. As is
well known, the problem (1.1) with f = 0 and Au as the (linear) diffusion
term is well posed provided that A is the generator of a C0-semigroup, see
[29, 48].

In the case of linear equations, homogeneous or nonhomogenous, a semig-
roup approach gives the solution to the problem explicitly, while for nonlinear
equations as described above, we need also fixed point theorems to settle the
existence. For a detailed treatise on the basic theory of abstract parabolic
equations in general Banach spaces, see [46]. Applications in [46] concern
both linear and nonlinear equations. Basic results on fixed point theorems
applied to partial differential equations of type (1.1) can also be found in
[12, 45].
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Because the equations (1.1) are of second order, we are able to apply the
parabolic maximum principle, or some comparison methods that are essen-
tially consequences of this principle, in the analysis. The techniques involving
sub- and super solutions or invariant regions, also belong to this category.
Roughly speaking these methods can be used in two ways.

In the first case we take existence for granted and derive a priori bounds
for solutions. These bounds are useful, for example, in the study of regularity
or asymptotics of solutions. A basic idea is to make an appropriate guess
on the sign of a certain function P , where P = P

(

u, ux, ut, f(u)
)

and u is a
solution of (1.1). Then we deduce the corresponding parabolic inequality for
P from (1.1), and use the maximum principle.

In the second case these methods can be used to prove existence results.
A strategy in this case is to first find a subsolution u and a supersolution u
of a corresponding boundary value problem (1.1) such that u ≤ u, and then
use this to prove that there exists a solution satisfying u ≤ u ≤ u. See the
books [12, 20, 30, 54, 58] for a comprehensive interpretation of the methods
concerning the maximum principle and its applications.

1.2 Earlier results

Typical research subjects for blowup and quenching problems are:
(a) What are necessary and sufficient conditions for blowup or quenching?
(b) What can be said about the set of blowup- or quenching points?

Can blowup or quenching take place on an entire interval, or is blowup or
quenching possible only on distinct points?

(c) What kind of asymptotic behavior do solutions obey near the blowup
or quenching points?

(d) What can be proved on solutions after blowup or quenching?
In the following we present known results for quenching and blowup prob-

lems, which are essentially connected to this work.
Consider the equation

ut − ∆u = f(u), x ∈ Ω, t ∈ (0, T ),

u(x, t) = 1, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

where the initial function satisfies 0 < u0(x) ≤ 1 and u0 = 1 on the boundary.
Here T is a positive constant. We assume that the reaction term f(u) is
singular at u = 0 in the sense that limu↓0 f(u) = −∞. For u > 0 we take
f(u) to be smooth and to satisfy (−1)kf (k)(u) < 0; k = 0, 1, 2.

It is well known, see, e.g., ([58] p.34, Th.3.3.), that the problem (1.4) has
a local unique solution in a set Ω× (0, tε). This solution can be continued to
Ω × (0, T ), where T = infτ{τ ≥ 0 | lim supt↑τ,x∈Ω(u(x, t) + 1

u(x,t)
) = ∞}. It

is also known that ([58] p.41, Th.3.8.) u(x, t) is a C∞-function with respect
to xi and t in (x, t) ∈ Ω × (0, T ).

We say that a is a quenching point and T is a quenching time for u(x, t),
if there exists a sequence {(xn, tn)} with xn → a and tn ↑ T , such that
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u(xn, tn) → 0 as n → ∞. Correspondingly we say that b is a blowup point
and T is a blowup time for u(x, t), if there exists a sequence {(xn, tn)} with
xn → b and tn ↑ T , such that u(xn, tn) → ∞ as n → ∞.

As a partial answer to the question (a) we have two kinds of sufficient
conditions (with certain assumptions on f , u0 and on the space dimension
N):

Theorem 1.1. When Ω is sufficiently large, then u quenches in finite time.

Theorem 1.2. When u0 is small enough, then u quenches in finite time.

In the first paper concerning the quenching problem, Kawarada [37] stud-
ied the equation (1.4), when f(u) = −1/u, N = 1 and u0 = 1. Acker and
Walter [2] obtained Theorem 1.1 for these type of singularities, when u0 = 1.
Essential in their work is the proof of the fact that for sufficiently large Ω,
the problem (1.4) does not have a stationary solution.

Quenching can occur, even though the equation (1.4) does have a station-
ary solution. Then it is crucial that the initial function takes values which
are close enough to zero. Acker and Kawohl [1] have proved Theorem 1.2, in

the case where N = 1 and
∫ 1

0
f(s)ds = ∞. Levine [42] studies the station-

ary states of the problem (1.4), and proves Theorem 1.2, when N = 1 and
f(u) = −u−p (p > 0). In the proof the initial function u0 is compared to the
smallest stationary solution, and it is proved that this smallest stationary
solution is unstable.

In the question (b) one studies the size of the set of quenching points. For
example, it has been established for (1.4) that (under certain assumptions
on u0, f(u) and N):

Theorem 1.3. Quenching occurs at (0, T ).

Theorem 1.4. The set of quenching points is a compact subset of Ω.

Theorem 1.5. The set of quenching points is a discrete subset of Ω.

Acker and Kawohl [1] proved Theorem 1.3 for functions f(u) that satisfy
(−1)kf (k)(u) < 0; k = 0, 1, 2; with Ω a ball in RN , and with the initial
function u0 satisfying ∆u0+f(u0) ≤ 0 and (∆u0+f(u0))r ≥ 0. The argument
is based on the inequality urt ≥ 0, which is proved by the maximum principle.

Theorem 1.4 implies that quenching points are bounded away from the
boundary. Deng and Levine [11] proved Theorem 1.4 in RN under certain
assumptions on f(u) and u0. They use the method developed in [21], where
the corresponding blowup problem has been studied.

Guo [31] proved Theorem 1.5 for the case where f(u) = −u−p, (p > 0),
and u′′

0 + f(u0) ≤ 0 (N = 1). The proof is based on Angenent’s [3] result for
certain parabolic equations.

As to the question (c), note that it is obvious that at least ut or ∆u in the
equation blows up, when u quenches. Concerning the asymptotic behavior of
solutions near a quenching point, the following results have been established
(under various assumptions on u0, f(u) and N , note that in Theorem 1.6
f(u) does not need to be a power singularity):
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Theorem 1.6. When u quenches, then ut blows up.

Theorem 1.7. Let f(u) = −u−p (p > 0). Then

min
x∈Ω

u(x, t) ≤ [(1 + p)(T − t)]1/(1+p)

and
u(x, t) ≥ C1(T − t)1/(1+p)

in a neighborhood of the quenching point (t < T ).

Theorem 1.8. Let f(u) = −u−p, (p > 0). Then for any quenching point
(a, T ),

lim
t↑T

u(x, t)(T − t)−1/(1+p) = (1 + p)1/(1+p)

uniformly, when |x − a| ≤ C
√

T − t for any positive constant C.

Let us present the corresponding results for the blowup problem (before
we comment on Theorems 1.6-1.10). In this case, f(u) = up or f(u) = eu in
(1.4), with the boundary condition u = 0, when x ∈ ∂Ω.

The results corresponding to Theorem 1.7 are

Theorem 1.9. Let f(u) = up and N ≥ 1 in (1.4), then

max
x∈Ω

u(x, t) ≥ c

(T − t)1/(p−1)

and

u(x, t) ≤ C

(T − t)1/(p−1)

in a neighborhood of the blowup point (t < T ).

The results corresponding to Theorem 1.8 are (under certain assumptions
on u0 and N)

Theorem 1.10. Let f(u) = up in (1.4) and (a, T ) be the blowup point. Then

lim
t↑T

(T − t)1/(p−1)u(a + y
√

T − t, t) = (p − 1)−1/(p−1),

uniformly, when |y| ≤ C. When f(u) = eu in (1.4), then

lim
t↑T

(u(a + y
√

T − t, t) + ln(T − t)) = 0,

uniformly for |y| ≤ C.

Chan and Kwong [8] proved Theorem 1.6, for the case where
∫ 1

0
f(u)du =

∞. Deng and Levine [11] extended this Theorem to less singular reaction
terms. Fila and Kawohl [15] proved Theorem 1.7. Note that then we obtain
upper and lower bounds for u(x, t), but that the upper bound is only valid
at one point with respect to x.

12



Theorem 1.9 is from the paper by Friedman and McLeod [21].
The arguments behind Theorems 1.6, 1.7 and 1.9 are essentially based on

the methods developed in [21]. By the maximum principle one can derive
estimates in one direction (upper or lower bounds), and by the local existence
theorem [58] one gets the opposite bounds at maximum or minimum points
(with respect to the space variable).

Theorems 1.8 and 1.10 improve the results 1.7 and 1.9. More precisely,
they give uniform estimates for u(x, t) in backward parabolas of quenching
and blowup points.

Note that the results concerning blowup problems were obtained earlier,
and that the methods developed there have been applied to quenching prob-
lems.

Giga and Kohn [27, 28] proved Theorem 1.10 for f(u) = up. Their method
is based on the scaling property of the equation ut − ∆u = up. This means
that if u(x, t) is a solution of the equation, then also the scaled functions

uλ(x, t) = λ2βu(λx, λ2t), (1.5)

with β = 1/(p − 1), λ > 0, are solutions of this equation. If uλ = u for
all λ > 0, then u is said to be self-similar. If (0, 0) is a blowup point, then
the asymptotics of u(x, t) near the blowup point is given by uλ, as λ → 0.

Here one defines new variables by y = (−t)−
1

2 x and s = − ln(−t), and then
w(y, s) = (−t)βu(x, t). This function satisfies

ws − wyy +
1

2
ywy + βw − wp = 0. (1.6)

For a solution w of(1.6), the self-similarity means that w does not depend
on s. In the proof of Theorem 1.10 it is therefore essential to study the
stationary solutions of (1.6). This analysis can be found in [27, 28]. In [28],
Theorem 1.10 has been extended to a more general class of nonlinearities.
More precisely, the results have been extended to reaction terms f(u) =
up + h(u), where |h(u)| ≤ b(1 + uq) and 1 < q < p.

Theorem 1.10 for f(u) = eu has been proved in [4] for the space dimension
N = 1, 2 and in [5] for the space dimensions N ≥ 3. These proofs are done
by first defining new variables (y = x/

√
T − t, s = − ln(T − t)), where now

w(y, s) = u(x, t) + ln(T − t). Then it is crucial to show that w → w0, where
w0 is a solution of the stationary equation w′′− 1

2
yw′+ew−1 = 0, and finally

to conclude the claim from the properties of this stationary equation.
Theorem 1.8 was first established by Guo [31], in the case where N = 1,

u′′
0(x) − u−p

0 (x) ≤ 0 and p ≥ 3. Fila and Hulshof [13] extended this result to
p ≥ 1. For the weaker singularities 0 < p < 1, the proof is done in [33]. The
extension of Theorem 1.10 to higher space dimensions has been worked out
in [32] (p ≥ 1) and in [14] (p > 0). Note also the paper [61] by Yuen, where
a quenching rate-estimate for the degenerate equation,

xqut − uxx = −u−β,
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with Cauchy-Dirichlet data in Ω = (0, a) × (0, T ), has been proved.
The proofs of Theorem 1.8 are based on methods developed by Giga and

Kohn [27, 28]. The change of variables (assume that (0, T ) is the quenching
point): y = x/

√
T − t, s = − ln(T − t) and w(y, s) = (T − t)−1/(p+1)u(x, t),

now yields

ws − wyy +
1

2
ywy +

1

p + 1
w − w−p = 0. (1.7)

The study of the asymptotics when t ↑ T for the problem (1.4), when f(u) =
−u−p is equivalent to having s → ∞ in the equation (1.7). In the proof one
shows that

(i) w(y, s) → w∞(y), as s → ∞ (self-similarity),
and studies
(ii) the stationary equation

w′′ − 1

2
yw′ − F (w) = 0, (1.8)

where F (w) = 1
p+1

w−w−p. In (ii) one uses arguments based on [6], by which
one can derive all possible limit functions w∞ of w. The qualitative behavior
of the solution of (1.8) depends essentially on the exponent p. By proving
that a limit function w∞ is constant, one obtains Theorem 1.8.

Another interesting question related to the asymptotics of solutions is
whether one can refine the behavior of u(x, t) in Theorem 1.8. More precisely,
can one describe the shape of u(x, t) with respect to the space variable in
backward parabolas |x − a| < C

√
T − t, or can one determine how fast the

limit value is reached? Moreover, one may ask whether the region |x − a| <
C
√

T − t can be enlarged? Because the domain of validity in Theorem 1.8
tends to zero as the quenching point is approached, then any information
about the space structure of the solution at the quenching time T is lost.
Therefore one needs more detailed information in order to be able to compute
the profile of u at t = T . To this end, the following results have been
established (under certain assumptions on u0):

Theorem 1.11. Let f(u) = −u−p (p > 0) and let (0, T ) be the quenching
point (r = |x|, N ≥ 1). Then

u(r, T ) ≤
[ (p + 1)2

2(1 − p)

]1/(1+p)

r2/(1+p), for 0 < p < 1,

u(r, t) ≥ Cεr
ε+2/(1+p), for 0 < p, t ∈ (0, T ].

Theorem 1.12. Let (0, T ) be the quenching point for the equation (1.4),
when f(u) = −u−p (p > 0) and N = 1. Then for given C > 0 as t ↑ T ,
either

(T − t)−1/(p+1)u(x, t) − (1 + p)1/(1+p) =

(1 + p)1/(1+p)

2p(− ln(T − t))

(

x2/2(T − t) − 1
)

+ o(1/(− ln(T − t))),
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or else, for some integer m ≥ 3 and some constant c 6= 0

(T − t)−1/(p+1)u(x, t) − (1 + p)1/(1+p) =

c(T − t)(m/2−1)hm(x/
√

T − t) + o((T − t)(m/2−1)),

where the convergence takes place in Ck(|x| < C
√

T − t) for any k ≥ 0. (hm

is the Hermite polynomial of order m )

Theorem 1.13. Let (0, T ) be the quenching point for the equation (1.4),
when f(u) = −u−p (p > 0) and N = 1. Then

u(x, T ) =
[(p + 1)2

8p

]
1

1+p
( |x|2
| ln |x||

)
1

1+p

(1 + o(1)),

as |x| → 0.

The result 1.11 is due to Fila and Kawohl [15]. They base their argument
on an application of the maximum principle. See also the corresponding
results for the blowup problem in [21]. Note that Theorem 1.11 tells us
that for p ∈ (0, 1) the function u(x, T ) is of class C1 at the origin, while for
p > 1 it has a cusp-singularity and is merely Hölder continuous at the origin.
However, this Theorem does not inform us about the exact profile of u(x, t)
at t = T .

Theorems 1.12 and 1.13 are from [18]. Theorem 1.12 was proved first, and
was then used in the proof of Theorem 1.13. The method of the proof relies
on corresponding blowup results, which were obtained in [19, 35, 59]. Note
that Theorem 1.13 is also proved (independently) in [47], where, in addition,
the stability of quenching problems is studied.

In the question (d) we are interested in the behavior of u(x, t), when
t > T . Because ut blows up (Theorem 1.6), the equation (1.4) does certainly
not have a strong solution for all t > 0. The answer to (d) therefore depends
essentially on the concept of solution that one employs and also on how
singular the reaction term is. It is interesting to know: (i) Whether the
solution u(x, t) can have nontrivial continuations when t > T? or (ii) Is
u(x, t) identically zero, when t > T (complete quenching)? Note here that
f = f(u)χ({u > 0}).

In [49] the singularity −u−p (p ∈ (0, 1)) is regularized by the finite non-
liearity −u/(ε + up+1). Then a classical global solution uε exists for every
ε > 0. It is shown in [49] that uε is decreasing in ε, and that uε has a limit
U as ε → 0 which coincides with u for t < T . Moreover, it is proved that U
is a global weak solution of ut − ∆u = −u−pχ({u > 0}). Uniqueness of this
U , however, is an open problem.

Properties of these weak solutions are further studied in [17], when f =
−λu−pχ({u > 0}). In particular, it is established there that, for radially
symmetric u0, for λ sufficiently small and Ω a ball, then there is t(u0) ≥ 0
such that U(x, t; u0) > 0 on Ω × (t(u0),∞).

In [24] the question (d) is analyzed for a larger class of singularities than in
[17, 49]. A contribution in [24] consists in obtaining necessary and sufficient
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conditions for complete quenching depending on f(u). For power singularities
Galaktionov and Vazquez [24] have the following result.

Theorem 1.14. Let f(u) = −u−p in (1.4) and N = 1.

(a): Complete quenching occurs if and only if p ≥ 1.

(b): If 0 < p < 1, then the solution of (1.4) has a non-trivial continuation
after the quenching time T .

The arguments in [24] are based on travelling-wave techniques. Solutions
(in (b)) are viscosity solutions.

Finally we consider equations of type

vt − vxx = af(v) − bvq
x (1.9)

with Cauchy-Dirichlet data (v given on the boundary and v(x, 0) = v0(x)),
when t > 0 and x ∈ Ω (bounded). Here q, a and b are strictly positive
constants, furthermore f(v) = vp or f(v) = erv (p, r > 0 are constants).
We have added a gradient damping term −bvq

x to the equation (1.4). The
key question is, how this term affects the qualitative behavior of solutions.
What conditions must q, a, b, f(v) and Ω satisfy to guarantee that smooth
solutions exist; alternatively, under what assumptions does blowup occur in
finite time? These questions have been studied extensively (see for example
[10, 40, 55, 56, 57] and references therein). Especially note [57], where the
asymptotics of solutions have been investigated.

Consider now the equation (1.9), when f(v) = e(1+p)v, a = b = 1 and q =
2. Substituting v = − ln(u) in the equation (1.4) (N = 1 and f(u) = −u−p),
we can see that v(x, t) satisfies the equation (1.9). Therefore quenching
for the equation (1.4) corresponds to blowup for the equation (1.9). This
approach has been applied to study the blowup problem for the equation
(1.9) in [1, 39, 40].

Detailed review-articles concerning the quenching problem are for ex-
ample (Kawohl [38]) and (Levine [43]), and correspondingly on the blowup
problem (Levine [44]) and (Galaktionov, Vazquez [25]). Furthermore, the
blowup problem for the equation (1.9) has been studied in the review-article
by Souplet, [56].

1.3 Motivation and results

Despite the existing rich literature, many open questions for the quenching
and the blowup problem remain. Below we present the subjects that appear
in this work.

(a) Does the singularity in the equation (1.4) necessarily lead to quench-
ing, when the domain is large? Is it possible that there are weak singularities
such that quenching cannot occur even for large domains?

(b) The second interesting question is to clear up whether quenching can
take place on an entire interval, or is only possible on distinct points (N = 1)?
Can the initial function u0 be chosen such that the qualitative behavior differs
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from that of Theorem 1.5? On the other hand, can we have quenching on an
entire interval for singularities different from power singularities?

(c) Quenching rate estimates (Theorem 1.8) have been proved only for
power singularities and especially for equations that have the scaling property
described in the preceding section. Does the mechanism of quenching (in the
sense of Theorem 1.8) remain unchanged for every concave reaction term,
i.e., (−1)kf (k)(u) < 0; k = 0, 1, 2?

(d) Refined asymptotic results, like Theorems 1.12 or 1.13, are known
only for power singularities. If we are able to prove quenching rate estimates
for certain other nonlinearities, can we refine these estimates? Or can we
find some qualitative differences between the asymptotic behavior compared
to the corresponding results in the case of the power singularities?

In the equation (1.4), an essential feature is the contest between the linear
diffusion term ∆u and the nonlinear reaction term f(u). If the dissipative
diffusion term is dominant, then there is no quenching. Thus the nonlinear
reaction term can achieve quenching. Therefore the phenomenon is more
interesting in the case of weaker singularities. Even if the corresponding
stationary equation of (1.4) does not have a solution, then it might happen
for a sufficiently weakly singular reaction term that quenching is only possible
in infinite time.

A weakening of the nonlinearity in the equation (1.4) might lead to
quenching on an entire interval. For power singularities we know by Theorem
1.5 that quenching occurs on distinct points which are bounded away from the
boundary because of Theorem 1.4. Furthermore we have observed in the pre-
vious section that the solution of (1.4) loses less regularity at the quenching
point in the case of weaker singularities. More precisely, by Theorem 1.13 it
holds for f(u) = −u−p that the x-derivative of the final profile u(x, T ) at the
quenching point has a singularity when p ≥ 1 and is smooth (ux(a, T ) = 0),
when p ∈ (0, 1). Can this regularity be strengthened for weaker nonlinearities
in such a way that ux(x, T ) = 0 for all x ∈ (c, b) ⊂ [−l, l], in other words can
quenching take place on an entire interval?

The content of Theorem 1.8 can be interpreted by comparing the quench-
ing rate to a solution of the corresponding ordinary differential equation v ′ =
f(v) (where f(v) = −v−p, with final condition v(T ) = 0), and concluding
that these solutions are asymptotically equal in the region |x−a| < C

√
T − t.

We are now interested in whether this asymptotic equality holds for more
general f(u). More precisely, we conjecture that the quenching-rate satisfies

lim
t↑T

(

1 +
1

T − t

∫ u(x,t)

0

dτ

f(τ)

)

= 0 (1.10)

uniformly, when |x − a| < C
√

T − t for every C ∈ (0,∞). By Theorem 1.8
this holds for power singularities. Can the equality (1.10) be obtained for the
solution of the equation (1.4) in the situation where the scaling property is not
valid. In particular we are interested in the validity of this formula for weak
singularities. We stated earlier that crucial to the occurrence of quenching is
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the competition between the linear diffusion term and the nonlinear reaction
term, the nonlinear term promoting quenching. Inasmuch as we are now
interested in less singular f(u), it is not at all obvious that (1.10) remains
true.

Before we introduce the results of this work, we wish to give one fur-
ther motivation for our approach which consists in the study of quenching
problems with weak singularities. This motivation is a possible extension of
Theorem 1.14. By this Theorem it follows that weak singularities do allow
nontrivial continuations for t > T , whereas strong singularities do not. Obvi-
ously, this fact makes weak singularities particularly interesting and fruitful
to study.

1.4 Paper I

We begin our analysis by considering the problem

ut − uxx = ln(αu), x ∈ (−l, l), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [−l, l],

u(±l, t) = 1, t ∈ [0, T ),

(1.11)

where α ∈ (0, 1) and u0 ∈ (0, 1]. The reaction term f(u) = −u−p in the
equation (1.4) is here replaced by the weaker logarithmic singularity f(u) =
ln(αu). The space dimension is one. The quenching problem for the equation
(1.11) is the subject of our first paper [50]. Below we give a brief overview of
the results.

Because the reaction term is now much weaker than a power singularity,
it is not obvious that quenching can happen. The first problem is therefore
to clear up, whether quenching may at all occur?

It is assumed throughout [50] that the initial function satisfies

u′′
0(x) + ln(αu0(x)) ≤ 0, (1.12)

where x ∈ [−l, l]. This technical assumption guarantees that u(x, t) is de-
creasing in time. It is shown in [50] that quenching is possible, i.e., we have:

Theorem 1.15. For l large enough, the solution u(x, t) of (1.11) quenches
in finite time.

The proof of this theorem is based on the fact that the stationary problem
corresponding to the equation (1.11) has no solution, if l is sufficiently large.

The second result in [50] concerns the potential quenching on an entire
interval. We study whether the weakening of the singularity affects the size of
the set of quenching points. The result in [50] tells us that the situation does
not qualitatively differ from the situation, where we had a power singularity.

Theorem 1.16. Suppose that u(x, t) satisfies (1.11) and that (1.12) holds.
Then the set of quenching points is finite.
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The proof is based on a general method for certain parabolic equations
developed by Angenent [3]. It is first deduced, using this method, that ux

cannot oscillate, when the quenching point is approached. Then it is shown
that there is a time t∗ such that there is a finite number of local minima
with respect to x after t∗, and that this number is constant in time. Finally,
one shows that quenching cannot occur on the boundary and that the set
of quenching points is finite. The proof is essentially the same as Guo’s [31]
(which is also based on [3]) for the stronger singularities f(u) = −u−p.

The main result in [50] treats the local asymptotics of the solution near
the quenching point. This is formulated as

Theorem 1.17. Let u(x, t) be the solution of the equation (1.11), where u0

is even, u′
0(r) ≥ 0, u0(x) ∈ (0, 1] and (1.12) holds (r = |x|). Assume that

u(x, t) quenches at (0, T ) for some T < ∞. Then

lim
t↑T

(1 +
1

T − t

∫ u(x,t)

0

dτ

ln(ατ)
) = 0, (1.13)

uniformly, when |x| < C
√

T − t, for every C ∈ (0,∞).

This theorem can also be proved in a somewhat stronger form:

Corollary 1.18. Let u(x, t) quench at (a, T ), with an initial function u0 that
satisfies u0(x) ∈ (0, 1] and (1.12). Then

lim
t↑T

(1 +
1

T − t

∫ u(x,t)

0

dτ

ln(ατ)
) = 0,

uniformly, when |x − a| < C
√

T − t, for every C ∈ (0,∞).

Our proof of the quenching rate estimate (1.13) for a logarithmic singu-
larity is not based on earlier results on quenching. The proof here uses simil-
arity variables and energy estimates; in particular observe that our method is
different from the earlier versions used to prove the corresponding quenching-
rate estimate (1.10) (see Giga-Kohn [27, 28], Bebernes-Eberly [5], Guo [31]).
This is already a consequence of the fact that (1.11) does not have the useful
scaling property that the equation (1.4) (with f(u) = −u−p) has.

By these quenching results we can also study the blowup for the gradient
damping equation of type (1.9). More precisely, substituting αu = e−v in the
equation (1.11), we get

vt − vxx = αvev − v2
x, x ∈ (−l, l), t ∈ (0, T ),

v(x, 0) = − ln(αu0(x)), x ∈ [−l, l],

v(±l, t) = − ln(α), t ∈ [0, T ),

(1.14)

Note that quenching for the equation (1.11) corresponds to blow-up in the
equation (1.14). Thus Theorems 1.15, 1.16 and 1.17 yield the following new
Corollaries.
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Corollary 1.19. For sufficiently large l, the solution v(x, t) of (1.14) blows
up in finite time.

Corollary 1.20. The set of blow-up points for the equation (1.14) is finite.

Corollary 1.21. Let (0, T ) be a blow-up point for the equation (1.14). Then

lim
t↑T

1

T − t

∫ ∞

v(x,t)

dτ

ατeτ
= 1,

uniformly, when |x| ≤ C
√

T − t.

1.5 Paper II

In the paper [51] we extend Theorem 1.17 to a wider class of weak singular-
ities. More precisely, we assume that f(u) in (1.4) (where N = 1) satisfies

|unf (n)(u)| = o(|f(u)|), n = 1, 2, (1.15)

as u ↓ 0. Furthermore we define f̃(s) = −es · f(e−s)
f ′(e−s)

, and assume that

f̃(s(1 + o(1))) = (1 + o(1))f̃(s), (1.16)

as s → ∞. Explicitly, this requirement means that for a(s) → 0 as s → ∞,
there is b(s) → 0 as s → ∞, such that f̃(s(1 + a(s))) = (1 + b(s))f̃(s) as
s → ∞. Note that (1.15) implies f̃(s) → ∞ as s → ∞. The hypothesis
(1.16) refines the asymptotic character of (1.15). More precisely, it imposes
a condition on the possible oscillations of f(u)/(uf ′(u)) in a neighborhood
of u = 0.

The main result of this paper is

Theorem 1.22. Let N = 1 and u′′
0 +f(u0) ≤ 0 in (1.4). Assume that (1.15)

and (1.16) hold and that u quenches. Then the quenching rate satisfies the
estimate (1.10).

An interesting ingredient in our result is the fact that the class of nonlin-
earities is now additive with a mild restriction. More precisely, we can verify
that if two singularities f1(u) and f2(u) satisfy (1.15), then also f(u) =
−|f1(u)|p−|f2(u)|q, for p, q > 0 satisfies (1.15). The condition (1.16) on slow
variation does not necessarily obey this rule. However, we can give several
sufficient conditions for f1(u) and f2(u), such that f(u) = f1(u) + f2(u) sat-
isfies (1.16), provided that f1(u) and f2(u) do. For example, we can take f1

and f2 such that |f2| = o(|f1|) and |f ′
2| = o(|f ′

1|), to guarantee that (1.16)
is additive. In this sense our result is new compared with earlier works on
uniform quenching-rate estimates.

Let us give some examples that satisfy (1.15) and (1.16). Because (1.15)
and (1.16) hold for f(u) = ln(u), then by the above remarks these hypotheses
hold also for f(u) = −| ln(u)|p, p > 0 or f(u) = −| ln(u)|p−| ln(u)|q, (p, q >
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0). Furthermore we can derive that f(u) = − ln(| ln(u)|) or even f(u) =
− ln(| ln | ln | · · ·(| ln(u)|) · · · |||) satisfy (1.15) and (1.16). Consequently f(u) =
−| ln(u)|p − ln(| ln(u)|), (p > 0), and f(u) = − ln(| ln(u)|) − ln(ln(| ln(u)|))
are as well suitable.

Stronger singularities, like f(u) = −u−p, p > 0 or f(u) = − u−p

| ln(u)| , p >

0, do not satisfy (1.15).
Finally we emphasize that nonlinearities can be perturbed in many ways.

We can take h ∈ C2[0, 1] such that h > 0, and then find that f(u) =
h(u) ln(u) satisfies (1.15) and (1.16).

In this paper we first show that quenching occurs for sufficiently large
l in (1.4), where (1.15) and (1.16) holds. Then we prove (1.10) for these
nonlinearities.

1.6 Paper III

In the paper [52] we refine the asymptotic result (1.13). The main result,
Theorem 1.23 below, gives a precise asymptotic expression for the solution
in a backward space-time parabola near a quenching point. The analysis is
based on methods developed in [18, 19, 35, 59]. These techniques were first
developed for blowup problems of reaction diffusion equations in [19, 35].
Subsequently these approaches were applied to quenching problems with a
power singularity in [18].

We briefly explain how Theorem 1.23 is proved. We first conclude by
Theorem 1.17 that

lim
t↑T

( u(x, t)

(T − t)(− ln(T − t))
− 1

)

= 0, (1.17)

uniformly when |x| < C
√

T − t. Then we define y and s as earlier, and
let φ(y, s) be the left-hand side of (1.17). Substituting this in the equation
(1.11), we deduce that φ(y, s) satisfies

φs = Lφ +
1

s
f(φ) + g(s), (1.18)

where f(φ) = ln(1 + φ) − φ, g(s) = ln(s)
s

(1 + o(1)) and L = ∂2

∂y2 − y
2

∂
∂y

+ 1.

We study the equation (1.18) as a dynamical system in the space L2
ρ(R),

where ρ(y) = exp(−y2/4). Therefore we expand the function φ(y, s) with
respect to the eigenfunctions of L in that space, i.e., φ =

∑

aj(s)hj(y).
Here the functions hj(y) are the scaled Hermite polynomials which form an
orthonormal base on L2

ρ(R). The spectrum of this operator is λj = 2−j
2

, where
j = 0, 1, 2, .. By projecting the equation (1.18) to the subspaces generated by
the functions hj(y), we get the ordinary differential equations for aj(s):

a′
j(s) = (1 − j

2
)aj(s) + 〈f(φ)

s
+ g, hj〉L2

ρ
j = 0, 1, 2, ... (1.19)

By analogy with classical ODE theory, we expect that one term in the Four-
ier series is dominant, i.e., φ(y, s) ≈ aj(s)hj(y), for some j, as s → ∞.
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Linearizing for the nonzero eigenvalues, we get φ(y, s) ≈ cj exp (2−j
2

s)hj(y).
The positive eigenvalues (j = 0, 1) are incompatible with the result (1.17),
and therefore the nonlinear part has to dominate the positive eigenspace in
(1.19). For the zero eigenvalue (j = 2), we can see that the linear part
vanishes. Moreover, after some calculations we obtain that a2(s) satisfies:

a′
2(s) = −c∗

1

s
(1 + o(1))a2(s)

2,

from which we obtain after integration that φ(y, s) ≈ C∗

ln(s)

(

y2 − 2
)

.

In [52] we give a proof for this formal argument. The presence of a
nontrivial null space for the operator L suggests the use of center manifold
theory. More precisely, we use the methods developed in [18, 19, 35, 59] for
the analysis of infinite dimensional dynamical systems.

The main result of this paper gives a refined asymptotics of the quenching:

Theorem 1.23. Assume that (1.12) holds for the equation (1.11) and that
u(x, t) quenches at (0, T ). Assume further that |a2(s)| ≥ M(ln(s)/s)2 for
some M > 0. Then for any C > 0 and ε > 0 there exists t0 such that

sup
|x|<C

√
T−t

∣

∣

∣

u(x, t)

(T − t)(− ln(T − t))
− 1 − 1

8 ln(− ln(T − t))

( x2

T − t
− 2

)

∣

∣

∣
=

O(
ε

ln(− ln(T − t))
),

(1.20)

when t ∈ [t0, T ).

1.7 Paper IV

In the paper [53] we study the quenching problem for the equation (1.4), when
x ∈ Ω = BR(0) = {y ∈ RN ; |y| < R}. We take the initial function u0 to be

radial. Then the solution is also radial and ∆ = ∂2

∂r2 + (N−1)∂
r∂r

. Our goal is to
extend the results in [50, 51, 52] with some addition to the N -dimensional
situation.

The first goal is to show that quenching occurs for reaction terms of
type (1.15) and (1.16) also in this N -dimensional setting. Because the term
(N−1)∂u

r∂r
resists quenching in the equation (1.4), it is not obvious that quench-

ing actually takes place if N > 1. However, we show that for sufficiently
large domains Ω quenching occurs in finite time. The proof is very similar to
that of the case N = 1 [51].

The second ingredient is the quenching rate-estimate (1.10). For the same
reason as above, this is not at all a direct consequence of the one dimensional
result (1.10) (in [51]) which was proved for the singularities of type (1.15)
and (1.16) in [51]. In this paper we derive this result for the N -dimensional
situation using basically the same method as in [50, 51]. However there are
differences at the technical level in the proof which are given in [53].
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The third objective of this paper is to study the refined asymptotics of
the solution near the quenching point. In [52], the analysis concerned the
equation (1.11). We now extend the approach to a class of nonlinearities
that satisfy (1.15) and (1.16). More precisely, we study the refined asymptotic
behavior of the quenching for the equation (1.4), where

(i) f(u) = −| ln(u)|p, (p > 0)
(ii) f(u) = −| ln(u)|p − | ln(u)|q, p ≥ q + 1, p > 1 and q > 0.
Under certain assumptions we give a proof of the result corresponding to

Theorem 1.23.

References

[1] A. Acker and B. Kawohl, Remarks on quenching, Nonlinear Analysis,
Theory, Methods and Applications, 13 (1989), 53-61.

[2] A. Acker and W. Walter, The quenching problem for nonlinear parabolic
differential equations. In: Ordinary and Partial Differential Equations,
Dundee 1976, Eds. W.M.Everitt, B.D.Sleeman, Springer Lecture Notes
in Math. 564, 1976, p. 1-12.

[3] S. Angenent, The zero set of solutions of a parabolic equation. J. Reine
Angew Math. 390, (1988), 79-96.

[4] J. Bebernes, A. Bressan and D. Eberly, A description of blow-up for the
solid fuel ignition model, Indiana University Mathematics Journal 36,
(1987), 295-305.

[5] J. Bebernes and D. Eberly, A description of self-similar blow-up for
dimensions n ≥ 3, Ann. Inst. Henri Poincaré, 5, (1988), 1-21.
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Birkhäuser, Boston, 1992, p. 183-196.

[15] M. Fila and B. Kawohl, Asymptotic analysis of quenching problems,
Rocky Mt. J. Math. 22, (1992), 563-577.

[16] M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equa-
tions, Comm. PDE. 17, (1992), 593-614.

[17] M. Fila, H. A. Levine and J. L. Vazquez, Stabilization of solutions
of weakly singular quenching problems. Proc. Amer. Math. Soc., 119,
(1993), 555-559.

[18] S. Filippas and J. Guo, Quenching profiles for one-dimensional heat
equations. Quarterly of Applied Math. 51, (1993), 713-729.

[19] S. Filippas and R. V. Kohn, Refined asymptotics for the blowup of ut −
∆u = up, Comm. Pure and Applied Mathematics, 45, (1992), 821-869.

[20] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-
Hall, New Jersey, 1964.

[21] A. Friedman and B. McLeod, Blow-up of positive solutions of semilin-
ear heat equations, Indiana University Mathematics Journal. 34, (1985),
425-447.

[22] H. Fujita, On the blowing up of solutions of the Cauchy problem for
ut = ∆u + u1+α, J.Fac.Sci.Univ.Tokyo Sect.I. 13, (1966), 109-124.

[23] V. Galaktionov, S. Gerbi and J. Vazquez, Quenching for a one-
dimensional fully nonlinear parabolic equation in detonation theory,
SIAM J. Appl. Math. 61, (2000), 1253-1285.

[24] V. Galaktionov and J. Vazquez, Necessary and sufficient conditions for
complete blow-up and extinction for one-dimensional quasilinear heat
equations, Arch. Rat. Mech. Anal. 129, (1995), 225-244.

[25] V. Galaktionov and J. Vazquez, The problem of blow-up in nonlinear
parabolic equations, Discrete and Continuous Dynamical Systems, 8,
(2002), 399-433.

24



[26] B. Gidas, W-M. Ni and L. Nirenberg, Symmetry and related properties
via the maximum principle, Comm. Math. Phys. 68, (1979), 209-243.

[27] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semi-
linear heat equations, Comm. Pure Appl. Math. 38, (1985), 297-319.

[28] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity vari-
ables, Indiana University Mathematics Journal, 36, (1987), 1-40.

[29] J. Goldstein, Semigroups of Linear Operators and Applications, Oxford
University Press, New York, 1985.

[30] P. Grinrod, Pattern and Waves, The Theory and Applications of
Reaction-Diffusion Equation, Clarendon Press, Oxford, 1991.

[31] J. Guo, On the quenching behavior of the solution of a semilinear para-
bolic equation, J. Math. Anal.Appl. 151, (1990), 58-79.

[32] J. Guo, On the semilinear elliptic equation ∆w − 1
2
yw + λw − w−β = 0

in Rn, Chinese J. Math. 19, (1991), 355-377.

[33] J. Guo, On the quenching rate estimate, Quart. Appl. Math. 49, (1991),
747-752.

[34] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer
Lecture Notes in Math. 840, Berlin Heidelberg New York, 1981.

[35] M. A. Herrero and J. J. L. Velazquez, Blow-up behaviour of one-
dimensional semilinear parabolic equations, 10, Ann. Inst. Henri
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