
Apiola, Kuortti

Credit Exercises

Updated 9.11.2018
If you wish to obtain the credits for the course, choose 4 of the problems below and
prepare a published .pdf-file. Send the pdf-file and the source code by email to Heikki
and Juha (heikki.apiola ’at’ aalto.fi,juha.kuortti ’at’aalto.fi).
Please: Use semicolons(;) to avoid long outputs!
Deadline for submission is Wed 14.11.18 (at 23.59.59)

Exercise 1: Write functions F2C and C2F that convert Fahrenheit scale to Celsius,
and Celsius to Fahrenheit. Be sure to have them work for vectors as well as scalars.

TC =
5

9
(TF − 32).

(F: Fahrenheit, C: Celsius)
Test your functions, especially: (−40,−40) and (0◦C, 32◦F ).
Make a table of values and plot (for instance for F = −40,−39, . . . , 99, 100). Make grid,
title, and axis labels for your plot.

Exercise 2: (a) Evaluate y = x2 for x=-4:0.1:4.

(b) Add random noise to these samples. Use randn. Plot the noisy signal for instance
with markers (’.:’).

(c) Fit a 2nd degree polynomial to the noisy data.

(d) Plot the fitted polynomial on the same plot, using same x-values and a red line.

Hint: The function polyfit returns coefficients of fitted polynomial.
To evaluate, use polyval.

Exercise 3: The height h(t) and horizontal distance x(t) traveled by a ball thrown at
an angle α with a speed v are given by{

h(t) = (v sin α) t− 1
2
g t2

x(t) = (v cos α) t

g = 9.81m/s2.
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(a) Suppose the ball is thrown with a velocity v = 10m/s at an angle of 35◦. Use
MATLAB to compute how high the ball will go, how far it will go, and how long
it will take to hit the ground.

Suggestions, help:

• For your convenience you can use degrees with functions cosd, sind.
• Start by plotting h vs. t (as suggested on part (b)). For that you need a

sufficienlly large Tmax (just experiment). Then form a vector [0,...,Tmax]
with sufficiently many points to make the plot. (Adjust Tmax).

• To find the smallest Tmax, use the function find in the form:
find(<condition on h>,1), where 1 means “first” (help find).

• For max height you can use find, or even one step shorter: using max in
the form with two output arguments. See links of Session 3 on web-page,
“minmaxexa.m”

(b) Use the values of v and α and Tmax to plot the ball’s trajectory, that is the para-
metric curve (x(t), h(t)), t = 0, . . . , Tmax .

(c) Find Tmax for α = 45 repeating what you did in (a). Plot the trajectories for
v = 10m/s and the values of α = 20, 30, 45, 60, 70 in the same picture. Use the
above Tmax for α = 45.

(d) (This is “voluntary”, no difficulties, but the extra work not necessary this time. )
Plot the trajectories for α = 45 and values of v = 10, 12, 14, 16, 18.

Exercise 4: This assignment focuses on the connection of matrices, images and sin-
gular values.
The singular value decomposition of a matrix is

A = USVT ,

where matrix S is a diagonal, and U and V are orthogonal square matrices; if this all
means nothing to you, don’t worry – this assignment requires essentially no mathe-
matical framework.
The information contained in matrix be compressed (in a sense) by dropping off parts
of the singular value decomposition, and conveniently the size of singular value tells
the importance of the associated singular vectors; even more conveniently they are
already sorted inside the S; or in MATLABese, U(:,1:k)*S(1:k,1:k)*V(:,1:k)’ is
the best possible approximation of A using 2k vectors.
Any image can be thought of as an m×n matrix, where element i, j describes the color
value of the pixel at the location. We will now see, how singular values can be used to
compress images.
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Read in any image you wish using MATLAB’s imread-command. It will (usually, but
little depending on the image format). m × n × 3 array. Each of the three layers of
the array corresponds to color intensities of red, green and blue respectively. First,
convert the image to grayscale with command rgb2gray, or pick one of the layers: im
= A(:,:,1). After this, do the singular value decomposition with command [u,s,v]
= svd(im).
Now you can test with which k the commands

>> M = u(:,1:k)*s(1:k,1:k)*v(:,1:k)’;
>> image(M)

produces results that are distinguishable. The large components of the image should
also start appearing first, which makes singular value decomposition a useful tool in
pattern recognition.
In order to do this properly for colored images, you should do the above process sepa-
rately for each of the three layers of the array; also, for fun, you could try different
values of k for each layer, suppressing certain colors more than others.

Exercise 5: Here are 25 observations yk, taken at equally spaced values of t.

t = 1:25
y =[5.0291 6.5099 5.3666 4.1272 4.2948

6.1261 12.5140 10.0502 9.1614 7.5677
7.2920 10.0357 11.0708 13.4045 12.8415
11.9666 11.0765 11.7774 14.5701 17.0440
17.0398 15.9069 15.4850 15.5112 17.6572];

y = y';
y = y(:)

a) Fit the data with a straight line y(t) = β1 + β2t, and plot the residuals, y(tk)− yk.
You should observe that one of the data points has a much larger (in absolute
value) residual than the others. This is probably an outlier.

b) Discard the outlier, and fit the data again by a straight line. Plot the residuals
again. Do you see any pattern in the residuals?

c) Fit the data, with the outlier excluded, by a model of the form

y(t) = β1 + β2t+ β3 sin(t)

d) Evaluate the third fit on a finer grid over the interval [0,26]. Plot the fitted
curve, using line style ’-’ , together with the data, using line style ’o’ . Include
the outlier, using a different marker, ’*’ .

Exercise 6: (a) Plot the unit square : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and the unit circle
inside it. (i.e. a circle with radius one)
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(b) Generate random points, uniformly distributed on the unit square
−1 < x < 1,−1 < y < 1. Find an approximation for π by counting the ratio of the
number of points inside the circle with the total number of points generated.

(c) Write a function that approximates the area of the ellipse:

x2

a2
+
y2

b2
= 1

[Aappr,Atrue]=function Aellipse(a,b,N)

(d) Make plots: color points inside and points outside differently. If you include a
plot in your function, test for N to avoid plotting for too large value.

Hint: Generate two random vectors x and y. Find a suitable condition for logical
indexing to pick the “inside-points”.
Note: You can use arithmetic (sum) to a logical vector. See also links to Session 3,
where you can find a good start. Loops are not forbidden here, but avoiding them
makes life a lot easier.

Exercise 7: The solution of Laplace’s (partial) differential equation

∆u = 0

can be numerically approximated on a square by the Finite Difference (FD) method.
The figure illustrates the simplest case, the boundary values S1, S2, E1, E2, . . . are gi-
ven and the uk:s are the unknown solutions to be found.

N1 N2
|----- o ---- o ------|
| |
| |

W1 o u1 u3 o E1
| |
| |

W2 o u2 u4 o E2
| |
| |
|----- o ------ o ------|

S1 S2

The solution of Laplace’s equation models f.eg. the steady state temperature inside a
metal plate whose boundary temperatures are held at the given temperature values.
Replacing the 2nd derivatives by their difference approximations leads to the simple
rule:
. Each uk is the average of its 4 neighbours
Starting with u1 we get the linear system of 4 equations:
4u1 = u2 + u3 +N1 +W1, and the remaining 3 similarly.
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(a) Write the system of 4 equations in the form Au = b.

(b) Let the square area be the unit square, n = 4, nr. of interior nodes in x- and y-
directions = n− 2.
Boundary conditions:

u(x, 0) = 0, u(x, 1) =
1

(1 + x2) + 1
, u(0, y) =

y

1 + y2
, u(1, y) =

y

4 + y2
.

Exact solution:
u(x, y) =

y

(1 + x2) + y2
.

(c) Find the FD-solutions uk at the inner nodes and place them into a 2 × 2 matrix
U .

(d) Embed your U into a 4 × 4 matrix W , with boundary values. (Remember lecture
task after “perimeter of matrix”.)

(e) Visualize with surf,surfc, contourf, etc. To get the axes right use the form
surf(x,y,U), where x an y are the obviuos (identical) vectors.
(No need for meshgrid as the U -matrix is there already.) Note: There may be a
little “mental flip” in distinguishing the matrix and xy-plane directions. (Maybe
some hints follow, but it suffices to have the solution right even with misleading
orientation.)
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