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Abstract. We give a proof of the Hölder continuity of weak solutions
of certain degenerate doubly nonlinear parabolic equations in measure
spaces. We only assume the measure to be a doubling non-trivial Borel
measure which supports a Poincaré inequality. The proof discriminates
between large scales, for which a Harnack inequality is used, and small
scales, that require intrinsic scaling methods.

1. Introduction

We consider the regularity issue for nonnegative weak solutions of the
doubly nonlinear parabolic equation

∂(up−1)
∂t

−∇ · (|∇u|p−2∇u) = 0, 2 ≤ p <∞. (1.1)

This equation is a prototype of a parabolic equation of p-Laplacian type.
The solutions of this equation can be scaled by nonnegative factors, but in
general we cannot add a constant to a solution so that the resulting function
would be a solution to the same equation.

The purpose of this paper is to obtain a clear and transparent proof for
the local Hölder continuity of nonnegative weak solutions of (1.1). Our work
is a continuation to [17], where Harnack’s inequality for the same equation
is proved. See also [21], [11], [10] and [24]. However, since we cannot add
constants to solutions, the Harnack estimates do not directly imply the local
Hölder continuity. To show that our proof is based on a general principle, we
consider the case where the Lebesgue measure is replaced by a more general
Borel measure which is merely assumed to be doubling and to support a
Poincaré inequality. In the weighted case, parabolic equations have earlier
been studied in [1], [2] and [20]. See also [8].

This kind of doubly nonlinear equations have been considered by Vespri
[23], Porzio and Vespri [19], and Ivanov [14], [15]. The known regularity
proofs are based on the method of intrinsic scaling, originally introduced
by DiBenedetto, and they seem to depend highly on the particular form
of the equation. However, the passage from one equation to another is
not completely clear. For other parabolic equations, the problem has been
studied at length, see [4], [3], [7] and [22], and the references therein.

The difficulty with equation (1.1) is that there is a certain kind of di-
chotomy in its behavior. Correspondingly, the proof has been divided in
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two complementary cases:

Case I : 0 ≤ ess inf u << ess oscu

and

Case II : up−2ut ≈ Cut.

In large scales, i.e., in Case I, the scaling property of the equation domi-
nates and, consequently, the reduction of the oscillation follows immediately
from Harnack’s inequality. In small scales, on the other hand, the oscillation
is already very small and, thus, the solution itself is between two constants,
the infimum and the supremum, whose difference is negligible. Correspond-
ingly, the nonlinear time derivative term, which formally looks like up−2ut,
behaves like ut and we end up with a p-parabolic type behavior. However,
also in this case, we still need to modify the known arguments. In particular,
the energy estimates are not available in the usual form and we need to use
modified versions as in [5], [15] and [25].

Our argument also applies to doubly nonlinear equations of p-Laplacian
type that are of the form

∂(up−1)
∂t

−∇ · A(x, t, u,∇u) = 0.

For expository purposes, we only consider (1.1).
Very recently, a direct geometric method to obtain local Hölder continuity

for parabolic equations has been developed in [6] and [9]. Despite the effort,
the general picture remains unclear.

2. Preliminaries

Let µ be a Borel measure and Ω be an open set in Rd. The Sobolev space
H1,p(Ω;µ) is defined to be the completion of C∞(Ω) with respect to the
Sobolev norm

‖u‖1,p,Ω =
(∫

Ω
(|u|p + |∇u|p) dµ

)1/p

.

A function u belongs to the local Sobolev space H1,p
loc (Ω;µ) if it belongs

to H1,p(Ω′;µ) for every Ω′ b Ω. Moreover, the Sobolev space with zero
boundary values H1,p

0 (Ω;µ) is defined as the completion of C∞0 (Ω) with
respect to the Sobolev norm. For more properties of Sobolev spaces, see e.g.
[13].

Let t1 < t2. The parabolic Sobolev space Lp(t1, t2;H1,p(Ω;µ)) is the
space of functions u(x, t) such that, for almost every t, with t1 < t < t2, the
function u(·, t) belongs to H1,p(Ω;µ) and

∫ t2

t1

∫

Ω
(|u|p + |∇u|p) dν <∞,

where we denote dν = dµ dt.
The definition of the space Lp

loc(t1, t2;H
1,p
loc (Ω;µ)) is analogous.
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Definition 2.1. A function u ∈ Lp
loc(t1, t2;H

1,p
loc (Ω;µ)) is a weak solution of

equation (1.1) in Ω× (t1, t2) if it satisfies the integral equality
∫ t2

t1

∫

Ω

(
|∇u|p−2∇u · ∇φ− up−1∂φ

∂t

)
dν = 0 (2.2)

for every φ ∈ C∞0 (Ω× (t1, t2)).

Next, we recall a few definitions and results from analysis on metric mea-
sure spaces. The measure µ is doubling if there is a universal constant
D0 ≥ 1 such that

µ(B(x, 2r)) ≤ D0µ(B(x, r)),
for every B(x, 2r) ⊂ Ω. Here

B(x, r) = {y ∈ Rd : |y − x| < r}
denotes the standard open ball in Rd. Let 0 < r < R < ∞. A simple
iteration of the doubling condition implies that

µ(B(x,R))
µ(B(x, r))

≤ C

(
R

r

)dµ

,

where dµ = log2D0. A doubling measure in Ω also satisfies the following
annular decay property. For every 0 < α < 1, there exists a constant c ≥ 1
such that

µ(B(x, r) \B(x, (1− δ)r)) ≤ cδαµ(B(x, r)), (2.3)
for all B(x, r) ⊂ Ω and 0 < δ < 1.

The measure is said to support a weak (1, p)-Poincaré inequality if there
exist constants P0 > 0 and τ ≥ 1 such that

−
∫

B(x,r)
|u− uB(x,r)| dµ ≤ P0r

(
−
∫

B(x,τr)
|∇u|p dµ

)1/p

,

for every u ∈ H1,p
loc (Ω;µ) and B(x, τr) ⊂ Ω. Here, we denote

uB(x,r) = −
∫

B(x,r)
u dµ =

1
µ(B(x, r))

∫

B(x,r)
u dµ.

The word weak refers to the constant τ , that may be strictly greater than
one. In Rd with a doubling measure, the weak (1, p)-Poincaré inequality with
some τ ≥ 1 implies the (1, p)-Poincaré inequality with τ = 1, see Theorem
3.4 in [12]. Hence, we may assume that τ = 1.

On the other hand, the weak (1, p)-Poincaré inequality and the doubling
condition imply a weak (κ, p)-Sobolev-Poincaré inequality with

κ =





dµp

dµ − p
, 1 < p < dµ,

2p, p ≥ dµ,
(2.4)

where dµ is as above. In other words, Poincaré and doubling imply the
Sobolev inequalities. More precisely, there are constants C > 0 and τ ′ ≥ 1
such that

(
−
∫

B(x,r)
|u− uB(x,r)|κ dµ

)1/κ
≤ Cr

(
−
∫

B(x,τ ′r)
|∇u|p dµ

)1/p

, (2.5)
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for every B(x, τ ′r) ∈ Ω. The constant C depends only on p, D0 and P0.
For the proof, we refer to [12]. Again, by Theorem 3.4 in [12] we may take
τ ′ = 1 in (2.5).

For Sobolev functions with the zero boundary values, we have the fol-
lowing version of Sobolev’s inequality. Suppose that u ∈ H1,p

0 (B(x, r);µ).
Then (

−
∫

B(x,r)
|u|κ dµ

)1/κ

≤ Cr

(
−
∫

B(x,r)
|∇u|p dµ

)1/p

. (2.6)

For the proof we refer, for example, to [18].
Moreover, by a recent result in [16], the weak (1, p)-Poincaré inequality

and the doubling condition also imply the (1, q)-Poincaré inequality for some
q < p, that is

−
∫

B(x,r)
|u− uB(x,r)| dµ ≤ Cr

(
−
∫

B(x,r)
|∇u|q dµ

)1/q

. (2.7)

Consequently, also (2.5) holds with p replaced by q. We also obtain the
(q, q)-Poincaré inequality for some q < p.

In the sequel, we shall refer to data as the set of a priori constants p, d,
D0, and P0.

Our main result is the following theorem.

Theorem 2.8. Let 2 ≤ p < ∞ and assume that the measure is doubling,
supports a weak (1, p)-Poincaré inequality and is non-trivial in the sense that
the measure of every non-empty open set is strictly positive and the measure
of every bounded set is finite. Moreover, let u ≥ 0 be a weak solution of
equation (1.1) in Rd. Then u is locally Hölder continuous.

We will use the following notation for balls and cylinders, respectively:

B(r) = B(0, r)

and
Qt(s, r) = B(r)× (t− s, t).

For simplicity, we will also denote

Q(s, r) = Q0(s, r) = B(r)× (−s, 0).

Recall Harnack’s inequality from [17].

Theorem 2.9. Let 1 < p < ∞ and suppose that the measure µ is dou-
bling and supports a weak (1, p)-Poincaré inequality. Moreover, let u ≥ 0
be a weak solution to (1.1) in Rd. Then there exists a constant H0 =
H0(p, d,D0, P0, (t− (s− rp))/rp) ≥ 2 such that

ess sup
Qt(rp,r)

u ≤ H0 ess inf
Qs(rp,r)

u

where s > t+ rp.

Proof. See [17]. ¤
In addition, in [17] it is also proved that all solutions of equation (1.1)

are locally bounded. In the sequel, we will assume this knowledge without
further comments.
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3. Constructing the setting

Our proof is based on the known classical argument of reducing the os-
cillation, see [4], [7] and [22]. However, the equation under study has some
intrinsic properties which are not present, for instance, in the case of the
p-parabolic equation. In large scales, the scaling property dominates and
the oscillation reduction follows easily from Harnack’s inequality. In this
case, the equation resembles the usual heat equation.

In small scales, in turn, the equation changes its behavior to look more
like the evolution p-Laplace equation. Indeed, when we zoom in by reducing
the oscillation, the infimum and the supremum get closer and closer to each
other. Consequently, the weight up−2 in the time derivative term starts to
behave like a constant coefficient and we end up with a p-parabolic type
behavior. Resembling this divide between large and small scales, the proof
has to be divided in two cases.

We study the (local) Hölder continuity in a compact set K and we choose
the following numbers accordingly. Let

µ−0 ≤ ess inf
K

u and µ+
0 ≥ ess sup

K
u,

and define
ω0 = µ+

0 − µ−0 .

Furthermore, choose µ−0 small enough so that

(2H0 + 1)µ−0 ≤ ω0 (3.1)

holds. We will construct an increasing sequence {µ−i } and a decreasing
sequence {µ+

i } such that

µ+
i − µ−i = ωi = σiω0

for some 0 < σ < 1. Moreover, these sequences can be chosen so that

ess sup
Qi

u ≤ µ+
i

and
ess inf

Qi
u ≥ µ−i ,

for some suitable sequence {Qi} of cubes. Consequently,

ess osc
Qi

u ≤ ωi.

The cubes here can, and will be, chosen so that the size of the cubes decreases
in a controllable way so that we can deduce the Hölder continuity. Observe
also that if

(2H0 + 1)µ−j0 ≤ ωj0

fails for some j0, the above sequences have been chosen so that

µ+
j

µ−j
< 2H0 + 2 (3.2)

for all j ≥ j0.
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We are studying the local Hölder continuity in a compact set K. Our aim
is to show that the oscillation around any point in K reduces whenever we
suitably decrease the size of the set where the oscillation is studied.

The next step is to iterate this reduction process. We end up with a
sequence of cylinders Qi. For all purposes, in the sequel, it is enough to
study the cylinder Q0 := Q(ηrp, r) instead of the set K. Indeed, for any
point in K we can build the sequence of suitable cylinders, but since we can
always translate the equation, we can, without loss of generality, restrict the
study to the origin.

The equation (1.1) has its own time geometry too, that we need to respect
in the arguments. This is important, especially in small scales, when the
equation resembles the evolution p-Laplace equation. We will use a scaling
factor η = 2λ1(p−2)+1 in the time direction, where λ1 ≥ 1 is an a priori
constant to be determined later.

4. Fundamental estimates

We start the proof of Theorem 2.8 by proving the usual energy estimate
in a slightly modified setting, which overcomes the problem that we cannot
add constants to solutions, see [5], [15] and [25]. We introduce the auxiliary
function

J ((u−k)±) =±
∫ up−1

kp−1

(
ξ1/(p−1)−k

)
±
dξ

=± (p− 1)
∫ u

k
(ξ−k)± ξp−2 dξ

=(p− 1)
∫ (u−k)±

0
(k ± ξ)p−2ξ dξ.

Hence, we have

∂

∂t
J ((u−k)±) = ±∂(up−1)

∂t
(u−k)±. (4.1)

In the sequel, we will also need the following estimates. Clearly,

J ((u−k)+) = (p− 1)
∫ (u−k)+

0
(k + ξ)p−2ξ dξ

≤ p− 1
2

(k + (u−k)+)p−2(u−k)2+

≤ p− 1
2

up−2(u−k)2+

(4.2)

and

J ((u−k)+) ≥ (p− 1)kp−2

∫ (u−k)+

0
ξ dξ

≥ (p− 1)kp−2 (u−k)2+
2

.

(4.3)

Observe, that the assumption p ≥ 2 is used here.
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On the other hand,

J ((u−k)−) = (p− 1)
∫ (u−k)−

0
(k − ξ)p−2ξ dξ

≥ (p− 1)
2

up−2(u−k)2−.
(4.4)

Moreover,

J ((u−k)−) = (p− 1)
∫ (u−k)−

0
(k − ξ)p−2ξ dξ

≤ (p− 1)kp−2

∫ (u−k)−

0
ξ dξ

= (p− 1)kp−2 (u−k)2−
2

.

(4.5)

Now we are ready for the fundamental energy estimate.

Lemma 4.6. Let u ≥ 0 be a weak solution of (1.1) and let k ≥ 0. Then
there exists a constant C = C(p) > 0 such that

ess sup
t1<t<t2

∫

Ω
J ((u−k)±)ϕp dµ+

∫ t2

t1

∫

Ω
|∇(u−k)±ϕ|p dν

≤ C

∫ t2

t1

∫

Ω
(u−k)p

±|∇ϕ|p dν + C

∫ t2

t1

∫

Ω
J ((u−k)±)ϕp−1

(
∂ϕ

∂t

)

+

dν,

for every nonnegative ϕ ∈ C∞0 (Ω× (t1, t2)).

Proof. Let t1 < τ1 < τ2 < t2. We formally substitute the test function
φ = ±(u−k)±ϕp in the equation and obtain

0 =
∫ τ2

τ1

∫

Ω

(
|∇u|p−2∇u · ∇φ+

∂(up−1)
∂t

φ

)
dν

=
∫ τ2

τ1

∫

Ω
|∇(u−k)|p−2(±∇(u−k)±) · ∇(±(u−k)±ϕp) dν

±
∫ τ2

τ1

∫

Ω

∂(up−1)
∂t

(u−k)±ϕp dν.

(4.7)

Now the first term on the right-hand side can be estimated pointwise from
below as

|∇(u−k)|p−2(±∇(u−k)±) · ∇(±(u−k)±ϕp)

≥ |∇(u−k)±|pϕp − p|∇(u−k)±|p−1ϕp−1(u−k)±|Dϕ|,
and the last term is estimated further by Young’s inequality as

− p|∇(u−k)±|p−1ϕp−1(u−k)±|Dϕ|
≥ −1

2
|∇(u−k)±|pϕp − C(u−k)p

±|Dϕ|p.
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Thus we have

1
2

∫ τ2

τ1

∫

Ω
|∇(u−k)±ϕ|p dν ±

∫ τ2

τ1

∫

Ω

∂(up−1)
∂t

(u−k)±ϕp dν

≤ C

∫ τ2

τ1

∫

Ω
(u−k)p

±|∇ϕ|p dν.
(4.8)

Using (4.1) and integrating by parts,

±
∫ τ2

τ1

∫

Ω

∂(up−1)
∂t

(u−k)±ϕp dν =
∫ τ2

τ1

∫

Ω

∂

∂t
J ((u−k)±)ϕp dν

=
[∫

Ω
J ((u(x, t)−k)±)ϕp(x, t) dµ

]τ2

t=τ1

− p

∫ τ2

τ1

∫

Ω
J ((u−k)±)ϕp−1∂ϕ

∂t
dν.

So we obtain
∫

Ω
J ((u(x, τ2)−k)±)ϕp(x, τ2) dµ+

∫ τ2

τ1

∫

Ω
|∇(u−k)±ϕ|p dν

≤ C

∫

Ω
J ((u(x, τ1)−k)±)ϕp(x, τ1) dµ+ C

∫ τ2

τ1

∫

Ω
(u−k)p

±|∇ϕ|p dν

+ C

∫ τ2

τ1

∫

Ω
J ((u−k)±)ϕp−1

(
∂ϕ

∂t

)

+

dν.

(4.9)

Now we can drop the second term from the left hand side, let τ1 → t1, choose
τ2 such that

∫

Ω
J ((u(x, τ2)−k)±)ϕp(x, τ2) dµ ≥ 1

2
ess sup
t1<t<t2

∫

Ω
J ((u−k)±)ϕp dµ (4.10)

and estimate the limits of integration on the right hand side of (4.9). On
the other hand, we can also drop the first term on the left hand side of (4.9)
and let τ1 → t1 and τ2 → t2. Summing the estimates for both terms gives
the claim. ¤

Let us denote

ψ±(u) := Ψ(H±
k , (u−k)±, c) =

(
ln

(
H±

k

c+H±
k − (u−k)±

))

+

.

The following logarithmic lemma is used in forwarding information in time.

Lemma 4.11. Let u ≥ 0 be a weak solution of equation (1.1). Then there
exists a constant C = C(p) > 0 such that

ess sup
t1<t<t2

∫

Ω
up−2ψ2

−(u)ϕp dµ ≤
∫

Ω
kp−2ψ2

−(u)(x, t1)ϕp(x) dµ

+ C

∫ t2

t1

∫

Ω
ψ−|(ψ−)′|2−p|∇ϕ|p dν
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and

ess sup
t1<t<t2

∫

Ω
kp−2ψ2

+(u)ϕp dµ ≤
∫

Ω
up−2ψ2

+(u)(x, t1)ϕp(x) dµ

+ C

∫ t2

t1

∫

Ω
ψ+|(ψ+)′|2−p|∇ϕ|p dν.

Above, ϕ ∈ C∞0 (Ω) is any nonnegative time-independent test function.

Proof. Choose

φ±(u) =
∂

∂u
(ψ2
±(u))ϕp

in the definition of weak solution and observe that

(ψ2
±)′′ = (1 + ψ±)(ψ′±)2. (4.12)

The parabolic term will take the form
∫ t2

t1

∫

Ω

∂

∂t
up−1φ±(u) dν =

∫ t2

t1

∫

Ω

∂

∂t

∫ up−1

kp−1

φ±(s1/(p−1)) ds dν

=

[∫

Ω

∫ up−1

kp−1

φ±(s1/(p−1)) ds dµ

]t2

t1

=
[
(p− 1)

∫

Ω

∫ u

k
φ±(r)rp−2 dr dµ

]t2

t1

.

Now an integration by parts gives∫ u

k
φ±(r)rp−2 dr =

∫ u

k
(ψ2
±(r))′rp−2 drϕp

=ϕp
[
ψ2
±(r)rp−2

]u

k
− (p− 2)

∫ u

k
ψ2
±(r)rp−3 drϕp

=ψ2
±(u)up−2ϕp − (p− 2)

∫ u

k
ψ2
±(r)rp−3 drϕp.

In the plus case, we have∫ u

k
φ+(r)rp−2 dr

≥ ψ2
+(u)up−2ϕp − ψ2

+(u)(up−2 − kp−2)ϕp

= (p− 1)ψ2
+(u)kp−2ϕp

and trivially ∫ u

k
φ+(r)rp−2 dr ≤ ψ2

+(u)up−2ϕp,

since p ≥ 2. Similar estimates are true also for the minus case.
On the other hand, by using (4.12) together with Young’s inequality, we

obtain

|∇u|p−2∇u · ∇φ± = |∇u|p−2∇u · ∇((ψ2
±(u))′ϕp)

≥ |∇u|p(1 + ψ±)(ψ′±)2ϕp − 2p|∇u|p−1ψ±ψ′±ϕ
p−1|∇ϕ|

≥ 1
2
|∇u|p(1 + ψ±)(ψ′±)2ϕp − Cψ±(ψ′±)2−p|∇ϕ|p,
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almost everywhere, from which the claim follows. ¤

We will need the following notations in the next lemma, which is the most
crucial part of the argument. Let

rn =
r

2
+

r

2n+1
, Q±n = Bn × T±n = B(rn)× (t∗ − γ±rp

n, t
∗)

and
A±n =

{
(x, t) ∈ Q±n : ±u(x, t) > ±k±n

}
,

for n = 0, 1, 2, . . . .
Recall the definitions µ+

i − µ−i = ωi = σiω0, where µ+
i ≥ ess supQi u

and µ−i ≤ ess infQi u for i ≥ 1. Observe, however, that we have to choose
µ+

0 ≤ ess supK u and µ−0 ≥ ess infK u where the infimum and the supremum
are taken over K instead of Q0. This is because we need the argument to
be independent of the initial cylinder Q0. Now we are ready to prove the
fundamental lemma everything lies on.

Lemma 4.13. Let 0 < ε± ≤ 1, (k+
n )n be an increasing sequence and (k−n )n

a decreasing sequence, both of nonnegative real numbers. Suppose u ≥ 0 is
a weak solution of equation (1.1),

(u− k±n )± ≤ ε±ωi and |k±n+1 − k±n | ≥
ε±ωi

2n+2
.

In addition, assume further

u ≥ 1
C0
k−n (4.14)

and
µ+

i ≤ 2k+
n , n = 1, 2, . . . (4.15)

for the minus and plus cases, respectively. Then there exist constants
C− = C(D0, P0, C0, p) > 0 and C+ = C(D0.P0, p) > 0 such that

ν(A±n+1)
ν(Q±n+1)

≤ Cn+1
± Γ±

(
ν(A±n )
ν(Q±n )

)2−p/κ

(4.16)

for every n = 0, 1, 2, . . . . Here κ is the Sobolev exponent as in (2.4) and

Γ± =
1
γ±

(
k±n
ε±ωi

)p−2
(
γ±

(
ε±ωi

k±n

)p−2

+ 1

)2−p/κ

.

Proof. Choose the cutoff functions ϕ±n ∈ C∞0 (Q±n ) so that 0 ≤ ϕ±n ≤ 1,
ϕ±n = 1 in Q±n+1 and

|∇ϕ±n | ≤
C2n+1

r
and

∣∣∣∣
∂ϕ±n
∂t

∣∣∣∣ ≤
C2p(n+1)

γ±rp
. (4.17)

Denote in short

vn = (u−kn)±, kn = k±n , ε = ε±

and

Qn = Bn × Tn = Q±n , An = A±n , γ = γ±, ϕn = ϕ±n .



LOCAL HÖLDER CONTINUITY 11

By Hölder’s inequality, together with the Sobolev inequality (2.6), we
obtain

−
∫

Qn+1

v2(1−p/κ)+p
n dν

≤ ν(Qn)
ν(Qn+1)

−
∫

Qn

v2(1−p/κ)+p
n ϕp(1−p/κ)+p

n dν

≤C−
∫

Tn

(
−
∫

Bn

v2
nϕ

p
n dµ

)1−p/κ (
−
∫

Bn

(vnϕn)κ dµ

)p/κ

dt

≤Crp

(
ess sup

Tn

−
∫

Bn

v2
nϕ

p
n dµ

)1−p/κ

−
∫

Qn

|∇(vnϕn)|p dν.

(4.18)

Here, we applied the doubling property of the measure ν giving
ν(Qn)
ν(Qn+1)

≤ C.

We continue by studying the term involving the essential supremum. By
the assumption

u ≥ 1
C0
k−n

and (4.4), we obtain

(u− k−n )2− ≤
2

p− 1
u2−pJ ((u− k−n )−) ≤ C(k−n )2−pJ ((u− k−n )−).

On the other hand, the lower bound (4.3) gives immediately

(u− k+
n )2+ ≤ C(k+

n )2−pJ ((u− k+
n )+).

Using these estimates together with the energy estimate, Lemma 4.6, yields

ess sup
Tn

−
∫

Bn

v2
nϕ

p
n dµ ≤ C(kn)2−p ess sup

Tn

−
∫

Bn

J (vn)ϕp
n dµ

≤C(kn)2−pγrp
n−
∫

Qn

(
vp
n|∇ϕn|p + J (vn)ϕp−1

n

(
∂ϕn

∂t

)

+

)
dν.

Furthermore, the estimates (4.2) and (4.5) imply

J ((u−kn)+) ≤ C(k+
n )p−2(u−kn)2+, J ((u−kn)−) ≤ C(k−n )p−2(u−kn)2−.

For the plus case, we used (4.15). Next, using (4.17), we arrive at

rp
n−
∫

Qn

(
vp
n|∇ϕn|p + J (vn)ϕp−1

n

(
∂ϕn

∂t

)

+

)
dν

≤ C2np−
∫

Qn

(
vp
n +

(kn)p−2

γ
v2
n

)
dν

≤ C2np(εωi)p

(
1 +

1
γ

(
εωi

kn

)2−p
)
ν(An)
ν(Qn)

,

(4.19)

where the last inequality follows from the fact that (u−kn)± ≤ ε±ωi. Thus,
we conclude

ess sup
Tn

−
∫

Bn

v2
nϕ

p
n dµ ≤ C2np(εωi)2

(
γ

(
εωi

kn

)p−2

+ 1

)
ν(An)
ν(Qn)

. (4.20)
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Furthermore, since

−
∫

Qn

|∇(vnϕn)|p dν ≤ C−
∫

Qn

|∇vn|pϕp
n dν + C−

∫

Qn

vp
n|∇ϕn|p dν,

applying again the energy estimate and (4.19) leads to

−
∫

Qn

|∇(vnϕn)|p dν ≤C2np (εωi)
p

(
1 +

1
γ

(
εωi

kn

)2−p
)
ν(An)
ν(Qn)

. (4.21)

To finish the proof, note first that

(u− k±n )±χ{(u−k±n )±>0} ≥(u− k±n )±χ{(u−k±n+1)±>0}

≥|k±n+1 − k±n |
≥2−(n+2)ε±ωi.

It then follows that

−
∫

Qn+1

v2(1−p/κ)+p
n dν ≥

(
2−(n+2)εωi

)2(1−p/κ)+p ν(An+1)
ν(Qn+1)

. (4.22)

Inserting estimates (4.20), (4.21), and (4.22) into (4.18) concludes the proof.
¤

Remark 4.23. If we have the extra knowledge that (u − k−n )− = 0 almost
everywhere in B(r) at a given time level, we can choose the test functions
independent of time and the cylinder Q−n so that the length in the time
direction stays constant and the bottom of the cylinder stays at the given
time level. In this case, by choosing a time independent test function, the
right hand side of the energy estimate simplifies so that we can get rid of
the term +1 in the formulation and

Γ± =

(
γ±

(
ε±ωi

k±n

)p−2
)1−p/κ

in (4.16). This will get us the required extra room in the end of the first
alternative of Case II.

Furthermore, in the previous lemma, we chose the radii of the cylinder as

rn =
r

2
+

r

2n+1
.

However, the factor 2 in the denominator can naturally be replaced by any
greater number.

We start the proof by considering Case I. There, we use the previous
lemma only in the plus case. Consequently, the first case does not depend
on the constant C0.

We recall a lemma of “fast geometric convergence” from [4].

Lemma 4.24. Let (Yn)n be a sequence of positive numbers, satisfying

Yn+1 ≤ CbnY 1+α
n (4.25)

where C, b > 1 and α > 0. Then (Yn)n converges to zero as n→∞ provided

Y0 ≤ C−1/αb1−α2
. (4.26)
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On several occasions in the sequel, we use this lemma, together with the
fundamental estimate Lemma 4.13, to conclude that a ratio of the form

Yn =
ν(A±n )
ν(Q±n )

converges to zero and consequently that ν(A±n ) → 0 as n → ∞. This will
ultimately lead to a reduction of the oscillation which is our final goal.

Once a recursive inequality of type (4.16) has been established, the con-
vergence to zero of ν(A±n ) follows from the condition

ν(A±0 )
ν(Q±0 )

≤ α±0

with
α±0 = Γ−1/(1−p/κ)

± C
−1/(1−p/κ)+1−(1−p/κ)2

± , (4.27)

where the constants C± and Γ± are the constants from the previous lemma.
Note that an explicit value of α±0 only follows after fixing C± and Γ±.

5. The Case I

Now we assume that (3.1) holds. Our aim is to show that the measures
of certain distribution sets tend to zero and that the local Hölder continuity
follows from this.

We start by studying the subcylinder Q(rp, r) ⊂ Q(ηrp, r). Let γ± = 1,
ε± = 2−1 and

k+
n = µ+

0 −
ω0

4
− ω0

2n+2
.

Observe that after fixing these quantities, the constant α+
0 can be fixed, as

well.
We will study two different alternatives which are considered in the fol-

lowing two lemmata, respectively.

Lemma 5.1. Let λ2 > 1 be sufficiently large and let u ≥ 0 be a weak solution
of equation (1.1). Furthermore, assume

ν

(
{(x, t) ∈ B(r)× (−rp,− r

p

λ2
) : u(x, t) ≥ µ−0 +

ω0

2
}
)

= 0. (5.2)

Then there exists a constant σ ∈ (0, 1) such that

ess osc
Q(( r

2)
p
, r
2)
u ≤ σω0.

Proof. By the choices preceding the statement of this lemma, we have

(u− k+
n )+ ≤ ε+ω0.

The assumption (3.1) implies

µ+
0 = µ−0 + ω0 ≤ 2ω0.

Thus

1 ≤ k+
n

ε+ω0
≤ 4.



14 KUUSI, SILJANDER AND URBANO

Plug these in Lemma 4.13 to deduce

ν(A+
n+1)

ν(Q+
n+1)

≤ Cn+1

(
ν(A+

n )
ν(Q+

n )

)2−p/κ

.

On the other hand, by (5.2) we have the trivial estimate

ν(A+
0 )

ν(Q+
0 )

≤ 1
λ2

≤ α+
0 ,

choosing λ2 > 1 sufficiently large. By Lemma 4.24 we conclude that

ν(A+
n )

ν(Q+
n )

→ 0

as n→∞. This implies

ess sup
Q(( r

2)
p
, r
2)
u ≤ µ+

0 −
ω0

4
.

So, if this alternative occurs, we choose

µ+
1 = µ+

0 −
ω0

4

and

µ−1 = µ−0 .

These choices yield

ess osc
Q(( r

2)
p
, r
2)
u ≤

(
1− 1

4

)
ω0

as required, with

σ =
3
4
.

¤

For the second possibility, we have the following lemma.

Lemma 5.3. Let u ≥ 0 be a weak solution of equation (1.1) and suppose

ν

(
{(x, t) ∈ B(r)× (−rp,− r

p

λ2
) : u(x, t) ≥ µ−0 +

ω0

2
}
)
> 0. (5.4)

Then there exists a constant σ = σ(H0) ∈ (0, 1) such that

ess osc
Q
““

r
2λ2

”p
, r
2λ2

”u ≤ σω0.

Proof. By assumption (5.4), we have

ess sup
B(r)×(−rp,− rp

λ2
)

u ≥ µ−0 +
ω0

2
.
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Now we can use Harnack’s inequality (Theorem 2.9), together with the Case
I assumption (3.1), to deduce

ess inf
Q
““

r
2λ2

”p
, r
2λ2

”u ≥
1
H0

ess sup
B(r)×(−rp,− rp

λ2
)

u

≥ µ−0
H0

+
ω0

2H0

≥ µ−0 +
µ−0
H0

− ω0

2H0 + 1
+

ω0

2H0

≥ µ−0 +
ω0

2H0(2H0 + 1)
.

Observe that the constant H0 depends on λ2, but this does not matter since
λ2 depends only on the data.

Now, if we end up in this alternative, we choose

µ−1 = µ−0 +
ω0

2H0(2H0 + 1)

and
µ+

1 = µ+
0 .

We also obtain

ess osc
Q
““

r
2λ2

”p
, r
2λ2

”u ≤ ω0 − ω0

2H0(2H0 + 1)
= σω0,

with

σ = 1− 1
2H0(2H0 + 1)

,

as required. ¤

6. The case II

In Case II the equation looks like the evolution p-Laplace equation. In
this case, we need to use the scaling factor η in the time geometry of our
cylinders. The difficulty is now that we cannot use the Harnack principle
anymore, as the lower bound it gives might be trivial. Indeed, the infimum
can be bigger than the lower bound Harnack’s inequality gives. On the other
hand, we have the following kind of elliptic Harnack’s inequality.

Suppose that j0 is the first index for which assumption (3.1) does not
hold. Then we have

ωj0 ≤ µ+
j0
≤ (2H0 + 2)µ−j0 . (6.1)

Clearly, this Harnack’s inequality is valid also for every subset of the initial
cylinder Qj0 = Q(ηrp, r) and, consequently, for every j ≥ j0.

Recall, that ωj0 = σωj0−1 and
ωj0

(2H0 + 2)
≤ µ−j0 ≤ µ−j0−1 + (1− σ)ωj0−1

≤ (2− σ)ωj0−1 ≤ 2− σ

σ
ωj0 .

(6.2)
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Thus, we obtain

σ

(2H0 + 2)(2− σ)
≤ σ

2− σ

µ−j0
ωj0

≤ 1

and, consequently,

Q

(
C1

(2H0 + 2)p−2
ηrp, r

)
⊂ Q


C1

(
µ−j0
ωj0

)p−2

ηrp, r


 ⊂ Q(ηrp, r),

where C1 = σp−2/(2− σ)p−2. We will consider the cylinder

Q := Q


C1

(
µ−j0
ωj0

)p−2

ηrp, r


 .

By the above calculation, we have shrunk the cylinder by a factor which is
controllable by the data.

In the sequel, we will denote

θ = C1

(
µ−j0
ωj0

)p−2

. (6.3)

Recall the definitions

Q±n = Qt∗(γ±rp
n, rn) = Bn × Tn = B(rn)× (t∗ − γ±rp

n, t
∗)

and
A±n = {(x, t) ∈ Q±n : ±u > ±k±n }.

Now the proof will follow the classical argument of DiBenedetto, see [4]
and [22], and is divided in two alternatives. In the first one, we assume that
there is a suitable cylinder for which the set where u is close to its infimum
is very small. In the second alternative we assume that this is not true.

6.1. The First Alternative. We first suppose that there exists a constant
α0 ∈ (0, 1) (to be determined in the course of the next lemma) such that

ν
(
{(x, t) ∈ Q−0 : u < µ−j0 +

ωj0

2
}
)
≤ α0ν(Q−0 )

for a cylinder

Q−0 = Qt∗(θrp, r) ⊂ Q(2λ1(p−2)+1θrp, r).

Our aim is to use Lemma 4.13 to conclude for the reduction of the oscil-
lation.

Lemma 6.4. For every s > 3

ν
({

(x, t) ∈ Q
(
θ
(r

4

)p
,
r

4

)
: u(x, t) < µ−j0 +

ωj0

2s

})

≤ C2λ1(p−2) s− 2
(s− 3)2

ν
(
Q

(
θ
(r

4

)p
,
r

4

))
,

where θ is as in (6.3).
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Proof. We start by using Lemma 4.13, with the choices

rn =
r

2
+

r

2n+1
, k−n = µ−j0 +

ωj0

4
+

ωj0

2n+2
,

ε− = 1/2 and γ− = θ. We also need the assumption (6.1) to deduce that

u ≥ 1
C0

(µ−j0 + 2(2H0 + 2)µ−j0) ≥
1
C0

(µ−j0 + 2ωj0) ≥
1
C0
k−n , (6.5)

with C0 = 3(2H0 +2). This knowledge is needed in Lemma 4.13. Now, after
fixing ε−, γ−, k−n and C0 we can fix α−0 , see (4.27).

We also obtain, using (6.1) and (6.3), the bounds

2p−2

C1
≤ 1
γ−

(
k−n
ε−ωj0

)p−2

≤ 2p−2

C1
(2H0 + 2)p−2

and thus we can conclude

ν(A−n+1)
ν(Q−n+1)

≤ Cn+1

(
ν(A−n )
ν(Q−n )

)2−p/κ

.

By the assumption of this alternative, together with the lemma of fast
geometric convergence (Lemma 4.24), we have u > k almost everywhere in
Qt∗(θ(r/2)p, r/2). Thus

(u−k)− = 0

and consequently

ψ(u) :=
(

ln
(

H−
k

c+H−
k − (u−k)−

))

+

= 0

almost everywhere in Qt∗(θ(r/2)p, r/2). Let

t0 ≤ −θ
(r

4

)p
(6.6)

be a time level such that this is true for almost every x ∈ B(r/2).
Now our goal is to apply Lemma 4.11 with

k = µ−j0 +
ωj0

4
, c =

ωj0

2s

and
H−

k = ess sup
Q

(u− k)−

where Q = Q(ηθrp, r). Choose ϕ ∈ C∞0 (B(r/2)) independent of time such
that 0 ≤ ϕ ≤ 1, ϕ = 1 in B(r/4) and

|∇ϕ| ≤ C

r
.

In the set {u < µ−j0 + ωj0
2s }, we have

ψ2 ≥ (s− 3)2 ln2 2,

and, on the other hand,

ψ ≤ (s− 2) ln 2 and |ψ′|2−p ≤
(ωj0

2

)p−2
.
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The use of these estimates in Lemma 4.11 gives

(µ−j0)
p−2(s− 3)2 ln2 2 · µ({x ∈ B(r/4) : u(x, t) < µ−j0 +

ωj0

2s
})

≤ ess sup
t0<t<0

∫

B(r/2)
up−2ψ2(u)(x, t)ϕp(x) dµ

≤
∫

B(r/2)
kp−2ψ2(u)(x, t0)ϕp(x) dµ

+ C

∫ 0

t0

∫

B(r/2)
ψ|ψ′|2−p|∇ϕ|p dµ dt

≤ C(s− 2) ln 2
(

2λ1ωj0

2

)p−2

θµ(B(r/4))

≤ C(s− 2) ln 2

(
2λ1µ−j0

2

)p−2

µ(B(r/4)),

for almost every t ∈ (t0, 0). Observe that, in the third inequality, we plugged
in η = 2λ1(p−2)+1. The claim follows by integrating this estimate over
(−θ(r/4)p, 0).

¤
We conclude this alternative with the following two lemmata.

Lemma 6.7. Let u ≥ 0 be a weak solution of equation (1.1) and as-
sume (6.1) holds. Then

u ≥ µ−j0 +
ωj0

2s+1
a.e. in Q

(
θ
(r

8

)p
,
r

8

)
,

where s depends only upon the data, and θ is as in (6.3).

Proof. Let
rn =

r

8
+

r

2n+3
,

Q−n = Bn × T = B(rn)× (t0, 0),
where t0 is, as in the previous lemma, such that

(u−k)−(x, t0) = 0, t0 ≤ −θ
(r

4

)p
,

for a.e. x ∈ B(r/2). Moreover, define

k−n = µ−j0 +
ωj0

2s+1
+

ωj0

2s+n+1
.

In this case, we obtain

(u− k−n )− ≤ ε−ωj0 , where ε− =
1
2s
.

Observe also that γ− = −t0/rp ≤ ηθ = 2λ1(p−2)+1θ.
We will substitute these in Lemma 4.13 and, taking into account Re-

mark 4.23 and estimate (6.5), we conclude as before that

ν(A−n+1)
ν(Q−n+1)

≤ Cn+1

(
2λ1(p−2)

2s(p−2)

)1−p/κ (
ν(A−n )
ν(Q−n )

)2−p/κ

.
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Now choose s > λ1. Then, by Lemma 4.24, we have ν(A−n )/ν(Q−n ) → 0 as
n → ∞, provided ν(A−0 )/ν(Q−0 ) is small enough. On the other hand, by
choosing s large enough, Lemma 6.4 guarantees that ν(A−0 )/ν(Q−0 ) can be
chosen to be as small as we please.

This gives
u ≥ µ−j0 +

ωj0

2s+1
a.e. in Q

(
|t0|, r8

)

and hence the lemma is proved.
¤

Lemma 6.8. There exists 0 < σ < 1, depending only upon the data, such
that

ess osc
Q(θ( r

8)
p
, r
8)
u ≤ σωj0 .

Proof. By the previous lemma,

ess inf
Q(θ( r

8)
p
, r
8)
u ≥ µ−j0 +

ωj0

2s+1
,

for some s > 1, which depends only upon the data and λ1. Observe that
here we used the knowledge

t0 ≤ −θ
(r

8

)p
.

If this alternative occurs, we again choose

µ−j0+1 := µ−j0 +
ωj0

2s+1

and
µ+

j0+1 = µ+
j0
.

Finally, we get

ess osc
Q(θ( r

8)
p
, r
8)
u ≤

(
1− 1

2s+1

)
ωj0

as required, with

σ = 1− 1
2s+1

.

¤
Remark 6.9. Here the choice of s is possible only after λ1 has been deter-
mined in the second alternative. Nevertheless, both of them are a priori
constants which can be assigned explicit values depending only upon the
data.

6.2. The Second Alternative. In the second alternative, the assump-
tion of the first alternative is not true. In this case, for every cylinder
Qt∗(θrp, r) ⊂ Q(ηθrp, r), we have

ν
(
{(x, t) ∈ Qt∗(θrp, r) : u(x, t) ≥ µ−j0 + ωj0

2 }
)

ν(Qt∗(θrp, r))
< (1− α0), (6.10)

where α0 := α−0 is the same constant as in the first alternative. This implies
that, for every t∗ ∈ (−(η − 1)θrp, 0), there exists a time level t0 with

t∗ − θrp ≤ t0 ≤ t∗ − θα0

2
rp
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for which

µ
({
x ∈ B(r) : u(x, t0) > k−0

}) ≤ 1− α0

1− α0

2

µ(B(r)). (6.11)

Indeed, otherwise we would have

ν
({

(x, t) ∈ Qt∗(θrp, r) : u(x, t) > k−0
})

≥
∫ t∗− θα0

2
rp

t∗−θrp

µ
({
x ∈ B(r) : u(x, t) > k−0

})
dt

> (1− α0)ν(Qt∗(θrp, r)),

which contradicts (6.10).
This alternative is also based on Lemma 4.13. We choose λ1 in the defi-

nition of k+
n large enough so that we can force ν(A+

0 ) to be small compared
to ν(Q+

0 ).
We start with forwarding the information of (6.11) in time.

Lemma 6.12. There exists s∗ > 0, depending only upon the data, such that

µ
({
x ∈ B(r) : u(x, t) > µ+

j0
− ωj0

2s∗

})
≤

1− 3α0

4
1− α0

2

µ(B(r)).

for almost all t ∈ (t0, 0).

Proof. Let
c =

ωj0

2s+n
, k = µ+

j0
− ωj0

2s

and
H+

k = ess sup
Q

(u−k)+,

where s and n will be chosen later and Q := Q(θηrp, r). Our aim is again
to use Lemma 4.11 to forward the information in time. We will need some
estimates for doing this.

Recall the definition

ψ+(u) = Ψ(H+
k , (u−k)+, c) = ln+

(
H+

k

c+H+
k − (u−k)+

)
.

Trivially, we have

ψ+(u) ≤ ln

(
ωj0
2s

ωj0
2s+n

)
= n ln 2

and, on the other hand, in the set

{u > µ+
j0
− ωj0

2s+n
},

we get

ψ+(u) ≥ ln

(
ωj0
2s

ωj0
2s+n + ωj0

2s+n

)
= (n− 1) ln 2

The last estimate we need is

|(ψ+)′|2−p ≤
(

1
c+H+

k

)2−p

≤ 2p−2
(ωj0

2s

)p−2
.
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Let now ϕ ∈ C∞0 (B(r)) be a cutoff function which is independent of time
and has the properties 0 ≤ ϕ ≤ 1, ϕ = 1 in B((1− δ)r) and

|∇ϕ| ≤ 1
δr
,

where 0 < δ < 1 is to be determined later.
Apply Lemma 4.11 with these choices to conclude

(n− 1)2 ln2 2 · µ({x ∈ B((1− δ)r) : u(x, t) > l})

≤ ess sup
t0<t<t∗

∫

B(r)
ψ2

+(u)(x, t)ϕp(x) dµ

≤
∫

B(r)

(u
k

)p−2
ψ2

+(u)(x, t0)ϕp(x) dµ

+ Ck2−p

∫ t∗

t0

∫

B(r)
ψ+|(ψ+)′|2−p|∇ϕ|p dµ dt

≤ n2 ln2(2)


 µ+

j0

µ+
j0
− µ+

j0
2s




p−2

1− α0

1− α0

2

µ(B(r)× {t0})

+ C
n ln 2
δp

(
ωj0

µ+
j0

)p−2 (
1

2s − 1

)p−2

θµ(B(r))

for almost every t ∈ (t0, t∗). Observe, that in the third inequality we
used (6.11).

Now, by the annular decay property (2.3), we have

µ({x ∈B(r) : u(x, t) > l})
≤ µ(B(r) \B((1− δ)r)) + µ({x ∈ B((1− δ)r) : u(x, t) > l})
≤ Cδαµ(B(r)) + µ({x ∈ B((1− δ)r) : u(x, t) > l}).

For the first term, we choose δ small enough so that

Cδα <
α0

16
(
1− α0

2

)

and for the second term we use the previous estimate. Indeed, by choosing
s and n large enough so that

1− α0

1− α0

2

n2

(n− 1)2

(
1

1− 1
2s

)p−2

≤ 1− 3α0

8
(
1− α0

2

)

and
Cn

(ln 2)δp(n− 1)2

(
1

2s − 1

)p−2

≤ α0

16
(
1− α0

2

) ,

we get the claim for almost every t ∈ (t0, t∗) with s∗ = s+ n. Recall that

t∗ − θrp ≤ t0 ≤ t∗ − θα0

2
rp.
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Finally, since the above holds for every cylinder Qt∗(θrp, r) ⊂ Q(ηθrp, r), we
can conclude that for almost every

t ≥ −ηθrp + θrp − θα0r
p

2
=

(
−η + 1− α0

2

)
θrp,

we have

µ({x ∈ B(r) : u(x, t) > l}) <
1− 3α0

4
1− α0

2

µ(B(r)).

¤
Remark 6.13. Now we can choose η so large that the previous lemma holds
for almost every t ∈ (− ηθ

2 r
p, 0

)
, i.e.

−η + 1− α0

2
≤ −η

2
and hence

η = 2λ1(p−2)+1 ≥ 2− α0.

But this is always guaranteed for λ1 > 1 and p ≥ 2.

We are ready to prove the final estimate, which, together with Lemma 4.24,
gives the reduction of the oscillation. Let

E%(t) = {x ∈ B(r) : u(x, t) > µ+
j0
− ωj0

2%
}

and

E% = {(x, t) ∈ Q
(
ηθ

2
rp, r

)
: u(x, t)− µ+

j0
>
ωj0

2%
}.

Then we have the following lemma.

Lemma 6.14. For every α1 ∈ (0, 1), there exists λ1 > 0 such that
ν(Eλ1)

ν(Q(ηθ
2 r

p, r))
≤ α1.

Proof. Denote
h = µ+

j0
− ωj0

2s+1

and
k = µ+

j0
− ωj0

2s
,

where s > 0 will be chosen large. Let also

v =





h− k, u ≥ h,

u− k, k < u < h,

0, u ≤ k.

By the previous lemma, we can choose s large enough, namely s ≥ s∗ where
s∗ is from the previous lemma, so that, for almost every t ∈ (− ηθ

2 r
p, 0

)
, we

have

µ(x ∈ B(r) : v(x, t) = 0}) = µ({x ∈ B(r) : u(x, t) ≤ k})
≥ α0

4− 2α0
µ(B(r)× {t})

≥ α0

4
µ(B(r)).
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Thus, for almost every t ∈ (− ηθ
2 r

p, 0
)
, we obtain

vB(r)(t) = −
∫

B(r)×{t}
v dµ ≤

(
1− α0

4

)
(h− k)

and, consequently,

h− k − vB(r)(t) ≥
α0

4
(h− k).

Using the (q, q)-Poincaré inequality for some q < p (see (2.7) and the
remark after that), yields

(h− k)qµ(Es+1(t)) ≤
(

4
α0

)q ∫

B(r)×{t}
|v − vB(r)(t)|q dµ

≤ Crq

∫

B(r)×{t}
|∇v|q dµ = Crq

∫

Es(t)\Es+1(t)
|∇u|q dµ,

for almost every t ∈ (− ηθ
2 r

p, 0
)
. The constant (4/α0)q above was absorbed

into the constant C. Now we integrate the above inequality over time to get

(h− k)qν(Es+1) ≤ Crq

∫

Es\Es+1

|∇u|q dν.

Next, we introduce a cutoff function ϕ ∈ C∞0 (Q(ηθrp, 2r)) such that 0 ≤
ϕ ≤ 1, ϕ = 1 in Q

(
ηθ
2 r

p, r
)

and

|∇ϕ| ≤ C

r
and

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ ≤
C

ηθrp
.

Now Hölder’s inequality gives

(h− k)qν(Es+1) ≤ Crq

(∫

Es\Es+1

|∇u|p dν
)q/p

ν(Es \ Es+1)1−q/p

≤ Crq

(∫

Q(ηθrp,2r)
|∇(u−k)+|pϕp dν

)q/p

ν(Es \Es+1)1−q/p.

By choosing λ1 > s ≥ s∗ in the definition of η large enough, the first
factor on the right hand side can be estimated by Lemma 4.6 and (4.2) as

∫

Q(ηθrp,2r)
|∇(u−k)+|pϕp dν

≤ C

∫

Q(ηθrp,2r)
(u−k)p

+|∇ϕ|p dν

+ C

∫

Q(ηθrp,2r)
J ((u−k)+)ϕp−1

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ dν

≤ C

rp

((ωj0

2s

)p−2
+

(µ+
j0

)p−2

ηθ

)∫

Q(ηθrp,2r)
(u−k)2+ dν

≤ C

rp

(ωj0

2s

)p
ν

(
Q

(
ηθ

2
rp, r

))
.

(6.15)
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In the last inequality we used the doubling property of the measure ν.
We obtain
( ωj0

2s+1

)q
ν(Es+1) ≤ C

(ωj0

2s

)q
ν

(
Q

(
ηθ

2
rp, r

))q/p

ν(Es \Es+1)1−q/p.

Finally, summing s over s∗, . . . , λ1 − 1 gives

(λ1 − s∗)ν(Eλ1)
p/(p−q) ≤ Cν

(
Q

(
ηθ

2
rp, r

))q/(p−q)

ν

(
Q

(
ηθ

2
rp, r

))

and hence

ν(Eλ1) ≤
C

(λ1 − s∗)(p−q)/p
ν

(
Q

(
ηθ

2
rp, r

))
.

Choosing λ1 large enough finishes the proof. ¤

Lemma 6.16. Suppose that (6.10) holds. Then there exists 0 < σ < 1,
depending only upon the data, such that

ess osc
Q( ηθ

2
rp,r)

u ≤ σωj0 .

Proof. Let
Q+

n = B(rn)× (−γ+rp
n, 0),

rn =
r

2
+

r

2n+1

and A+
n as before. Substituting γ+ = 2λ1(p−2)θ, ε+ = 1/2λ1 and

k+
n = µ+

j0
− ωj0

2λ1+1
− ωj0

2λ1+n+1

in Lemma 4.13, and using (6.1) to bound

1 ≤ 1
γ+

(
k+

n

ε+ωj0

)p−2

≤ (2H0 + 2)p−2,

yields
ν(A+

n+1)
ν(Q+

n+1)
≤ Cn+1

(
ν(A+

n )
ν(Q+

n )

)2−p/κ

.

By the previous Lemma, we can choose λ1 large enough so that

ν(A+
0 )

ν(Q+
0 )

is as small as we please. Consequently, by Lemma 4.24, we obtain

ess sup
Q( ηθ

2 ( r
2)

p
, r
2)
u ≤ µ+

j0
− ωj0

2λ1+1
,

for some λ1 > 1, which depends only upon the data. So if this alternative
occurs, we choose

µ+
1 = µ+

j0
− ωj0

2λ1+1

and
µ−1 = µ−j0 .



LOCAL HÖLDER CONTINUITY 25

We also obtain

ess osc
Q( ηθ

2 ( r
2)

p
, r
2)
u ≤

(
1− 1

2λ1+1

)
ωj0 ,

as required, with

σ = 1− 1
2λ1+1

.

¤
Now the Hölder continuity follows by standard iterative real analysis

methods, see chapter III of [4], or [22].
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