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2 HARMONIC ANALYSIS

1. Introduction

This lecture note contains a sketch of the lectures. More illustrations
and examples are presented during the lectures.

The tools of the harmonic analysis have a wide spectrum of ap-
plications in mathematical theory. The theory has strong real world
applications at the background as well:

• Signal processing: Fourier transform, Fourier multipliers, Sin-
gular integrals.

• Solving PDEs: Poisson integral, Hilbert transform, Singular
integrals.

• Regularity of PDEs: Hardy-Littlewood maximal function, ap-
proximation by convolution, Calderón-Zygmund decomposition,
BMO.

Example 1.1. We consider a problem

∆u = f in Rn

where f ∈ Lp(Rn). The solution u is of the form

u(x) = C

∫
Rn

f(y)

|x− y|n−2 dy.

One of the questions in the regularity theory of PDEs is, does u have
the second derivatives in Lp i.e.

∂2u

∂xi∂xj

∈ Lp(Rn)?

If we formally differentiate u, we get

∂2u

∂xi∂xj

= C

∫
Rn

f(y)
∂2

∂xi∂xj

1

|x− y|n−2︸ ︷︷ ︸
| · |≤C/|x−y|n

dy.

It follows that
∫
Rn f(y)

∂2

∂xi∂xj

1
|x−y|n−2 dy defines a singular integral Tf(x).

A typical theorem in the theory of singular integrals says

||Tf ||p ≤ C ||f ||p

and thus we can deduce that ∂2u
∂xi∂xj

∈ Lp(Rn).

Example 1.2. Suppose that we have three different signals f1, f2, f3
with different frequencies but only one channel, and that we receive

f = f1 + f2 + f3

from the channel. The Fourier transform F(f) gives us a spectrum of
the signal f with three spikes in |F(f)|. We would like to recover the
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signal f1. Thus we take a multiplier (filter)

a1(y) := χ(a,b)(y) =

{
1, y ∈ (a, b),

0, otherwise,

where the interval (a, b) contains the frequency of f1. Thus formally by
taking the inverse Fourier transform, we get

f1 = F−1(a1F(f)) =: Tf(x).

This, again formally, defines an operator T which turns out to be of
the form

c

∫
R

sin(Cy)

y
f(x− y) dy

with some constants c, C. This operator is of a convolution type. How-
ever, sin(Cy)/y is not integrable over the whole R, so this requires
some care!

2. Hardy-Littlewood maximal function

Definition 2.1. Let f ∈ L1
loc(R

n) and m a Lebesgue measure. A
Hardy-Littlewood maximal function Mf : Rn 7→ [0,∞] is

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy =: sup
Q∋x

∫
Q

|f(y)| dy,

where the supremum is taken over all the cubes Q with sides parallel
to the coordinate axis and that contain the point x. Above we used
the shorthand notation∫

Q

f(x) dx =
1

m(Q)

∫
Q

f(x) dx

for the integral average.

Notation 2.2. We denote an open cube by

Q = Q(x, l) = {y ∈ Rn : max
1≤i≤n

|yi − xi| < l/2},

l(Q) is a side length of the cube Q,

m(Q) = l(Q)n,

diam(Q) = l(Q)
√
n.

Example 2.3. f : R → R, f(x) = χ(0,1)(x)

Mf(x) =


1
x
, x > 1,

1, 0 ≤ x ≤ 1,
1

1−x
, x < 0.

Observe that f ∈ L1(R) but Mf /∈ L1(R).
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Remark 2.4. (i) Mf is defined at every point x ∈ Rn and if f = g
almost everywhere (a.e.), then Mf(x) = Mg(x) at every x ∈ Rn.

(ii) It may well be that Mf = ∞ for every x ∈ Rn. Let for example
n = 1 and f(x) = x2.

(iii) There are several definitions in the literature which are often
equivalent. Let

M̃f(x) = sup
l>0

∫
Q(x,l)

|f(y)| dy,

where the supremum is taken over all cubes Q(x, l) centered at x.
Then clearly

M̃f(x) ≤ Mf(x)

for all x ∈ Rn. On the other hand, if Q is a cube such that x ∈ Q,
then Q = Q(x0, l0) ⊂ Q(x, 2l0) and∫

Q

|f(x)| dy ≤ m(Q(x, 2l0))

m(Q(x, l0))

1

m(Q(x, 2l0))

∫
Q(x,2l0)

|f(y)| dy

≤ 2nM̃f(x)

because
m(Q(x, 2l0))

m(Q(x, l0))
=

(2l0)
n

ln0
= 2n.

It follows that Mf(x) ≤ 2nM̃f(x) and

M̃f(x) ≤ Mf(x) ≤ 2nM̃f(x)

for every x ∈ Rn. We obtain a similar result, if cubes are replaced
for example with balls.

Next we state some immediate properties of the maximal function.
The proofs are left for the reader.

Lemma 2.5. Let f, g ∈ L1
loc(R

n). Then

(i)
Mf(x) ≥ 0 for all x ∈ Rn (positivity).

(ii)
M(f + g)(x) ≤ Mf(x) +Mg(x) (sublinearity)

(iii)
M(αf)(x) = |α|Mf(x), α ∈ R (homogeneity).

(iv)

M(τyf) = (τyMf)(x) = Mf(x+ y) (translation invariance).

Lemma 2.6. If f ∈ C(Rn), then

|f(x)| ≤ Mf(x)

for all x ∈ Rn.
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Proof. Let f ∈ C(Rn), x ∈ Rn. Then

∀ε > 0 ∃δ > 0 s.t. |f(x)− f(y)| < ε whenever |x− y| < δ.

From this and the triangle inequality, it follows that∣∣∣∣∫
Q

|f(x)| dy − |f(x)|
∣∣∣∣ ∫Q 1 dy = 1

=

∣∣∣∣∫
Q

(
|f(y)| − |f(x)|

)
dy

∣∣∣∣
≤
∫
Q

||f(y)| − |f(x)|| dy ≤
∫
Q

|f(y)− f(x)| dy < ε

whenever diam(Q) =
√
n l(Q) < δ. Thus

|f(x)| = lim
Q∋x,l(Q)→0

∫
Q

|f(x)| dy ≤ sup
Q∋x

∫
Q

|f(x)| dy = Mf(x). �

Remember that f : Rn → [−∞,∞] is lower semicontinuous if

{x ∈ Rn : f(x) > λ} = f−1((λ,∞])

is open for all λ ∈ R. Thus for example, χU is lower semicontinuous
whenever U ⊂ Rn is open. It also follows that if f is lower semicontin-
uous then it is measurable.

Lemma 2.7. Mf is lower semicontinuous and thus measurable.

Proof. We denote

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0.

Whenever x ∈ Eλ it follows that there exists Q ∋ x such that∫
Q

|f(y)| dy > λ.

Further

Mf(z) ≥
∫
Q

|f(y)| dy > λ

for every z ∈ Q, and thus

Q ⊂ Eλ. �

Lemma 2.8. If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and

||Mf ||∞ ≤ ||f ||∞ .

Proof. ∫
Q(x)

|f(y)| dy ≤ ||f ||∞
∫
Q

1 dx = ||f ||∞ ,

for every x ∈ Rn. From this it follows that

||Mf ||∞ ≤ ||f ||∞ . �
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Lemma 2.9. Let E be a measurable set. Then for each 0 < p < ∞,
we have∫

E

|f(x)|p dx = p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ

Proof. Sketch:∫
E

|f(x)|p dx =

∫
Rn

χE(x)p

∫ |f(x)|

0

λp−1 dλ dx

Fubini
= p

∫ ∞

0

λp−1

∫
Rn

χ{x∈E : |f(x)|>λ}(x) dx dλ

= p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ. �

Definition 2.10. Let f : Rn → [−∞,∞] be measurable. The function
f belongs to weak L1(Rn) if there exists a constant C such that 0 ≤
C < ∞ such that

m({x ∈ Rn : |f(x)| > λ}) ≤ C

λ

for all λ > 0.
7.9.2010

Remark 2.11. (i) L1(Rn) ⊂ weak L1(Rn) because

m({x ∈ Rn : |f(x)| > λ}) =
∫
{x∈Rn : |f(x)|>λ}

1 dx

≤
∫
{x∈Rn : |f(x)|>λ}

|f(x)|
λ︸ ︷︷ ︸
≥1

dx ≤ ||f ||1
λ

,

for every λ > 0.
(ii) weak L1(Rn) is not included into L1(Rn). This can be seen by

considering

f : Rn → [0,∞], f(x) = |x|−n .

Indeed,∫
B(0,1)

|f(x)| dx =

∫
B(0,1)

|x|−n dx =

∫ 1

0

∫
∂B(0,r)

r−n dS(x) dr

=

∫ 1

0

r−n

∫
∂B(0,r)

1 dS(x)︸ ︷︷ ︸
ωn−1rn−1

dr

= ωn−1

∫ 1

0

1

r
dr = ∞,
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that is ||f ||1 = ∞ and thus f /∈ L1(Rn). On the other hand for
every λ > 0

m({x ∈ Rn : |f(x)| > λ}) = m(B(0, λ−1/n)) =
Ωn

λ

where Ωn is a measure of a unit ball. Hence f ∈ weak L1(Rn).

Theorem 2.12 (Hardy-Littlewood I). If f ∈ L1(Rn), then Mf is in
weak L1(Rn) and

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1

for every 0 < λ < ∞.

In other words, the maximal functions maps L1 to weak L1.
The proof of this theorem uses the Vitali covering theorem.

Theorem 2.13 (Vitali covering). Let F be a family of cubes Q s.t.

diam(
∪
Q∈F

Q) < ∞.

Then there exist a countable number of disjoint cubes Qi ∈ F , i =
1, 2, . . . s.t. ∪

Q∈F

Q ⊂
∞∪
i=1

5Qi

Here 5Qi is a cube with the same center as Qi whose side length is
multiplied by 5.

Proof. The idea is to choose cubes inductively at round i by first throw-
ing away the ones intersecting the cubes Q1, . . . , Qi−1 chosen at the
earlier rounds and then choosing the largest of the remaining cubes
not yet chosen. Because the largest cube was chosen at every round,
it follows that ∪i−1

j=15Qj will cover the cubes thrown away. However,
implementing this intuitive idea requires some care because there can
be infinitely many cubes in the family F . In particular, it may not be
possible to choose largest one, but we choose almost the largest one.

To work out the details, suppose that Q1, . . . , Qi−1 ∈ F are chosen.
Define

li = sup{l(Q) : Q ∈ F and Q ∩
i−1∪
j=1

Qj = ∅}. (2.14)

Observe first that li < ∞, due to diam(
∪

Q∈F Q) < ∞. If there is no a
cube Q ∈ F such that

Q ∩
i−1∪
j=1

Qj = ∅,
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then the process will end and we have found the cubes Q1, . . . , Qi−1.
Otherwise we choose Qi ∈ F such that

l(Qi) >
1

2
li and Qi ∩

i−1∪
j=1

Qj = ∅.

This is also how we choose the first cube. Observe further that this is
possible since 0 < li < ∞. We have chosen the cubes so that they are
disjoint and it suffices to show the covering property.

Choose an arbitrary Q ∈ F . Then it follows that this Q intersects
at least one of the chosen cubes Q1, Q2, . . ., because otherwise

Q ∩Qi = ∅ for every i = 1, 2, . . .

and thus the sup in (2.14) must be at least l(Q) so that

li ≥ l(Q) for every i = 1, 2, . . . .

It follows that

l(Qi) >
1

2
li ≥

1

2
l(Q) > 0

for every i = 1, 2, . . ., so that

m(
∞∪
i

Qi) =
∞∑
i=1

m(Qi) = ∞,

where we also used the fact that the cubes are disjoint. This contradicts
the fact that m(

∪∞
i Qi) < ∞ since

∪∞
i Qi is a bounded set according

to assumption diam(
∪

Q∈F Q) < ∞. Thus we have shown that Q in-
tersects a cube in Qi, i = 1, 2, . . .. Then there exists a smallest index i
so that

Q ∩Qi ̸= ∅.

implying

Q ∩
i−1∪
j=1

Qj = ∅.

Furthermore, according to the procedure

l(Q) ≤ li < 2l(Qi)

and thus Q ⊂ 5Qi and moreover∪
Q∈F

Q ⊂
∞∪
i=1

5Qi. �
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Proof of Theorem 2.12. Remember the notation

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0

so that x ∈ Eλ implies that there exits a cube Qx ∋ x such that∫
Qx

|f(y)| dy > λ (2.15)

If Qx would cover Eλ, then the result would follow by the estimate

m(Eλ) ≤ m(Q) ≤
∫
Rn

|f(y)|
λ

dy.

However, this is not usually the case so we have to cover Eλ with cubes.
But then the overlap of cubes needs to be controlled, and here we utilize
the Vitali covering theorem.

In application of the Vitali covering theorem, there is also a technical
difficulty that Eλ may not be bounded. This problem is treated by
looking at the

Eλ ∩B(0, k).

Let F be a collection of cubes with the property (2.15), and x ∈ Eλ ∩
B(0, k). Now for every Q ∈ F it holds that

l(Q)n = m(Q) <
1

λ

∫
Q

|f(y)| dy ≤ ||f ||1
λ

,

so that

l(Q) ≤
( ||f ||1

λ

)1/n
< ∞.

Thus diam(
∪

Q∈F Q) < ∞ and the Vitali covering theorem implies∪
Q∈F

Q ⊂
∞∪
i=1

5Qi.

Combining the facts, we have

m(Eλ ∩B(0, k)) ≤ m(
∞∪

Q∈F

Q) ≤
∞∑
i=1

m(5Qi) = 5n
∞∑
i=1

m(Qi)

(2.15)

≤ 5n

λ

∞∑
i=1

∫
Qi

|f(y)| dy

cubes are disjoint
=

5n

λ

∫
∪∞
i=1Qi

|f(y)| dy ≤ 5n

λ
||f ||1 .

Then we pass to the original Eλ

m(Eλ) = lim
k→∞

m(Eλ ∩B(0, k)) ≤ 5n

λ
||f ||1 . �
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Remark 2.16. Observe that f ∈ L1(Rn) implies that Mf(x) < ∞
a.e. x ∈ Rn because

m({x ∈ Rn : Mf(x) = ∞} ≤ m({x ∈ Rn : Mf(x) > λ})

≤ 5n

λ
||f ||1 → 0

as λ → ∞.

Definition 2.17. (i)

f ∈ L1(Rn) + Lp(Rn), 1 ≤ p ≤ ∞
if

f = g + h, g ∈ L1(Rn), h ∈ Lp(Rn)

(ii)

T : L1(Rn) + Lp(Rn) → measurable functions

is subadditive, if

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)| a.e. x ∈ Rn

(iii) T is of strong type (p, p), 1 ≤ p ≤ ∞, if there exists a constant C
independent of functions f ∈ Lp(Rn) s.t.

||Tf ||p ≤ C ||f ||p .

for every f ∈ Lp(Rn)
(iv) T is of weak type (p, p), 1 ≤ p < ∞, if there exists a constant C

independent of functions f ∈ Lp(Rn) s.t.

m({x ∈ Rn : Tf(x) > λ}) ≤ C

λp
||f ||pp

for every f ∈ Lp(Rn).

Remark 2.18. (i) Observe that the maximal operator is subaddi-
tive, of weak type (1,1) that is

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1 ,

of strong type (∞,∞)

||Mf ||∞ ≤ C ||f ||∞ ,

and nonlinear.
(ii) Strong (p, p) implies weak (p, p):

m({x ∈ Rn : Tf(x) > λ})
Chebysev

≤ 1

λp

∫
Rn

|Tf |p dx

strong (p, p)

≤ C

λp

∫
Rn

|f |p dx.
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Theorem 2.19 (Hardy-Littlewood II). If f ∈ Lp(Rn), 1 < p ≤ ∞,
then Mf ∈ Lp(Rn) and there exists C = C(n, p) (meaning C depends
on n, p) such that

||Mf ||p ≤ C ||f ||p .

This is not true, when p = 1, cf. Example 2.3. The proof is based
on the interpolation (Marcinkiewicz interpolation theorem, proven be-
low) between weak (1, 1) and strong (∞,∞). In the proof of the
Marcinkiewicz interpolation theorem, we use the following auxiliary
lemma. 9.9.2010

Lemma 2.20. Let 1 ≤ p ≤ q ≤ ∞. Then

Lp(Rn) ⊂ L1(Rn) + Lq(Rn).

Proof. Let f ∈ Lp(Rn), λ > 0. We split f into two part as f = f1 + f2
by setting

f1(x) = fχ{x∈Rn : |f(x)|≤λ}(x) =

{
f(x), |f(x)| ≤ λ

0, |f(x)| > λ,

f2(x) = fχ{x∈Rn : |f(x)|>λ}(x) =

{
f(x), |f(x)| > λ

0, |f(x)| ≤ λ.

We will show that f1 ∈ Lq and f2 ∈ L1∫
Rn

|f1(x)|q dx =

∫
Rn

|f1(x)|q−p |f1(x)|p dx

|f1|≤λ

≤ λq−p

∫
Rn

|f1(x)|p dx

|f1|≤|f |
≤ λq−p ||f ||pp < ∞,∫

Rn

|f2(x)| dx =

∫
Rn

|f2|1−p |f2|p dx

|f2|>λ or f2=0

≤ λ1−p

∫
Rn

|f2|p dx

|f2|≤|f |
≤ λ1−p ||f ||pp < ∞. �

Theorem 2.21 (Marcinkiewicz interpolation theorem). Let 1 < q ≤
∞,

T : L1(Rn) + Lq(Rn) → measurable functions

is subadditive, and

(i) T is of weak type (1, 1)
(ii) T is of weak type (q, q), if q < ∞, and

T is of strong type (q, q), if q = ∞.
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Then T is of strong type (p, p) for every 1 < p < q that is

||Tf ||p ≤ C ||f ||p

for every f ∈ Lp(Rn).

Proof. Case q < ∞. Let f = f1 + f2 where as before

f1 = fχ{|f |≤λ} and f2 = fχ{|f |>λ}

and recall that f1 ∈ Lq and f2 ∈ L1. Subadditivity implies

|Tf | ≤ |Tf1|+ |Tf2|

for a.e. x ∈ Rn. Thus

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf1(x)| > λ/2})
+m({x ∈ Rn : |Tf2(x)| > λ/2})

≤
( C1

λ/2
||f1||q

)q
+

C2

λ/2
||f2||1

≤ (2C1)
q

λq

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx

+
2C2

λ

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx.

Then by Lemma 2.9, it follows that∫
Rn

|Tf |p dx = p

∫ ∞

0

λp−1m({x ∈ Rn : |Tf(x)| > λ) dλ

≤ (2C1)
qp

∫ ∞

0

λp−q−1

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx dλ

+ 2pC2

∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx dλ.

Further by Fubini’s theorem∫ ∞

0

λp−q−1

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx dλ =

∫
Rn

|f(x)|q
∫ ∞

|f(x)|
λp−q−1 dλ dx

=
1

q − p

∫
Rn

|f(x)|q |f(x)|p−q dx

=
1

q − p

∫
Rn

|f(x)|p dx
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and∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx dλ =

∫
Rn

|f(x)|
∫ |f(x)|

0

λp−2 dλ dx

=
1

p− 1

∫
Rn

|f(x)|p−1 |f(x)| dx

=
1

p− 1

∫
Rn

|f(x)|p dx.

Thus we arrive at

||Tf ||pp ≤ p
( 2C2

p− 1
+

(2C1)
q

q − p

)
||f ||pp .

Case q = ∞. Suppose that

||Tg||∞ ≤ C2 ||g||∞

for every g ∈ L∞(Rn). We again split f ∈ Lp(Rn) as f = f1+f2 where

f1 = fχ{|f |≤λ/(2C2)} and f2 = fχ{|f |>λ/(2C2)}

and by Lemma 2.20, f1 ∈ L∞ and f2 ∈ L1. We have a.e.

|Tf1(x)| ≤ ||Tf1||∞ ≤ C2 ||f1||∞ ≤ C2
λ

2C2

=
λ

2
.

Thus

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf1(x)| > λ/2})︸ ︷︷ ︸
=0

+m({x ∈ Rn : |Tf2(x)| > λ/2}).

It follows that

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf2(x)| > λ/2})
weak (1, 1)

≤ C1

λ/2

∫
Rn

|f2(x)| dx

=
2C1

λ

∫
{x∈Rn : |f(x)|>λ/(2C2)}

|f(x)| dx.

Then by using Lemma 2.9 again, we see that∫
Rn

|Tf(x)|p dx = p

∫ ∞

0

λp−1m({x ∈ Rn : |Tf(x)| > λ}) dλ

≤ 2C1p

∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ/(2C2)}

|f(x)| dx dλ

Fubini
= 2pCp−1

2 C1
p

p− 1

∫
Rn

|f(x)|p dx. �
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Example 2.22 (Proof of the Sobolev’s inequality via the maximal
function). Suppose that u ∈ C∞

0 (Rn). We immediately have

u(x) = −
∫ ∞

0

∂

∂r
u(x+ rω) dr,

where ω ∈ ∂B(0, 1). Integrating this over the whole unit sphere

ωn−1u(x) =

∫
∂B(0,1)

u(x) dS(ω)

= −
∫
∂B(0,1)

∫ ∞

0

∂

∂r
u(x+ rω) dr dS(ω)

= −
∫
∂B(0,1)

∫ ∞

0

∇u(x+ rω) · ω dr dS(ω)

= −
∫ ∞

0

∫
∂B(0,1)

∇u(x+ rω) · ω dS(ω) dr

and changing variables so that y = x + rω, dS(y) = rn−1 dS(ω), ω =
(y − x)/ |y − x| , r = |y − x| we get

ωn−1u(x) = −
∫ ∞

0

∫
∂B(0,r)

∇u(y) · y − x

|y − x|n
dS(y) dr

so that

u(x) = − 1

ωn−1

∫
Rn

∇u(y) · (x− y)

|x− y|n
dy.

Further

|u(x)| ≤ 1

ωn−1

∫
Rn

|∇u(y)|
|x− y|n−1 dy

which is so called Riesz potential. We split this into a bad part and a
good part as

∫
Rn =

∫
B(x,r)

+
∫
Rn\B(x,r)

. By estimating the bad part over

the sets B(x, 2−ir) \B(x, 2−i−1r) as∫
B(x,r)

|∇u(y)|
|x− y|n−1 dy =

∞∑
i=0

∫
B(x,2−ir)\B(x,2−i−1r)

|∇u(y)|
|x− y|n−1 dy

≤
∞∑
i=0

∫
B(x,2−ir)\B(x,2−i−1r)

|∇u(y)|
(2−i−1r)n−1

dy

≤
∞∑
i=0

2−ir

2−ir

∫
B(x,2−ir)

2n−1 |∇u(y)|
(2−ir)n−1

dy

≤ C
∞∑
i=0

2n−12−ir

∫
B(x,2−ir)

|∇u(y)| dy

≤ C2n−1rM |∇u| (x)
∞∑
i=0

2−i
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we get ∫
B(x,r)

|∇u(y)|
|x− y|n−1 dy ≤ CrM |∇u| (x). (2.23)

On the other hand, for the good part we use Hölder’s inequality with
the powers p and p/(p− 1) , where p < n, as∫

Rn\B(x,r)

|∇u(y)|
|x− y|n−1 dy

≤
(∫

Rn\B(x,r)

|∇u(y)|p dy
)1/p(∫

Rn\B(x,r)

|x− y|(1−n)p/(p−1) dy
)(p−1)/p

.

Then we calculate(∫
Rn\B(x,r)

|x− y|(1−n)p/(p−1) dy
)(p−1)/p

=
(∫ ∞

r

ωn−1ρ
n−1ρ(1−n)p/(p−1) dρ

)(p−1)/p

=
(
ωn−1

∫ ∞

r

ρ(1−n)/(p−1) dρ
)(p−1)/p

=
(
ωn−1

∫ ∞

r

ρ−1+(p−n)/(p−1) dρ
)(p−1)/p

.

Combining the previous calculations, we get 14.9.2010∫
Rn\B(x,r)

|∇u(y)|
|x− y|n−1 dy ≤ C ||∇u||p r

1−n
p , (2.24)

with p < n. Choosing r =
(
||∇u||p /(M |∇u| (x))

)p/n
as well as com-

bining the estimates (2.23) and (2.24), we get

|u(x)| ≤ C

∫
Rn

|∇u(y)|
|x− y|n−1 dy

≤ C ||∇u||p/np M |∇u| (x)(n−p)/n.

Then we take the power1 np/(n− p) on both sides and end up with

|u(x)|np/(n−p) ≤ C ||∇u||p
2/(n−p)

p M |∇u| (x)p.
By recalling Hardy-Littlewood II, we obtain∫

Rn

|u(x)|np/(n−p) dx ≤ C ||∇u||p
2/(n−p)

p

∫
Rn

M |∇u| (x)p dx

≤ C ||∇u||p
2/(n−p)

p ||∇u||pp ≤ C ||∇u||np/(n−p)
p .

This is so called Sobolev’s inequality(∫
Rn

|u(x)|p
∗
dx
)1/p∗

≤ C
(∫

Rn

|∇u(x)|p dx
)1/p

,

which holds for every u ∈ C∞
0 (Rn) and p < n.

1This is sometimes denoted by p∗ = np/(n− p) and called a Sobolev conjugate.
It satisfies 1/p+ 1/p∗ = 1/n.
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3. Approximation by convolution

Definition 3.1 (Convolution). Suppose that f, g : Rn → [−∞,∞] are
Lebesgue-measurable functions. The convolution

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy

is defined if y 7→ f(y)g(x− y) is integrable for almost every x ∈ Rn.

Observe that: f, g ∈ L1(Rn) does not imply fg ∈ L1(Rn) which can

be seen by considering for example f = g =
χ(0,1)(x)√

x
.

Theorem 3.2 (Minkowski’s/Young’s inequality). If f ∈ Lp(Rn), 1 ≤
p ≤ ∞ and g ∈ L1(Rn), then (f ∗ g)(x) exists for almost all x ∈ Rn

and

||f ∗ g||p ≤ ||f ||p ||g||1 .

Proof. Case p = 1: Because

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

we have∫
Rn

|(f ∗ g)(x)| dx ≤
∫
Rn

∫
Rn

|f(y)| |g(x− y)| dy dx

Fubini
=

∫
Rn

|f(y)|
(∫

Rn

|g(x− y)| dx
)
dy

=

∫
Rn

|f(y)| dy
∫
Rn

|g(x)| dx

= ||f ||1 ||g||1 .

Case p = ∞:

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

≤ ess sup
y∈Rn

|f(x)|
∫
Rn

|g(x− y)| dy

= ||f ||∞ ||g||1 .

Case 1 < p < ∞: Set

1

p
+

1

p′
= 1.
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Then

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

=

∫
Rn

|f(y)| |g(x− y)|1/p |g(x− y)|1/p
′
dy

Hölder

≤
(∫

Rn

|f(y)|p |g(x− y)| dy
)1/p(∫

Rn

|g(x− y)| dy
)1/p′

=
(∫

Rn

|f(y)|p |g(x− y)| dy
)1/p

||g||1/p
′

1 .

Thus∫
Rn

|(f ∗ g)(x)|p dx ≤ ||g||p/p
′

1

∫
Rn

∫
Rn

|f(y)|p |g(x− y)| dy dx

Fubini
= ||g||p/p

′

1

∫
Rn

|f(y)|p
∫
Rn

|g(x− y)| dx dy

= ||g||p/p
′

1 ||g||1 ||f ||
p
p = ||g||p1 ||f ||

p
p ,

because

p

p′
+ 1 = p(

1

p′
+

1

p
) = p. �

We state the following simple properties of convolution without a
proof.

Lemma 3.3 (Basic properties of convolution). Let f, g, h ∈ L1(Rn).
Then

(i) f ∗ g = g ∗ f .
(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h.
(iii) (αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h), α, β ∈ Rn.

For ϕ ∈ L1(Rn), ε > 0, we denote

ϕε(x) =
1

εn
ϕ(

x

ε
), x ∈ Rn. (3.4)

Example 3.5. (i) Let ϕ(x) =
χB(0,1)(x)

m(B(0,1))
. Then

ϕε(x) =
1

εn
χB(0,1)(

x
ε
)

m(B(0, 1))
=

χB(0,ε)(x)

m(B(0, ε))
.

Then for f ∈ L1(Rn), a mollification

(f ∗ ϕε)(x) =

∫
Rn

f(y)ϕε(x− y) dy

=

∫
B(x,ε)

f(y) dy.
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turns out to be useful. Observe also that ||ϕε||1 = 1 for any ε > 0
so that

||f ∗ ϕε||1 ≤ ||f ||1 ||ϕε||1 = ||f ||1 .

(ii)

φ =

{
exp

(
1

|x|2−1

)
, x ∈ B(0, 1)

0, else.

It holds that φ ∈ C∞
0 (Rn) and thus also φ ∈ L1(Rn). Let

ϕ =
φ

||φ||1
.

Then ϕε ∈ C∞
0 (Rn), spt(ϕε) ⊂ B(0, ε), and∫

Rn

ϕε(x) dx =
1

εn

∫
Rn

ϕ(x/ε) dx

y=x
ε
, dx=εn dy
=

1

εn

∫
Rn

ϕ(y)εn dy

=

∫
Rn

ϕ(y) dy

=

∫
Rn

φ(y)

||φ||1
dy =

||φ||1
||φ||1

= 1,

for all ε > 0. The function ϕε is called a standard mollifier in
this case. As before, if f ∈ L1(Rn), then

||f ∗ ϕε||1 ≤ ||f ||1 .

Lemma 3.6. Let ϕ ∈ L1(Rn) and recall that ϕε(x) =
1
εn
ϕ(x

ε
). Then

(i) ∫
Rn

ϕε(x) dx =

∫
Rn

ϕ(x) dx

for every ε > 0.
(ii)

lim
ε→0

∫
Rn\B(0,r)

|ϕε(x)| dx = 0

for every r > 0.

Proof. (i) Change of variables, see above.
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(ii) We calculate∫
Rn\B(0,r)

|ϕε(x)| dx =
1

εn

∫
Rn\B(0,r)

|ϕ(x/ε)| dx

y=x
ε
, dx=εn dy
=

∫
Rn\B(0,r/ε)

ϕ(y) dy

=

∫
Rn

ϕ(y)χRn\B(0,r/ε) dy → 0

as ε → 0 by Lebesgue’s dominated convergence theorem. �

Theorem 3.7. Let ϕ ∈ L1(Rn),

a =

∫
Rn

ϕ(x) dx

and f ∈ Lp(Rn), 1 ≤ p < ∞. Then

||ϕε ∗ f − af ||p → 0

as ε → 0.

Notice that the statement is invalid if p = ∞.

Proof. We will work out the details below, but the idea in the proof is
that by using the definition of the convolution together with Hölder’s
inequality and Fubini’s theorem, we obtain∫

Rn

|(f ∗ ϕε)(x)− af(x)|p dx

≤ ||ϕ||p/p
′

1

∫
Rn

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

= ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

+ ||ϕ||p/p
′

1

∫
Rn\B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

= I1 + I2,
(3.8)

where 1/p+1/p′ = 1. The first term on the right hand side, I1, is small
when r is small because intuitively then f(x−y) only differs little from
f(x). On the other hand, the second integral, I2, is small for small
enough ε > 0 for any r because ϕε gets more and more concentrated. 16.9.2010

Next we work out the details. By the previous lemma

af(x) = f(x)

∫
Rn

ϕ(y) dy =

∫
Rn

f(x)ϕε(y) dy.
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Thus∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx

=

∫
Rn

∣∣∣∣∫
Rn

(f(x− y)− f(x))ϕε(y) dy

∣∣∣∣p dx

≤
∫
Rn

(∫
Rn

|f(x− y)− f(x)| |ϕε(y)|1/p |ϕε(y)|1/p
′
dy
)p

dx

Hölder

≤
∫
Rn

∫
Rn

|(f(x− y)− f(x))|p |ϕε(y)| dy
(∫

Rn

|ϕε(y)| dy
)p/p′

dx

Fubini
= ||ϕ||p/p

′

1

∫
Rn

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy.

This confirms (3.8), and we start estimating I2 and I1.
Fix η > 0. First we estimate I1. By a well-known result in Lp-

theory, C0(R
n) (compactly supported continuous functions) are dense

in Lp(Rn) meaning that we can choose g ∈ C0(R
n) such that∫

Rn

|f(x)− g(x)|p dx < η.

Moreover, as g is uniformly continuous because it is compactly sup-
ported, so that we can choose small enough r > 0 to have∫

Rn

|g(x− y)− g(x)|p dx < η,

for any y ∈ B(0, r). Also recall that by convexity of xp, p > 1 for
some a, b ∈ R we have |a+ b|p ≤ (|a| + |b|)p = (1

2
2 |a| + 1

2
2 |b|)p ≤

1
2
(2 |a|)p + 1

2
(2 |b|)p = 2p−1 |a|p + 2p−1 |b|p. By using these tools, and by

adding and subtracting g, we can estimate∫
Rn

|f(x− y)− f(x)|p dx

≤
∫
Rn

|f(x− y)− g(x− y) + g(x− y)− g(x) + g(x)− f(x)|p dx

convexity

≤ C

∫
Rn

|f(x− y)− g(x− y)|p dx

+ C

∫
Rn

|g(x− y)− g(x)|p dx+ C

∫
Rn

|g(x)− f(x)|p dx ≤ 3η

for any y ∈ B(0, r). Thus

I1 = ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)| 3η dy ≤ Cη.
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Next we estimate I2. By the previous lemma (Lemma 3.6 (ii)), for
any r > 0, there exists ε′ > 0 such that∫

Rn\B(0,r)

|ϕε(y)| dy < η,

for every 0 < ε < ε′. Thus since∫
Rn

|f(x− y)− f(x)|p dx ≤2p−1

∫
Rn

|f(x− y)|p dx

+ 2p−1

∫
Rn

|f(x)|p dx < ∞

for f ∈ Lp, we see that

I2 = ||ϕ||p/p
′

1

∫
Rn\B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ C

∫
Rn\B(0,r)

|ϕε(y)| dy < Cη,

where C = ||ϕ||p/p
′

1 2p ||f ||pp. Thus for any η > 0 we get an estimate∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx ≤ I1 + I2 ≤ Cη

with C independent of η, by first choosing small enough r so that I1 is
small, and then for this fixed r > 0 by choosing ε small enough so that
I2 is small. �

Remark 3.9. Similarly, we can prove that for ϕ ∈ L1(Rn) and a =∫
Rn ϕ dx, we have

(i) If f ∈ C(Rn) ∩ L∞(Rn), then

f ∗ ϕε → af

as ε → 0 uniformly on compact subsets of Rn.
(ii) If f ∈ L∞(Rn) is in addition uniformly continuous, then f ∗ ϕε

converges uniformly to af in the whole of Rn, that is,

||f ∗ ϕε − af ||∞ → 0

as ε → 0.

Theorem 3.10. Let ϕ ∈ L1(Rn) be such that

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).
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Then there exists C = C(n, ϕ) such that

sup
ε

|((f ∗ ϕε)(x)| ≤ CMf(x)

for all x ∈ Rn and f ∈ Lp, 1 ≤ p ≤ ∞.

Proof. First we will show by a direct computation utilizing the defini-
tion of convolution, that this holds for radial functions with relatively
simple structure. Then we obtain the general case by approximation
argument. To this end, let us first assume that ϕ is a radial function
of the form

ϕ(x) =
k∑

i=1

aiχB(0,ri), ai > 0.

Then ∫
Rn

ϕ(x) dx =
k∑

i=1

aim(B(0, ri))

Thus we can calculate

|(f ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣ 1εn
∫
Rn

f(x− y)ϕ(
y

ε
) dy

∣∣∣∣
z=y/ε, dy=εn dz

=

∣∣∣∣∫
Rn

f(x− εz)ϕ(z) dz

∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

∫
B(0,ri)

f(x− εz)ai dz

∣∣∣∣∣
≤

k∑
i=1

ai

∫
B(0,ri)

|f(x− εz)| dz

=
k∑

i=1

aim(B(0, ri))

∫
B(0,ri)

|f(x− εz)| dz.

By a change of variables y = x − εz, z = (x − y)/ε, dz = dy/εn we
see that∫
B(0,ri)

|f(x− εz)| dz =
1

εnm(B(0, ri))

∫
B(x,εri)

|f(y)| dy

=
1

m(B(0, εri))

∫
B(x,εri)

|f(y)| dy

≤ m(Q(x, 2εri))

m(B(0, εri))

1

m(Q(x, 2εri))

∫
Q(x,2εri)

|f(y)| dy

≤ C(n)Mf(x).
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Combining the facts, we get

|(f ∗ ϕε)(x)| ≤
k∑

i=1

aim(B(0, ri))C(n)Mf(x)

= C(n) ||ϕ||1Mf(x).

Next we go to the general case. As ϕ is nonnegative, radial, and
radially decreasing, there exists a sequence ϕj, j = 1, 2, . . . of function
as above such that ϕ1 ≤ ϕ2 ≤ . . . and

ϕj(x) → ϕ(x) a.e. x ∈ Rn,

as j → ∞. Now

|(f ∗ ϕε)(x)| ≤
∫
Rn

|f(x− y)|ϕε(x) dx

=

∫
Rn

|f(x− y)| lim
j→∞

(ϕj)ε(y) dy

MON
= lim

j→∞

∫
Rn

|f(x− y)| (ϕj)ε(y) dy

≤ C(n) lim
j→∞

||ϕj||1Mf(x)

MON
= C(n) ||ϕ||1Mf(x)

for every x ∈ Rn. In the calculation above, MON stands for the
Lebesgue monotone convergence theorem. �

Remark 3.11. If ϕ is not radial or nonnegative, then we can use radial
majorant

ϕ̃(x) = sup
|y|≥|x|

|ϕ(y)|

which is nonnegative, radial and radially decreasing. Thus if ϕ̃ ∈
L1(Rn), then the previous theorem, as well as the next theorem holds.

Theorem 3.12. Let ϕ ∈ L1(Rn) be as in Theorem 3.10 that is

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).

and a = ||ϕ||1. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

lim
ε→0

(f ∗ ϕε)(x) = af(x)

for almost all x ∈ Rn.
21.9.2010
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Proof. The sketch of the proof: By a density of continuous functions
in Lp, we can choose g ∈ C0(R

n) so that ||f − g||p is small. By adding
and subtracting g, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
+ |(g ∗ ϕε)(x)− ag(x)| .

(3.13)

Since g ∈ C0(R
n), the second term tends to zero as ε → 0. Thus

we can focus attention on the first term on the right hand side. By
Theorem 3.10, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
≤ M(f − g)(x) + a |(f − g)(x)| .

Finally, we can show by using the weak type estimates that the quan-
tities on the right hand side get small almost everywhere.

Details: Case 1 ≤ p < ∞:
As sketched above the weak type estimates play a key role. Theorem
Hardy-Littlewood I (Theorem 2.12) implies

m({x ∈ Rn : Mf(x) > λ}) ≤ C

λ
||f ||1 (3.14)

for λ > 0, and Hardy-Littlewood II (Theorem 2.19) imply

m({x ∈ Rn : Mf(x) > λ})
Chebyshev

≤ C

λp
||Mf ||pp

H-L II

≤ C ||f ||pp . (3.15)

As g is continuous at x ∈ Rn it follows that for every η > 0 there
exists δ > 0 such that

|g(x− y)− g(x)| < η whenever |y| < δ.

Thus

|(g ∗ ϕε)(x)− ag(x)| ≤
∫
Rn

|g(x− y)− g(x)|ϕε(y) dy

≤ η

∫
B(0,δ)

ϕε(y) dy︸ ︷︷ ︸
≤||ϕ||1

+2 ||g||∞
∫
Rn\B(0,δ)

ϕε(x) dy︸ ︷︷ ︸
→0 as ε→0 by Lemma 3.6

.

Since η was arbitrary, it follows that

lim
ε→0

|(g ∗ ϕε)(x)− ag(x)| = 0

for all x ∈ Rn.
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This in mind we can estimate

lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)|

≤ lim sup
ε→0

|((f − g) ∗ ϕε)(x)− a(f − g)(x)|

+ lim sup
ε→0

|(g ∗ ϕε)(x)− ag(x)|︸ ︷︷ ︸
=0

≤ sup
ε>0

|((f − g) ∗ ϕε)(x)|+ a |(f − g)(x)|

Theorem 3.10

≤ CM(f − g)(x) + a |(f − g)(x)| .

(3.16)

Next we define

Ai = {x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 1

i
}.

By the previous estimate,

Ai ⊂ {x ∈ Rn : CM(f − g)(x) >
1

2i
} ∪ {x ∈ Rn : a |f(x)− g(x)| > 1

2i
},

for i = 1, 2, . . .. Let η > 0, and let g ∈ C0(R
n) be such that (density)

||f − g||p ≤ η.

This and the previous inclusion imply

m(Ai) ≤ m({x ∈ Rn : CM(f − g)(x) >
1

2i
}) +m({x ∈ Rn : a |f(x)− g(x)| > 1

2i
})

(3.14),(3.15)

≤ Cip ||f − g||pp + Cip ||f − g||pp
≤ Cip ||f − g||pp ≤ Cipηp

for every η, i = 1, 2, . . .. Thus

m(Ai) = 0

and

m(∪∞
i=1Ai) ≤

∞∑
i=1

m(Ai) = 0.

This gives us

m({x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 0}) = 0

which proofs the claim

lim
ε→0

|(f ∗ ϕε)(x)− af(x)| = 0 a.e. x ∈ Rn.

Case p = ∞: Now f ∈ L∞(Rn). We show that

lim
ε→0

(f ∗ ϕε)(x) = af(x)
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for almost every x ∈ B(0, r), r > 0. Let

f1(x) = fχB(0,r+1)(x) =

{
f(x), x ∈ B(0, r + 1)

0, otherwise,

and f2 = f − f1. Now f1 ∈ L1(Rn) and by the previous case

lim
ε→0

(f1 ∗ ϕε)(x) = af1(x)

for almost every x ∈ Rn. By utilizing this, we obtain for almost every
x ∈ B(0, r) that

lim
ε→0

(f ∗ ϕε)(x) = lim
ε→0

(f1 ∗ ϕε)(x) + lim
ε→0

(f2 ∗ ϕε)(x)

= af(x) + lim
ε→0

(f2 ∗ ϕε)(x),

and it remains to show that limε→0(f2 ∗ ϕε)(x) = 0 for almost all x ∈
B(0, r). To this end, let x ∈ B(0, r) so that f2(x−y) = 0 for y ∈ B(0, 1)
and calculate

|(f2 ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f2(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn\B(0,1)

f2(x− y)ϕε(y) dy

∣∣∣∣
= ||f2||∞

∫
Rn\B(0,1)

ϕε(y) dy → 0

as ε → 0. �

By choosing

ϕ(x) = χB(0,1)(x)/m(B(0, 1)),

so that

ϕε(x) = χB(0,ε)/(ε
nm(B(0, 1))) = χB(0,ε)/m(B(0, ε)),

we immediately obtain

Theorem 3.17 (Lebesgue density theorem). If f ∈ L1
loc(R

n), then

lim
r→0

∫
B(x,R)

f(y) dy = f(x)

for almost every x ∈ Rn.

Example 3.18. Let

ϕ(x) = P (x) =
C(n)

(1 + |x|2)(n+1)/2

where the constant is chosen so that∫
Rn

P (x) dx = 1.
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Next we define

Pt(x) =
1

tn
P (

x

t
) = C(n)

t

(|x|2 + t2)(n+1)/2
, t > 0

and

u(x, t) = (f ∗ Pt)(x) =

∫
Rn

Pt(x− y)f(y) dy.

This is called the Poisson integral for f . It has the following properties

(i) ∆u = ∂2u
∂t2

+ ∂2u
∂x2

1
+ . . .+ ∂2u

∂x2
2
= 0 and

(ii) limt→0 u(x, t) = f(x) for almost every x ∈ Rn by Theorem 3.12.

Let

Rn+1
+ = {(x1, x2, . . . , t) ∈ Rn+1 : t > 0}

denote the upper half space. As stated above u is harmonic in Rn+1
+ so

that u(x, t) =
∫
Rn Pt(x− y)f(y) dy solves{

∆u(x, t) = 0, (x, t) ∈ Rn+1
+

u(x, 0) = f(x), x ∈ ∂Rn+1
+ = Rn,

where the boundary condition is obtained in the sense

lim
t→0

u(x, t) = f(x)

almost everywhere on Rn. As (x, t) → (x, 0) along a perpendicular
axis, we call this radial convergence.

Question Does the Poisson integral converge better than radially?

Definition 3.19. Let x ∈ Rn and α > 0. Then

(i) We define a cone

Γα(x) = {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

(ii) Function u(x, t) converges nontangentially, if u(y, t) → f(x) and
(y, t) → (x, 0) so that (y, t) remains inside the cone Γα(x).

Theorem 3.20. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and u(x, t) = (f ∗Pt)(x).
Then for every α > 0, there exists C = C(n, α) such that

u∗
α(x) := sup

(y,t)∈Γα(x)

|u(y, t)| ≤ CMf(x)

for every x ∈ Rn.

u∗ is called a nontangential maximal function. 23.9.2010

Proof. First we show that

Pt(y − z) ≤ C(α, n)Pt(x− z) for every (y, t) ∈ Γα(x), z ∈ Rn.
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To establish this, we calculate

|x− z|2 ≤ (|x− y|+ |y − z|)2

convexity

≤ 2(|x− y|2 + |y − z|2)
≤ 2((αt)2 + |y − z|2).

Thus

|x− z|2 + t2 ≤ (2α2 + 1)t2 + 2 |y − z|2

≤ max(2, 2α2 + 1)(|y − z|2 + t2)

so that

|x− z|2 + t2

max(2, 2α2 + 1)
≤ (|y − z|2 + t2).

We apply this and deduce

Pt(y − z) = C(n)
t

(|y − z|2 + t2)(n+1)/2

≤ C(n)max(2, 2α2 + 1)(n+1)/2 t

(|x− z|2 + t2)(n+1)/2

= C(n, α)Pt(x− z).

Utilizing this result we attack the original question and estimate

|u(y, t)| ≤
∫
Rn

|f(z)|Pt(y − z) dz

≤ C(α, n)

∫
Rn

|f(z)|Pt(x− z) dz

= C(α, n)(|f | ∗ Pt)(x)

≤ C(α, n) sup
t>0

(|f | ∗ Pt)(x)

Theorem 3.10

≤ C(α, n)Mf(x).

This concludes the proof giving

sup
(x,t)∈Γα(x)

|u(y, t)| ≤ cMf(x).

�

Corollary 3.21. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

(f ∗ Pt)(y) → f(x)

nontangentially for almost every x ∈ Rn.

Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate.
�
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Remark 3.22. By considering a discontinuous f ∈ Lp, we see that
(f ∗ Ptn)(yn) does not converge to f(x) for every sequence (yn, tn) →
(x, 0). The cone is not the whole of the half space i.e. α must be finite!

Nevertheless, if f ∈ C(Rn) ∩ L∞(Rn), it follows that

u(y, t) = (f ∗ Pt)(y) → f(x)

when (y, t) → (x, 0) in Rn+1
+ without further restrictions. This is a

consequence of Remark 3.9.

4. Muckenhoupt weights

A weight is a function w ∈ L1
loc(R

n), such that w ≥ 0 a.e. We have
already seen that strong (p, p) property for a Hardy-Littlewood maxi-
mal function is an important tool in many applications. Next we study
the question in the weighted case:

Let 1 < p < ∞. Which weights w ∈ L1
loc(R

n) satisfy∫
Rn

(Mf(x))pw(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx? (4.1)

for every f ∈ L1
loc(R

n). As before

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy

is a Hardy-Littlewood maximal function.
This estimate implies the weak (p, p) estimate. Indeed,∫
{x∈Rn :Mf(x)>λ}

w(x) dx ≤
∫
{x∈Rn :Mf(x)>λ}

(Mf(x)

λ

)p
w(x) dx

≤ 1

λp

∫
Rn

(Mf(x))pw(x) dx

(4.1)

≤ C

λp

∫
Rn

|f(x)|pw(x) dx.

(4.2)

If we define a measure

µ(E) :=

∫
E

w(x) dx

then the weighted strong (p, p) estimate (4.1) can be written as∫
Rn

(Mf(x))p dµ ≤ C

∫
Rn

|f(x)|p dµ (4.3)

First, we derive some consequences for the weighted weak (p, p) esti-
mate. Thus we also obtain some necessary conditions for the question:
Which weights w ∈ L1

loc(R
n) satisfy weak (p, p) type estimate?
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Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds
for some p, 1 ≤ p < ∞. Then( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ

for all cubes Q ⊂ Rn and f ∈ L1
loc(R

n).

Proof. Fix a cube. If
∫
Q
|f(x)| dx = 0 or

∫
Q
|f(x)| dµ(x) = ∞ then

the result immediately follows. Thus we may assume

1

m(Q)

∫
Q

|f(x)| dx > λ > 0

which implies according to the definition of the maximal function that

Mf(x) > λ > 0

for every x ∈ Q. In other words,

Q ⊂ {x ∈ Rn : Mf(x) > λ}

so that

µ(Q) ≤ µ({x ∈ Rn : Mf(x) > λ})
(4.2)

≤ C

λp

∫
Rn

|f(x)|p dµ.

If we replace f by fχQ then this gives

µ(Q) ≤ C

λp

∫
Q

|f(x)|p dµ,

and by recalling the definition of λ we get the claim. �
Remark 4.5. By analyzing the previous result, we see some of the
properties of weights we are studying. Let us choose f = χE, E ⊂ Q a
measurable set, in the previous lemma. Then the lemma gives

µ(Q)
(m(E)

m(Q)

)p
≤ Cµ(E). (4.6)

This implies

(i) Either w = 0 a.e. or w > 0 a.e. in Q

Indeed, otherwise it would hold for

E = {x ∈ Q : w(x) = 0}
that

m(E),m(Q \ E) > 0

(if ”w = 0 a.e. in Q” is false, then m(Q \ E) > 0 and similarly
for the other case) and further by m(Q \ E) > 0 it follows that

µ(Q) > 0.
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Then the right hand side would be zero (clearly µ(E) =
∫
E
w(x) dx =∫

{w=0}w dx = 0) whereas the left hand side would be positive. A

contradiction.
(ii) By choosing Q = Q(x, 2l) and E = Q(x, l), we see that

µ(Q(x, 2l)) ≤ Cµ(Q(x, l)),

because m(Q(x, l))/m(Q(x, 2l)) = 2n. Measures with this prop-
erty are called doubling measures.

(iii) Either w = ∞ a.e. or w ∈ L1
loc(R

n).

If there would be a set

E ⊂ Q such that w(x) < ∞ and m(E) > 0,

by (4.6) it follows that µ(Q) =
∫
Q
w(x) dx is finite, and thus

w ∈ L1(Q)

and by choosing larger cubes, we get w ∈ L1
loc(R

n). Thus the
result follows.
Observe that w ∈ L1

loc(R
n) was one of our assumptions when

defining weights, but it would be possible to take the weak type
estimate as a starting point and then derive this as a result as
shown above.

Next we derive a necessary condition for weak (1, 1) estimate to
hold.
Case p = 1: We shall use notation

ess inf
x∈Q

w(x) := sup{m ∈ R : w(x) ≥ m a.e. x ∈ Q}

and define a set

Eε = {x ∈ Q : w(x) < ess inf
y∈Q

w(y) + ε}

for some ε > 0. By definition of ess inf, we have m(Eε) > 0.
Now by (4.6),

µ(Q)

m(Q)
≤ C

µ(Eε)

m(Eε)

def of µ
=

C

m(Eε)

∫
Eε

w(x) dx ≤ C(ess inf
y∈Q

w(y) + ε).

By passing to a zero with ε, and recalling that µ(Q) =
∫
Q
w(x) dx, we

get Muckenhoupt A1-condition

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
y∈Q

w(y). (4.7)

If this condition holds we denote w ∈ A1.
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Lemma 4.8. A weight w satisfies Muckenhoupt A1-condition if and
only if

Mw(x) ≤ Cw(x)

for almost every x ∈ Rn.

On the other hand from the Lebesgue density theorem, we get w(x) ≤
Mw(x) for almost every x ∈ Rn so that

w(x) ≤ Mw(x) ≤ Cw(x).

Proof. ”⇐” Suppose that Mw(x) ≤ Cw(x) for almost every x ∈ Rn.
Then

1

m(Q)

∫
Q

w(y) dy ≤ Cw(x) a.e. x ∈ Q,

and thus

1

m(Q)

∫
Q

w(y) dy ≤ C ess inf
x∈Q

w(x).

”⇒” Suppose that w ∈ A1 so that
1

m(Q)

∫
Q
w(y) dy ≤ C ess infx∈Qw(x).28.9.2010

We shall show that

m({x ∈ Rn : Mw(x) > Cw(x)}) = 0.

Choose a point x ∈ {x ∈ Rn : Mw(x) > Cw(x)} so that Mw(x) >
Cw(x). Then there exists a cube Q ∋ x such that

1

m(Q)

∫
Q

w(y) dy > Cw(x).

Without loss of generality we may choose this cube so that the corners
lie in the rational points. Thus

Cw(x) <
1

m(Q)

∫
Q

w(y) dy
A1

≤ C ess inf
y∈Q

w(y)

so that

w(x) < ess inf
y∈Q

w(y).

For this cube, we denote by

EQ = {x ∈ Q : w(x) < ess inf
y∈Q

w(y)})

which is of measure zero. Now we repeat the process for each x ∈ {x ∈
Rn : Mw(x) > Cw(x)} and as we restricted ourselves to a countable
family of cubes with corners at rational points, we have

m(
∪

EQ) = 0

because countable union of zero measurable sets has a measure zero.
�
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Observe/recall that uncountable union of zero measurable sets is
not necessarily zero measurable, cf. m(∪x∈(0,1){x}) = 1. Therefore the
restriction on the countable set of cubes was necessary above.

Example 4.9. w(x) = |x|−α , 0 ≤ α < n, x ∈ Rn, belongs to A1.
Indeed, let x ∈ Rn\{0}, x ∈ Q. Then by choosing a radius r = l(Q)

√
n,

we see that

Q ⊂ B(x, r).

We calculate

1

m(Q)

∫
Q∋x

w(y) dy ≤ C

B(x, r)

∫
B(x,r)

w(y) dy

z = y
|x| ,y = z |x| , dy = |x|n dz

=
C

rn

∫
B( x

|x| ,
r
|x| )

||x| z|−α |x|n dz

=
C |x|−α(

r
|x|

)n ∫
B( x

|x| ,
r
|x| )

|z|−α dz

≤ Cw(x)Mw
( x

|x|

)
︸ ︷︷ ︸

<∞

.

Thus by taking a supremum over Q such that x ∈ Q, we see that

Mw(x) ≤ Cw(x),

so that by Lemma 4.8, w ∈ A1. Also calculate
∫

B(0,r)
w dx.

Next we derive a necessary condition for weak (p, p) estimate to
hold.
Lemma 4.4 gives us the estimate

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

∫
Q

|f(x)|p dµ.

We choose f(x) = w1−p′(x), where 1/p′ + 1/p = 1 i.e. p′ = p/(p − 1).
Recalling that µ(Q) =

∫
Q
w(x) dx, we get∫

Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p

≤ C

∫
Q

w(1−p′)p(x)w(x) dx

= C

∫
Q

w(x)(1−p′)p+1 dx.

A short calculation ((1 − p′)p + 1 = (1 − p/(p − 1))p + 1 = ((p − 1 −
p)/(p− 1))p+ 1 = −p/(p− 1) + 1 = 1− p′) shows that

(1− p′)p+ 1 = 1− p′
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so that if we divide by the integral on the right hand side the above
inequality, we get

1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C, (4.10)

or
1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1/(1−p)(x) dx
)p−1

≤ C.

This is called the Muckenhoupt Ap-condition.
Observe that above, we implicitly use w1−p′ ∈ L1

loc(R
n). If this is

not the case, we can consider

f = (w + ε)1−p′ ,

derive the above estimate, and let finally ε → 0. After this argument,
as w > 0 a.e., (4.10) implies that w1−p′ ∈ L1

loc(R
n).

Example 4.11. w(x) = |x|−α , 0 ≤ α < n, x ∈ Rn, belongs to Ap. It
might also be instructive to calculate

1

m(B(0, r)

∫
B(0,r)

w dx
( 1

m(B(0, r))

∫
B(0,r)

w1/(1−p) dx
)p−1

.

Let us collect the above definitions.

Definition 4.12 (Muckenhoupt 1972). Let w ∈ L1
loc(R

n), w > 0 a.e.
Then w satisfies A1-condition if there exists C > 0 s.t.∫

Q

w(x) dx ≤ C ess inf
y∈Q

w(y).

for all cubes Q ⊂ Rn. For 1 < p < ∞, w satisfies Ap-condition if there
exists C > 0 s.t.

1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C

for all cubes Q ⊂ Rn.

Remark 4.13. (i) 1− p′ = 1/(1− p) < 0, w1−p′ ∈ L1
loc(R

n)
(ii) Let p = 2. Then

1

m(Q)

∫
Q

w(x) dx
1

m(Q)

∫
Q

1

w(x)
dx ≤ C

(iii)

m(Q) =

∫
Q

w1/pw−1/p dx

Hölder

≤
(∫

Q

wp(1/p) dx
)1/p(∫

Q

wp′(−1/p) dx
)1/p′

=
(∫

Q

w dx
)1/p(∫

Q

w1−p′ dx
)1/p′

.
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Dividing by m(Q) = m(Q)1/pm(Q)1/p
′
and then taking power p

on both sides we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1−p′ dx
)p−1

≥ 1 (4.14)

so that ( 1

m(Q)

∫
Q

w1−p′ dx
)1−p

≤ 1

m(Q)

∫
Q

w(x) dx.

This was (a consequence of) Hölder’s inequality. On the other
hand, by looking at the Ap condition, we see that the inequality
is reversed. Thus Ap condition is a reverse Hölder’s inequality.

Theorem 4.15. Ap ⊂ Aq, 1 ≤ p < q.

Proof. Case 1 < p < ∞. We recall that q′ − 1 = 1/(q − 1).( 1

m(Q)

∫
Q

( 1
w

) 1
q−1

dx
)q−1

Hölder

≤
( 1

m(Q)

)q−1(∫
Q

( 1
w

) 1
q−1

q−1
p−1

dx
)(q−1) p−1

q−1
m(Q)(q−1)(1− p−1

q−1
)

= C
(∫

Q

( 1
w

)1/(p−1)

dx
)p−1

m(Q)1−p

w ∈ Ap

≤
( 1

m(Q)

∫
Q

w dx
)−1

which proves the claim in this case.
Case p = 1.( 1

m(Q)

∫
Q

( 1
w

)1/(q−1)

dx
)q−1

≤ ess sup
Q

1

w

=
1

ess infQw

w ∈ A1

≤ C∫
Q
w dx

. �

Theorem 4.16. Let 1 ≤ p < ∞, and w ∈ L1
loc(R

n), w < 0 a.e. Then
w ∈ Ap if and only if( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ.

for every f ∈ L1
loc(R

n) and Q ⊂ Rn.

Proof. Case 1 < p < ∞.

”⇐” was already proven before (4.10).
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”⇒” First we use Hölder’s inequality

1

m(Q)

∫
Q

|f(x)| dx =
1

m(Q)

∫
Q

|f(x)|w(x)1/p
( 1

w(x)

)1/p
dx

≤ 1

m(Q)

(∫
Q

|f(x)|p w(x) dx
)1/p(∫

Q

( 1

w(x)

)p′/p
dx
)1/p′

,

for 1/p′ + 1/p = 1. By taking the power p on both sides, using the
definition of µ, arranging terms, using p/p′ = p− 1, −p′/p = 1/(1− p),
and Ap condition, we get

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ 1

m(Q)p

(∫
Q

|f(x)|pw(x) dx
)

·
∫
Q

w(x) dx
(∫

Q

w(x)1/(1−p) dx
)p−1

︸ ︷︷ ︸
w ∈ Ap

≤ Cm(Q)p

≤ C

∫
Q

|f(x)|p dµ.

Case p = 1.

”⇐” was already proven before (4.7).

”⇒” Let w ∈ A1 i.e.

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
x∈Q

w(x).

Then

µ(Q)
1

m(Q)

∫
Q

|f(x)| dx ≤ 1

m(Q)

∫
Q

|f(x)|µ(Q) dx

w ∈ A1

≤
∫
Q

|f(x)| ess inf
x∈Q

w(x) dx

≤ C

∫
Q

|f(x)|w(x) dx

≤ C

∫
Q

|f(x)| dµ. �

We aim at proving that the weighted weak/strong type estimate and
Ap condition are equivalent. To establish this, we next study Calderón-
Zygmund decomposition. It is an important tool both in harmonic
analysis and in the theory of PDEs.30.9.2010

4.1. Calderón-Zygmund decomposition. In this section we inte-
grate with respect to the measure m only, and thus we recall the nota-
tion

∫
Q
= 1

m(Q)

∫
Q
.
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Next we introduce dyadic cubes, which are generated using powers
of 2.

Definition 4.17 (Dyadic cubes). A dyadic interval on R is

[m2−k, (m+ 1)2−k)

where m, k ∈ Z. A dyadic cube in Rn is∏
[mj2

−k, (mj + 1)2−k)

where m1,m2, . . . ,mn, k ∈ Z.

Observe that corners lie at 2−kZn and side length is 2−k. Dyadic
cubes have an important property that they are either disjoint or one
is contained into another.

Notations

Dk = ”a collection of dyadic cubes with side length 2−k. ”

A collection of all the dyadic cubes is denoted by

D =
∪
k∈Z

Dk.

Theorem 4.18 (Local Calderón-Zygmund decomposition). Let Q0 ⊂
Rn be a dyadic cube, and f ∈ L1(Q0). Then if

λ ≥
∫
Q0

|f(x)| dx

there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Q0 \ ∪∞
j=1Qj.

Remark 4.19. Naturally, if |f(x)| ≤ λ, then Fλ = ∅. Notice also
the assumption that Q0 is dyadic could be dropped, and that if the
condition λ ≥

∫
Q0

|f(x)| dx does not hold, then we can choose a larger

cube to begin with so that this condition is satisfied.
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Proof of Theorem 4.18. Clearly, Q0 ̸∈ Fλ because of our assumption.
We split Q0 into 2n dyadic cubes with side length l(Q0)/2. Then we
choose to Fλ, the cubes for which

λ <

∫
Q

|f(x)| dx.

Observe that (i) holds because we use dyadic cubes, and because of the
estimate ∫

Q

|f(x)| dx ≤ m(Q0)

m(Q)

∫
Q0

|f(x)| dx

≤ 2n
∫
Q0

|f(x)| dx ≤ 2nλ,

(4.20)

also the upper bound in (ii) holds. For the cubes that were not chosen
i.e. for which ∫

|f(x)| dx ≤ λ,

we continue the process. Then the estimate (ii) holds for all the cubes
that were chosen at some round. On the other hand, according to
Lebesgue’s density theorem

|f(x)| = lim
k→∞

∫
Q(k)

|f(y)| dy
Q(k) was not chosen

≤ λ

for a.e. x ∈ Rn \ ∪Q∈Fλ
Q. �

Next we prove a global version of the Calderón-Zygmund decompo-
sition. The idea in the proof is similar to the local version, but as we
work in the whole of Rn, there is no initial cube Q0.

Theorem 4.21 (Global Calderón-Zygmund decomposition). Let f ∈
L1(Rn) and λ > 0. Then there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Rn \ ∪∞
j=1Qj.
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Proof. We study a subcollection

Fλ ⊂ D

of dyadic cubes, which are the largest possible cubes such that∫
Q

|f(x)| dx > λ (4.22)

holds. In other words, Q ∈ Fλ if Q ∈ Dk for some k, if (4.22) holds
and for all the larger dyadic cubes Q̃, Q ⊂ Q̃, it holds that∫

Q̃

|f(y)| dy ≤ λ.

The largest cube exists, if (4.22) holds for Q, because∫
Q̃

|f(x)| dx ≤ ||f ||1
m(Q̃)

→ 0

as m(Q̃) → ∞ because f ∈ L1(Rn). As the cubes in Fλ are maximal,
they are disjoint, because if this were not the case the smaller cube
would be contained to larger one as they are dyadic and thus we could
replace it by the larger one. A similar calculation as in (4.20) shows that
also the upper bound in (ii) holds. The proof is completed similarly
as in the local version: (iii) is a consequence of Lebesgue’s density
theorem Theorem 3.17. �
Example 4.23. Calderón-Zygmund decomposition for

f : R → [0,∞], f(x) = |x|−1/2

with λ = 1.

Example 4.24. By using the Calderón-Zygmund decomposition, we
can split any f ∈ L1(Rn) into a good and a bad part as (further details
during the lecture)

f = g + b

as

g =

{
f(x), x ∈ Rn \ ∪∞

j=1Qj,∫
Qj

f(y) dy, x ∈ Qj ∈ Fλ

and

b(x) =
∞∑
j=1

bj(x),

bj(x) = (f(x)−
∫
Qj

f(y) dy)χQj
(x).

Observe that g ≤ 2nλ and
∫
Qj

b(y) dy = 0. Split f : R → [0,∞], f(x) =

|x|−1/2 in this way with λ = 1.
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Lemma 4.25. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

Proof. The Calderón-Zygmund decomposition gives bounds for the av-
erages, so our task is passing from the averages to the maximal function.
To this end, let

x ∈ Rn \ ∪∞
j=13Qj

and Q ⊂ Rn is a cube (not necessarily dyadic) s.t. x ∈ Q. If we choose,
k so that

2−k−1 ≤ l(Q) < 2−k,

then there exists at the most 2n dyadic cubes R1, . . . Rl ∈ Dk such that

Rm ∩Q ̸= ∅, m = 1, . . . , l.

Because Rm and Q intersect, Q ⊂ 3Rm. On the other hand Rm is not
contained to any Qj ∈ Fλ, because otherwise we would have x ∈ Q ⊂
3Qj which contradicts our assumption x ∈ Rn \∪∞

j=13Qj. As Rm is not
in Fλ, it follows by definition that∫

Rm

|f(y)| dy ≤ λ

for m = 1, . . . , l. Thus∫
Q

|f(y)| dy =
1

m(Q)

l∑
m=1

∫
Rm∩Q

|f(y)| dy

≤
l∑

m=1

m(Rm)

m(Q)

1

m(Rm)

∫
Rm

|f(y)| dy

≤ l2nλ ≤ 4nλ.

Moreover,

Mf(x) = sup
Q∋x

∫
Q

|f(y)| dy ≤ 4nλ

for every x ∈ Rn \ ∪∞
j=13Qj. Thus

Rn \ ∪∞
j=13Qj ⊂ {x ∈ Rn : Mf(x) ≤ 4nλ}. �

5.10.2010

Corollary 4.26. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then
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(i)

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

and
(ii)

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}.

Proof. (i) The previous lemma.
(ii) Qj ∈ Fλ implies ∫

Qj

|f(y)| dy > λ

and thus

Mf(x) > λ

for every x ∈ Qj. Thus

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}. �

4.2. Connection of Ap to weak and strong type estimates. Now,
we return to Ap-weights.

Theorem 4.27. Let w ∈ L1
loc(R

n), and 1 ≤ p < ∞. Then the following
are equivalent

(i) w ∈ Ap.
(ii)

µ({x ∈ Rn : Mf(x) > λ}) ≤ C

λp

∫
Rn

|f(x)|p dµ

for every f ∈ L1
loc(R

n), λ > 0.

Proof. It was shown above (4.10) in case 1 < p < ∞ and in the case
p = 1 above (4.7), that (ii) ⇒ (i).

Then we aim at showing that (i) ⇒ (ii). The idea is to use Lemma 4.25
and to estimate

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj), (4.28)

for Calderón-Zygmund cubes at the level λ and for f ∈ L1(Rn). Fur-
ther, we have shown that w ∈ Ap implies that µ is a doubling measure.
Thus

µ(3Qj) ≤ µ(Qj)

Theorem 4.16

≤ C
(∫

Qj

|f(x)| dx
)−p

∫
Qj

|f(x)|p dµ(x)

Qj is a Calderón-Zygmund cube

≤ C

λp

∫
Qj

|f(x)|p dµ(x).
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Using this in (4.28), we get

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj)

≤ C

λp

∞∑
j=1

∫
Qj

|f(x)|p dµ(x)

Qj are disjoint

≤ C

λp

∫
Rn

|f(x)|p dµ(x),

and then replacing 4nλ by λ gives the result.
However, in the statement, we only assumed that f ∈ L1

loc(R
n) and

in the above argument that f ∈ L1(Rn). We treat this difficulty by
considering

fi = fχB(0,i), i = 1, 2, . . . ,

and then passing to a limit i → ∞ with the help of Lebesgue’s mono-
tone convergence theorem. To be more precise, repeating the above
argument, we get

µ({x ∈ Rn : Mfi(x) > 4nλ}) ≤ C

λp

∫
Rn

|fi(x)|p dµ(x).

Since

{x ∈ Rn : Mf(x) > 4nλ} = ∪∞
i=1{x ∈ Rn : Mfi(x) > 4nλ}

the basic properties of measure and the above estimate imply

µ({x ∈ Rn : Mf(x) > 4nλ}) = lim
i→∞

µ({x ∈ Rn : Mfi(x) > 4nλ})

≤ lim
i→∞

C

λp

∫
Rn

|fi(x)|p dµ

MON
=

C

λp

∫
Rn

|f(x)|p dµ. �

Next we show that w ∈ Ap satisfies a reverse Hölder’s inequality.
First, by the usual Hölder’s inequality, we get

1

m(Q)

∫
Q

|f(x)| dx ≤ 1

m(Q)

(∫
Q

|f(x)|p dx
)1/p(∫

Q

1p
′
dx
)1/p′

≤ m(Q)
1
p′−1

(∫
Q

|f(x)|p dx
)1/p

≤
(∫

Q

|f(x)|p dx
)1/p

.

Similarly (∫
Q

|f(x)|p dx
)1/p

≤ C
(∫

Q

|f(x)|q dx
)1/q

, q > p.
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Thus it is natural, to call inequality in which the power on the left hand
side is larger the reverse Hölder inequality. Reverse Hölder inequalities
tell, in general, that a function is more integrable than it first appears.
We will need the following deep result of Gehring (1973). We skip the
lengthy proof.

Lemma 4.29 (Gehring’s lemma). Suppose that for p, 1 < p < ∞,
there exists C ≥ 1 such that(∫

Q

|f(x)|p dx
)1/p

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn. Then there exists q > p such that(∫
Q

|f(x)|q dx
)1/q

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn.

Theorem 4.30 (reverse Hölder’s inequality). Suppose that w ∈ Ap,
1 ≤ p < ∞. Then there exists δ > 0 and C > 0 s.t.( 1

m(Q)

∫
Q

w1+δ dx
)1/(1+δ)

≤ C

m(Q)

∫
Q

w dx

for all cubes Q ⊂ Rn.

Proof. Since w ∈ Ap, we have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤ C.

On the other hand Hölder’s inequality implies for any measurable f > 0
(choose p = p′ = 2 in (4.14)) that

1

m(Q)

∫
Q

f dx
( 1

m(Q)

∫
Q

1

f
dx
)
≥ 1.

Then we set f = w1/(p−1) and get

1 ≤ 1

m(Q)

∫
Q

w1/(p−1) dx
( 1

m(Q)

∫
Q

( 1
w

)1/(p−1)

dx
)
.

Combining the inequalities for w , we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

.

so that

1

m(Q)

∫
Q

w dx ≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1
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or recalling f( 1

m(Q)

∫
Q

fp−1 dx
)1/(p−1)

≤ C

m(Q)

∫
Q

f dx.

Now, we may suppose that p > 2 because due to Theorem 4.15, we
have Ap ⊂ Aq, 1 ≤ p < q, and by this assumption p − 1 > 1. By
Gehring’s lemma Lemma 4.29, there exists q > p− 1 such that( 1

m(Q)

∫
Q

f q dx
)1/q

≤ C

m(Q)

∫
Q

f dx

or again recalling f and taking power p− 1 on both sides( 1

m(Q)

∫
Q

wq/(p−1) dx
)(p−1)/q

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1

.

The right hand side is estimated by using Hölder’s inequality as( 1

m(Q)

∫
Q

w1/(p−1) dx
)p−1

≤ 1

m(Q)

∫
Q

w dx

and the proof is completed by choosing δ such that 1+δ = q/(p−1). �

Theorem 4.31. If w ∈ Ap, then w ∈ Ap−ε for some ε > 0.

Proof. First we observe that if w ∈ Ap, then (4. Exercise, problem 4)

w1−p′ ∈ Ap′ .

Utilizing the previous theorem (Theorem 4.30) for
(

1
w

)p′−1

=
(

1
w

)1/(p−1)

,

we see that( 1

m(Q)

∫
Q

( 1
w

)(1+δ)/(p−1)

dx
)(p−1)/(1+δ)

≤
( C

m(Q)

∫
Q

( 1
w

)1/(p−1)

dx
)p−1

.

Now we can choose ε > 0 such that

p− 1

1 + δ
= (p− ε)− 1

We utilize this and multiply the previous inequality by 1
m(Q)

∫
Q
w dx to

have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

( 1
w

)1/((p−ε)−1)

dx
)(p−ε)−1

≤ 1

m(Q)

∫
Q

w dx
( C

m(Q)

∫
Q

( 1
w

)1/(p−1)

dx
)p−1

w ∈ Ap

≤ C.

Thus w ∈ Ap−ε. �

Next we answer the original question.
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Theorem 4.32 (Muckenhoupt). Let 1 < p < ∞. Then there exists
C > 0 s.t. ∫

Rn

(
Mf(x)

)p
w(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx

if and only if w ∈ Ap.

Proof. ”⇒” has already been proven.

”⇐” We know that w > 0 a.e. so that

0 = µ(E) =

∫
E

w(x) dx ⇔ m(E) = 0.

and thus

||f ||L∞(µ)

def
= inf{λ : µ({x ∈ Rn : |f(x)| > λ}) = 0}
= inf{λ : m({x ∈ Rn : |f(x)| > λ}) = 0}
= ||f ||∞ .

Then

||Mf ||L∞(µ) = ||Mf ||∞
Lemma 2.8

≤ ||f ||∞ = ||f ||L∞(µ)

so that M is of a weighted strong type (∞,∞). On the other hand,
by Theorem 4.27 implies that M is of weak type (p, p). Moreover, the
Marcinkiewicz interpolation theorem Theorem 2.21 holds for all the
measures. Thus M is of strong type (q, q) with q > p

||Mf ||Lq(µ) ≤ C ||f ||Lq(µ) .

By the previous theorem w ∈ Ap implies that w ∈ Ap−ε. Thus we can
repeat the above argument starting with p− ε to see that

||Mf ||Lp(µ) ≤ C ||f ||Lp(µ)

with the original p. �
7.10.2010

5. Fourier transform

5.1. On rapidly decreasing functions. We define a Fourier trans-
form of f ∈ L1(R) as

F (f) = f̂(ξ) =

∫
R

f(x)e−2πixξ dx. (5.1)

Remark 5.2. (i) e−2πixξ = cos(2πxξ) − i sin(2πxξ), (even part in
real, and odd in imaginary).

(ii) Theory generalizes to Rn (then x · ξ =
∑n

i=1 xiξi and e−2πix·ξ).



46 HARMONIC ANALYSIS

Example 5.3 (Warning). The Fourier transform is well defined for
f ∈ L1(R) because ∣∣f(x)e−2πixξ

∣∣ = |f(x)|

which is integrable. However, nothing guarantees that f̂(ξ) would be
in L1(R). Indeed let f : R → R, f(x) = χ{−1/2,1/2}(x), which is in
L1(R). Then for ξ ̸= 0,

f̂(ξ) =

∫
R

f(x)e−2πixξ dx

=

∫ 1/2

−1/2

e−2πixξ dx

=

∫ 1/2

−1/2

cos(2πxξ) dx− i

∫ 1/2

−1/2

sin(2πxξ) dx︸ ︷︷ ︸
=0

=
/1/2

−1/2

sin(2πxξ)

2πξ

=
2 sin(πξ)

2πξ
=

sin(πξ)

πξ
,

but sin(πξ)
πξ

is not integrable (the integral of the positive part = ∞ and

the integral over the negative part = −∞ over any interval (a,∞]).
Later, we would like to write

F−1f̂(ξ) =

∫
R

f̂(x)e2πixξ dx

for the inverse Fourier transform, which however makes no sense as
such for the function that is not integrable.

The problem described in the example above does not appear for
the functions that are smooth and decay rapidly at the infinity, the so
called Schwartz class. Later we use the functions on the Schwartz class
to define Fourier transform in L2 and further in Lp.

Definition 5.4. A function f is in the Schwartz class S(R) if

(i) f ∈ C∞(R)
(ii)

sup
x∈R

|x|k
∣∣∣∣dlf(x)dxl

∣∣∣∣ < ∞, for every k, l ≥ 0.

In other words, every derivative decays at least as fast as any
power of |x|.
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Example 5.5. The standard mollifier (as well as all of C∞
0 (R))

φ =

{
exp

(
1

|x|2−1

)
, x ∈ (−1, 1)

0, else.

is in S(R). Also for the Gaussian

f(x) = e−x2 ∈ S(R).

Indeed,

df(x)

dx
= −2xe−x2

= −2xf(x)

and so forth so that all the derivatives will be of the form

polynomial · f(x)

and

|x|k |polynomial · f(x)| ≤ |polynomial| |f(x)| .

Thus as e−x2
decays faster than any polynomial, we see that e−x2 ∈

S(R).

Lemma 5.6. Suppose that f ∈ S(R). Then

(i) ̂(αf + βg) = αf̂ + βĝ.

(ii)
(̂
df
dx

)
(ξ) = 2πiξf̂(ξ).

(iii) df̂
dξ
(ξ) = ̂(−2πixf)(ξ),

(iv) f̂ is continuous,

(v) ||f̂ ||∞ ≤ ||f ||1,
(vi) f̂(εx) = 1

ε
f̂( ξ

ε
) = f̂ε(ξ), ε > 0,

(vii) ̂f(x+ h) = f̂(ξ)e2πihξ,

(viii) ̂f(x)e2πihx = f̂(ξ − h),

Proof. (i) Integral is linear.
(ii)

̂( df

dx

)
(ξ) =

∫
R

(
df

dx

)
e−2πixξ dx

integrate by parts
= −

∫
R

f(x)
d

dx
e−2πixξ dx

= 2πiξ

∫
R

f(x)e−2πixξ dx = 2πiξf̂(ξ).
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(iii)

df̂

dξ
(ξ) =

d

dξ

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)
d

dξ
e−2πixξ dx

= −
∫
R

f(x)2πixe−2πixξ dx

= ̂(−2πixf)(ξ).

The interchange of the derivative and integral is ok as f ∈ S(R):
in the detailed proof one can write down the difference quotient
and estimate it by definition of S(R).

(iv)

lim
h→0

f̂(ξ + h) = lim
h→0

∫
R

f(x)e−2πix(ξ+h) dx

DOM, |f(x)e−2πix(xi+h)|≤|f(x)|
=

∫
R

f(x) lim
h→0

e−2πix(ξ+h) dx = f̂(ξ).

(v) ∣∣∣∣∫
R

f(x)e−2πixξ dx

∣∣∣∣ ≤ ∫
R

|f(x)|
∣∣e−2πixξ

∣∣︸ ︷︷ ︸
=1

dx.

(vi)

f̂(εx) =

∫
R

f(εx)e−2πixξ dx

y=εx,dy=εdx
=

1

ε

∫
R

f(y)e(−2πiyξ)/ε dy =
1

ε
f̂(

ξ

ε
).

(vii)

̂f(x+ h) =

∫
R

f(x+ h)e−2πixξ dx

y=x+h, dy=dx
=

∫
R

f(y)e−2πi(y−h)ξ dy = f̂(ξ)e2πihξ.

(viii)

̂f(x)e2πihx =

∫
R

f(x)e2πihxe−2πixξ dx

=

∫
R

f(x)e−2πix(ξ−h) dx = f̂(ξ − h).

�
Example 5.7. If

f(x) = e−πx2
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then its Fourier transform is

f̂(ξ) = e−πξ2

By using complex integration around a rectangle and recalling that e−πz2

is analytic function, we could calculate
∫
R
e−πx2

e−2πixξ dx directly by
using complex integration. We however follow a strategy that does not
require complex integration and observe that f(x) = e−πx2

solves the
differential equation {

f ′ + 2πxf = 0

f(0) = 1.

By taking Fourier transform of f ′ + 2πxf = 0 and using Lemma 5.6,
we obtain

0 = F (f ′ + 2πxf) = f̂ ′ + 2̂πxf = 2πiξf̂ − f̂ ′

i
= i(2πξf̂ + f̂ ′).

And

f̂(0) =

∫
R

e−πx2

dx = 1

because (∫
R

e−πx2

dx
)2

=

∫
R

∫
R

e−πx2

e−πx2

dx dy

=

∫ ∞

0

∫
∂B(0,r)

e−πr2 dr dS

=

∫ ∞

0

2πre−πr2 dr

= −
/∞

0
e−πr2 = 1.

Thus f̂ satisfies the same differential equation and the uniqueness of
such a solution implies the claim.

Theorem 5.8. If f ∈ S(R), then

(i) f̂ ∈ S(R) (similar result does not hold in L1),
(ii)

F−1(f) :=

∫
R

f(ξ)e2πixξ dξ ∈ S(R)

whenever f ∈ S(R).
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Proof. (i) Recall that by Lemma 5.6, f̂ is continuous and for any pair
of integers k, l

F

(
1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
F

((
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)kF

(
(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)k

( d

dξ

)l
f̂(ξ)

= ξk
( d

dξ

)l
f̂(ξ).

Therefore

|ξ|k
∣∣∣∣( d

dξ

)l
f̂(ξ)

∣∣∣∣ = ∣∣∣∣ξk( d

dξ

)l
f̂(ξ)

∣∣∣∣
=

∣∣∣∣∣F
(

1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)∣∣∣∣∣
Lemma 5.6

≤

∣∣∣∣∣
∣∣∣∣∣ 1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

∣∣∣∣∣
∣∣∣∣∣
1

< ∞

so that f̂ ∈ S(R).
(ii) This follows from the previous by a change of variable.

�
Lemma 5.9. If f, g ∈ S(R), then∫

R

f̂(x)g(x) dx =

∫
R

f(x)ĝ(x) dx

Proof. ∫
R

f̂(y)g(y) dy =

∫
R

∫
R

f(x)e−2πixy dx g(y) dy

Fubini
=

∫
R

f(x)

∫
R

e−2πixyg(y) dy dx

=

∫
R

f(x)ĝ(x) dx. �

Next one of the main results of the section: inversion formula for the
rapidly decreasing functions:

Theorem 5.10 (Fourier inversion). If f ∈ S(R), then

f(x) =

∫
R

f̂(y)e2πixξ dξ,

or with the other notation f(x) = F−1(F (f)) = F−1(f̂).
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Proof. First we show that

f(0) =

∫
R

f̂(y) dy. (5.11)

To see this let ϕ ∈ S(R) and define h(y) = f(−y). Then ϕ̂ ∈ S(R)
and by the convergence result Theorem 3.12 (and the remark after the
theorem)

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

(h ∗ ϕ̂ε)(0) = h(0) = f(0).

On the other hand, by Lemma 5.6 and the previous lemma

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

∫
R

ĥ(−y)ϕ(εy) dy

h(−y)=f(y)
= lim

ε→0

∫
R

f̂(y)ϕ(εy) dy.

Let ϕ(x) = e−πx2
, then

lim
ε→0

ϕ(εx) = 1,
∣∣∣f̂(y)ϕ(εy)∣∣∣ ≤ ∣∣∣f̂(ξ)∣∣∣ .

It follows that

lim
ε→0

∫
R

f̂(y)ϕ(εy) dy
DOM
=

∫
R

f̂(y) lim
ε→0

ϕ(εy)︸ ︷︷ ︸
=1

dy

proving (5.11). Then defining g(x) := f(x+h) and using from Lemma 5.6

the fact that ĝ(y) = ̂f(x+ h) = f̂(y)e2πhy and observing g(0) = f(h),
the equation (5.11) implies

f(h) =

∫
R

f̂(y)e2πihy dy,

which proves the claim. �
12.10.2010

Corollary 5.12. Let f ∈ S(R). Then by taking consecutive Fourier
transforms, we obtain

f(x)
F→ f̂(ξ)

F→ f(−x)
F→ f̂(−ξ)

F→ f(x).

In particular, F−1(f̂) = F (F (F (f̂))).

Proof. The second arrow:∫
R

f̂(ξ)e−2πixξ dξ
ξ=−ζ
=

∫
R

f̂(−ζ)e2πixζ dζ

=

∫
R

∫
R

f(y)e−2πiy(−ζ) dy e2πixζ dζ

y=−z
=

∫
R

∫
R

f(−z)e−2πizζ dz e2πixζ dζ = f(−x).

The other arrows are easier. �
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Lemma 5.13. If f, g ∈ S(R), then

f̂ ∗ g = f̂ ĝ

Proof. The proof is based on Fubini’s theorem. To this end, observe
that by the proof of Young’s inequality for convolution, Theorem 3.2,
we have∫
R

∫
R

∣∣f(y)g(x− y) e−2πixξ
∣∣ dy dx =

∫
R

|f(y)|
∫
R

|g(x− y)| dx dy < ∞.

Now we can calculate

f̂ ∗ g =

∫
R

∫
R

f(y)g(x− y) dy e−2πixξ dx

Fubini
=

∫
R

f(y)

∫
R

g(x− y)e−2πixξ dx dy

x−y=z, dx=dz
=

∫
R

f(y)

∫
R

g(z)e−2πi(z+y)ξ dz dy

=

∫
R

f(y)e−2πiyξ dy

∫
R

g(z)e−2πizξ dz = f̂ ĝ. �

Next we prove Plancherel’s theorem. The theorem plays a central
role, when extending the definition of the Fourier transform to the
L2-functions. It will also be needed in connection to singular integrals.

Theorem 5.14 (Plancherel). If f ∈ S(R), then

||f ||2 = ||f̂ ||2. (5.15)

Proof. Set g = f̂ . Then ĝ = f . To see this, we first calculate

g = f̂ =

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)e2πixξ dx

=

∫
R

f(x)e−2πix(−ξ) dx = f̂(−ξ)

and thus by Corollary 5.12

ĝ(x) = F (f̂(−ξ))(x) = f(x).

Utilizing this and Lemma 5.9, we have

||f ||2 =
∫
R

f(x)f(x) dx =

∫
R

f(x)ĝ(x) dx

Lemma 5.9
=

∫
R

f̂(x)g(x) dx =

∫
R

f̂(x)f̂(x) dx = ||f̂ ||2. �
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5.2. On L1. As stated above for f ∈ L1(R), the Fourier transform

f̂(ξ) =
∫
R
f(x)e−2πixξ dx is well defined but it might well be that

f̂ /∈ L1(R).

Question: Then how do we obtain f from f̂ in this case as
∫
R
f̂(ξ)e2πixξ dξ

might not be well defined?
The answer is that we can make sure that the inversion formula

makes sense by multiplying by a bumb function which makes sure that
the integrand gets small enough values far away, and then pass to a
limit.

Theorem 5.16. Let ϕ ∈ L1(R), be bounded and continuous with ϕ̂ ∈
L1(R), ||ϕ̂||1 = 1 . Then

lim
ε→0

∣∣∣∣∣∣∣∣∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ − f(x)

∣∣∣∣∣∣∣∣
1

= 0.

A suitable ϕ in the theorem above is for example ϕ(x) = e−πx2
, see

Example 5.7.

Proof. First, we show that∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ = (f ∗ ϕ̂ε)(x).

To this end, recall that ϕ̂(−εx) = ϕ̂ε(−ξ) and ̂f(x)e2πihx = f̂(ξ − h)
by Lemma 5.6. Observe that these results hold also for L1 functions.
Since ϕ is bounded also the proof of Lemma 5.9 holds. Thus∫

R

f̂(ξ)e2πixξϕ(−εξ) dξ =

∫
R

∫
R

f(y)e−2πiyξ dy e2πixξϕ(−εξ) dξ

Lemma 5.9
=

∫
R

f(y)

∫
R

(
e2πixξϕ(−εξ)

)
e−2πiyξ dξ dy

=

∫
R

f(y)F
(
e2πixξϕ(−εξ)

)
(y) dy

Lemma 5.6:(vi),(viii)
=

∫
R

f(y) ϕ̂ε(x− y) dy

= (f ∗ ϕ̂ε)(x).

(5.17)

When dealing with convolutions, we showed in Theorem 3.7 that

(f ∗ ϕ̂ε)(x) → f(x) in L1(R). �

If f̂ ∈ L1(R), then the inversion formula f(x) =
∫
R
f̂(ξ)e2πixξ dξ

works as such. This can be seen by adding a condition ϕ(0) = 1
for the bumb function and passing to limit in (5.17) using Lebesgue’s
dominated convergence on the left.
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5.3. On L2.

Theorem 5.18. Let f ∈ L2(Rn), and ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0.

Then there exists a limit which we denote by f̂ such that

lim
j→∞

||ϕ̂j − f̂ ||2 = 0.

The function f̂ is called a Fourier transform of f ∈ L2(R).

Proof. First of all, there exists a sequence ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0

because S(R) is dense in L2(R): We have already seen that C0(R)
is dense in L2(R). On the other hand, if f ∈ C0(R) then C∞

0 (R) ∋
f ∗ ϕε → f in L2(R), where ϕε is a standard mollifier, and we see that
C∞

0 (R) is dense in L2(R), which is contained in S(R).
Then by Plancherel’s theorem

||ϕ̂j − ϕ̂k||2 = ||ϕj − ϕk||2 → 0

as j, k → ∞ and thus ϕ̂j, j = 1, 2, . . . is a Cauchy sequence. Since

L2(R) is complete, ϕ̂j converges to a limit, which we denote by f̂ .
Next we show that the limit is independent of the approximating

sequence. Let φj be another sequence such that

φj → f in L2(R)

and let g ∈ L2(R) be the limit

φ̂j → g in L2(R).

Then

0
ϕj , φj → f

= lim
j→0

||φj − ϕj||2
Plancherel

= lim
j→0

||φ̂j − ϕ̂j||2 = ||g − f̂ ||2. �

Similarly we obtain a unique inverse Fourier transform of any L2-
function.

We state separately a result from the previous proof.

Corollary 5.19 (Plancerel in L2). If f ∈ L2(R), then

||f ||2 = ||f̂ ||2.

Proof.

||f ||2 = lim
j→∞

||ϕj||2 = lim
j→∞

||ϕ̂j||2 = ||f̂ ||2.

�
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We also obtain formulas for calculating the Fourier transform and
the inverse Fourier transform for L2-functions. Observe that in the
corollary below, χB(0,R)f ∈ L1(R)∩L2(R) by Hölder’s inequality since∫

B
|f | dx ≤

( ∫
B
|f |2 dx

)1/2
.

Corollary 5.20. If f ∈ L2(R), then

lim
R→∞

∣∣∣∣∣∣∣∣∫
{|x|<R}

f(x)e−2πixξ dx− f̂

∣∣∣∣∣∣∣∣
2

= 0,

and

lim
R→∞

∣∣∣∣∣∣∣∣∫
{|ξ|<R}

f̂(ξ)e2πixξ dξ − f(x)

∣∣∣∣∣∣∣∣
2

= 0.

Proof. Recall that if f ∈ L2(R), then χB(0,R)f → f in L2(R) by
Lebesgue’s monotone/dominated convergence theorem. Let us denote

lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx = lim
R→∞

F (fχB(0,R)).

The convergence F (fχB(0,R)) → f̂ follows from the Plancherel’s theo-
rem, because the right hand side of∣∣∣∣∣∣F (fχB(0,R))− f̂

∣∣∣∣∣∣
2
=
∣∣∣∣fχB(0,R) − f

∣∣∣∣
2

can be made as small as we please by choosing R large enough. The
proof of the inversion formula is similar. �

5.4. On Lp, 1 < p < 2. Fourier transform is a linear operator and
thus for f ∈ Lp(R), 1 < p < 2, we have

f = f1 + f2 = fχ{|f |>λ} + fχ{|f |≤λ} ∈ L1 + L2.

we have f̂ = f̂1 + f̂2 ∈ L∞ + L2 and

lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

can also be utilized here. However by a special case of the Riesz-Thorin
interpolation theorem we obtain even better. We omit the proof.

Theorem 5.21 (Riesz-Thorin interpolation). Let T be a linear opera-
tor

T : L1(R) + L2(R) → L∞(R) + L2(R)

such that

||Tf1||∞ ≤ C1 ||f1||1
for every f1 ∈ L1(R), and

||Tf2||2 ≤ C2 ||f2||2 ,
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for every f2 ∈ L2(R). Then

||Tf ||p′ ≤ C
1−2/p′

1 C
2/p′

2 ||f ||p ,
where 1/p+ 1/p′ = 1.

Corollary 5.22 (Hausdorff-Young inequality). If f ∈ Lp(R), 1 ≤ p ≤
2, then f̂ ∈ Lp′(R) and

||f̂ ||p′ ≤ ||f ||p .

Proof. By Lemma 5.6, we have
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

∞
≤ ||f ||1 and by Plancherel’s

theorem
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

2
= ||f ||2. Thus we can use Riesz-Thorin interpolation.

�
Observe however that obtaining f from f̂ by using

f̂(ξ) = lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

is a nontrivial problem. For example in the case p = 1 the Fourier
transform of χB(0,R) is not in L1 as shown in Example 5.3, it does not
satisfy the assumptions of Theorem 5.16, and thus our results do not
imply the convergence. In higher dimensions there is no, in general,
the convergence in Lp, p ̸= 2, as R → ∞.14.10.2010
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6. Singular integrals

In this section we consider integral operators of type

Tf(x) =

∫
Rn

K(x, y)

|x− y|n
f(y) dx.

If K(x, y) = K(x− y), we say that the operator is of convolution type.
Let us motivate the study of such operators. Indeed, integral op-

erators naturally arise in the analysis of partial differential equations.
Consider, for example, the Poisson equation

−∆u = f in Rn, n ≥ 3,

where, for simplicity, we assume that f : Rn 7→ R is smooth com-
pactly supported function. Then the global solution is obtained via
convolution

u(x) = cn

∫
Rn

f(y)

|x− y|n−2
dy =: I0(f).

Here cn is a constant depending on the dimension n. Proceeding for-
mally, we may take the kth partial derivative and obtain

∂u

∂xk

(x) = cn

∫
Rn

f(y)
∂

∂xk

|x− y|2−n dy =: Ik(f)

and

∂2u

∂xk∂xm

(x) = cn

∫
Rn

f(y)
∂2

∂xk∂xm

|x− y|2−n dy =: Ikm(f)(x).

A direct calculation gives

∂

∂xk

|x− y|2−n = −(n− 2)
xk − yk
|x− y|n

and

∂2

∂xk∂xm

|x−y|2−n = −(n−2)
1

|x− y|n
δkm+n(n−2)

(xk − yk)(xm − ym)

|x− y|n+2
,

where δkm stands for the Kronecker delta function. Observe that the
kernel of Iij is not in L1(Rn) and we need to carefully define in what
sense the operator takes values.

Now, when considering the regularity of u, i.e. properties of first and
second derivatives, we are led to the analysis of mapping properties of
singular integral operators Ii and Iij. For example, a relevant question
is that if f above belongs to Lp(Rn), do second derivatives of u belong
to Lp(Rn) as well?

We start our journey to the fascinating world of singular integral
operators considering two model cases: Hilbert and Riesz transforms.
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6.1. Hilbert transform. The Hilbert transform of f ∈ Lp(R), 1 ≤
p < ∞, is defined as

(Hf)(x) = p.v.
1

π

∫
R

f(t)

x− t
dt := lim

ε↓0

1

π

∫
|x−t|>ε

f(t)

x− t
dt.

Denote

(H(ε)f)(x) :=
1

π

∫
|x−t|>ε

f(t)

x− t
dt.

Observe immediately that since 1/t does not belong to L1, we are not
in position to apply Theorem 3.12 to obtain the existence of the limit
above. However, when f ∈ S(R), then the limit exists.

Lemma 6.1. Let f ∈ S(R). Then the limit

(Hf)(x) = lim
ε↓0

(H(ε)f)(x)

exists for all x ∈ R.

Proof. Since (x− t)−1χ{ε<|x−t|<δ} is an odd function, we have

1

π

∫
ε<|x−t|<δ

f(x)

x− t
dt =

f(x)

π

∫
ε<|x−t|<δ

1

x− t
dt = 0

for all 0 < ε < δ. Thus also

(H(ε)f)(x) =
1

π

∫
ε<|x−t|<δ

f(t)− f(x)

x− t
dt+

1

π

∫
|x−t|≥δ

f(t)

x− t
dt

holds for all 0 < ε < δ and now the limit on the right, as ε ↓ 0, exists
by Lebesgue’s dominated convergence since∣∣∣∣χ{ε<|x−t|<δ}

f(t)− f(x)

x− t

∣∣∣∣ ≤χ{|x−t|<δ} sup
(x,t)∈R×R

|f(x)− f(t)|
|x− t|

≤χ{|x−t|<δ}∥f ′∥∞
and the second integral converges for fixed δ > 0 by the decay of f , i.e.
that there is a constant cx such that supt∈R |(x− t)f(t)| ≤ cx. �

The proof shows that we also have a uniform bound

|(H(ε)f)(x)| ≤ δ

π
∥f ′∥∞ +

2

πδ
∥f∥1 (6.2)

for all δ > 0 and x ∈ R. It also follows that H operating on S(R) is a
linear operator.

Our primary goal is to extend the existence of the limit for all Lp-
functions and deduce that H is a linear operator from Lp(R) to Lp(R)
for every 1 < p < ∞. The plan to do this is as follows: first we study
the behavior of H operating on S(R). We find that for every p = 2
there is an extension forH from S(R) to the whole of L2(R). Using this
we show that H satisfies weak (1, 1) and strong (p, p) when restricted to
S(R). Then we will find suitable bounds for a maximal type operator
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H(∗)f := supε>0 |H(ε)f | and then, using obtained bounds, infer the
existence of the limit almost everywhere.

6.1.1. Fourier transform of the Hilbert transform. We start by study-
ing the Fourier transform of Hf . At this stage, the most important
implication of the next theorem is that H is strong (2, 2) when restrict-
ing functions in S(R) allowing for an extension to the whole L2(R).

Theorem 6.3. Let f ∈ S(R). Then we have

(̂Hf)(ξ) = −i sgn(ξ)f̂(ξ)

for every ξ ∈ R and hence ∥Hf∥2 = ∥f∥2. Here

sgn ξ :=


1, ξ > 0,

0, ξ = 0,

−1, ξ < 0.

As a corollary we may define the extension H̃ of H to the whole
L2(R) via the inverse Fourier transform

(H̃f)(x) = −i

∫
R

sgn(ξ)f̂(ξ)e2πixξ dξ.

Note carefully, however, that this extension does not yet tell anything
about the existence of the pointwise limit limε↓0 H

(ε)f when f ∈ L2(R).
Collecting facts:

Corollary 6.4. The Hilbert transform H allows for a unique extension

H̃ from S(R) to L2(R) such that H̃ is a (linear) operator from L2(R)

to L2(R), H̃f = Hf for all f ∈ S(R) and if f ∈ L2(R), then

∥H̃f∥2 = ∥f∥2, (̂H̃f)(ξ) = −i sgn(ξ)f̂(ξ).

Proof of Theorem 6.3. To begin with, define the approximating opera-
tor

f̃ε,ω(x) := (H(ε,ω)f)(x) =
1

π

∫
ε<|x−t|<ω

f(t)

x− t
dt = (f ∗Kε,ω)(x),

where 0 < ε < 1 and

Kε,ω(x) =
1

π

χε<|x|<ω

x
.

Clearly Kε,ω ∈ Lp(R) for all 1 ≤ p ≤ ∞. Therefore

̂̃
fε,ω = K̂ε,ωf̂
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holds by Lemma 5.13, in view of Theorem 5.18, almost everywhere. A
straightforward calculation gives

K̂ε,ω(ξ) =
1

π

∫
ε<|x|<ω

e−2πiξx

x
dx

=
1

π

∫
ε<|x|<ω

1

x
(cos(2πxξ)− i sin(2πxξ)) dx

=− 2i

π

∫ ω

ε

1

x
sin(2πxξ) dx,

where we used the fact that cos(ax)/x and sin(ax)/x are odd and
even functions, respectively, for all a ∈ R. Changing the variables as
t = 2πxξ, we obtain

K̂ε,ω(ξ) = −2i

π
sgn(ξ)

∫ 2π|ξ|ω

2π|ξ|ε

sin(t)

t
dt.

The integral on the right has a limit as the following lemma reveals.

Lemma 6.5.

lim
ε↓0

lim
ω↑∞

∫ ω

ε

sin(t)

t
dt =

π

2
,

∣∣∣∣∫ ω

ε

sin(t)

t
dt

∣∣∣∣ ≤ c ∀0 < ε < ω

for a constant c independent of ε and ω.

We postpone the proof. Deduce using the lemma that

lim
ε↓0

lim
ω↑∞

K̂ε,ω(ξ) = −i sgn(ξ)

and

sup
0<ε<ω≤∞

∣∣∣K̂ε,ω(ξ)
∣∣∣ ≤ c. (6.6)

Consequently also

lim
ε↓0

lim
ω↑∞

∥̂̃fε,ω − (−i sgn(ξ)f̂)∥2 = lim
ε↓0

lim
ω↑∞

∥(K̂ε,ω + i sgn(ξ))f̂∥2 = 0

holds by the Lebesgue’s dominated convergence. Let then g ∈ L2(R)

be the inverse Fourier transform of i sgn(ξ))f̂ , which certainly is well-

defined by Corollary 5.20 since i sgn(ξ)f̂ ∈ L2(R). Plancerel’s identity,
i.e. Corollary 5.19, implies that

lim
ε↓0

lim
ω↑∞

∥f̃ε,ω − g∥2 = lim
ε↓0

lim
ω↑∞

∥̂̃fε,ω − ĝ∥2 = 0

and

∥g∥2 = ∥f∥2.
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Let us now calculate an integrable upper bound for f̃ 2
ε,ω independent

of ω. Suppose first that |x| > 2ε. Then

|f̃ε,ω(x)| ≤
1

π

∫
ε<|x−t|<|x|/2

|f(t)|
|x− t|

dt+
1

π

∫
|x−t|≥|x|/2

|f(t)|
|x− t|

dt

≤ 1

π

∫
ε<|x−t|<|x|/2

|f(t)|
|x− t|

dt+
2

π|x|
∥f∥1

If |x− t| < |x|/2, then |x| ≤ |t| ≤ (3/2)|x| and therefore∫
ε<|x−t|<|x|/2

|f(t)|
|x− t|

dt =

∫
ε<|x−t|<|x|/2

|f(t)|
|x− t|

|t|
|x|

|x|
|t|

dt

≤ 1

ε|x|
sup
t∈R

|tf(t)|

holds. Since f ∈ S(R), supt∈R |tf(t)| < ∞. If |x| < 2ε, then estimate

simply as |f̃ε,ω(x)| ≤ ∥f∥1/ε. In all cases we have

|f̃ε,ω(x)| ≤
c

1 + |x|
for a constant c depending on f and ε, but independent of ω. It follows
that

(f̃ε,ω(x)− g(x))2 ≤ 2c2

(1 + |x|)2
+ 2g(x)2

and the right hand side is integrable. Thus Lebesgue’s dominated con-
vergence gives

lim
ω↑∞

∥f̃ε,ω − g∥2 = ∥ lim
ω↑∞

f̃ε,ω − g∥2

On the other hand, Lebesgue’s dominated convergence2 implies

lim
ω↑∞

f̃ε,ω(x) = lim
ω↑∞

1

π

∫
ε<|x−t|<ω

f(t)

x− t
dt

=
1

π

∫
ε<|x−t|

f(t)

x− t
dt = H(ε)f(x).

Thus we conclude with

lim
ε↓0

∥H(ε)f − g∥2 = 0.

It follows that there is a subsequence (εk) such that εk ↓ 0 andH(εk)f →
g almost everywhere as k → ∞. But now we know by Lemma 6.1 that
the limit Hf exists and thus

Hf = lim
ε↓0

H(ε)f = lim
k↑∞

H(εk)f = g

almost everywhere. �
2|χε<|x−t|<ωf(t)/(x− t)| ≤ f(t)/ε ∈ L1(R)
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Remark 6.7. While proving the last theorem, we also obtained (6.6)
implying

| ̂(H(ε)f)(ξ)| ≤ c|f̂(ξ)| ∀ξ ∈ R

for a constant c independent of ε and f . In particular, H(ε) is strong
(2, 2) by Plancerel’s equality for a constant independent of ε.

Proof of Lemma 6.5. Observe first that | sin(t)/t| ≤ e and hence∣∣∣∣∫ ε

0

sin(t)

t
dt

∣∣∣∣ ≤ eε

for all ε > 0. On the other hand, rewriting∫ ∞

ω

sin(t)

t
dt =

∞∑
k=0

∫ ω+2π(k+1)

ω+2πk

sin(t)

t
dt

and then changing variables as∫ ω+2π(k+1)

ω+π(2k+1)

sin(t)

t
dt = −

∫ ω+π(2k+1)

ω+2πk

sin(t)

t+ π
dt,

we obtain ∫ ω+2π(k+1)

ω+2πk

sin(t)

t
dt = π

∫ ω+π(2k+1)

ω+2πk

sin(t)

t(t+ π)
dt.

Therefore ∣∣∣∣∫ ∞

ω

sin(t)

t
dt

∣∣∣∣ ≤ π

∫ ∞

ω

1

t(t+ π)
dt ≤ π

ω

and the term on the right tends to zero as ω ↑ ∞. Thus we have

lim
ε↓0

lim
ω↑∞

∫ ω

ε

sin(t)

t
dt =

∫ ∞

0

sin(t)

t
dt.

We now proceed in calculating the value of this integral.
To this end, define

I(a) :=

∫ ∞

0

sin(t)

t
e−at dt, a > 0.

Differentiate with respect to a to get

I ′(a) = −
∫ ∞

0

sin(t)e−at dt.

One can easily make differentiation rigorous by considering differential
quotients and using the fact a > 0. Integration by parts gives∫ ∞

0

sin(t)e−at dt = −1

a

∫ ∞

0

cos(t)e−at dt =
1

a2
− 1

a2

∫ ∞

0

sin(t)e−at dt

and hence

I ′(a) = − 1

1 + a2
⇐⇒ I(a) = − arctan(a) + c, a > 0, c ∈ R.
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Since I(a) → 0 as a → ∞, we have c = π/2. If we now can show that
I is continuous on [0,∞), we may deduce that∫ ∞

0

sin(t)

t
dt = I(0) =

π

2
.

The only point we have to check is a = 0. Let 0 < a < 10−2010. Rewrite
the difference as

I(a)− I(0) =

∫ ∞

0

sin(t)

t

(
e−at − 1

)
dt

=

∫ 2πN

0

sin(t)

t

(
e−at − 1

)
dt+

∞∑
k=N

∫ 2π(k+1)

2πk

sin(t)

t

(
e−at − 1

)
dt.

=: J1 + J2

for some N ∈ N. Note that N is at our disposal. We will estimate J1
and J2 separately by means of a.

First, using the Taylor expansion

1

t

(
e−at − 1

)
=

1

t

∞∑
k=1

(−at)k

k!
,

we obtain by integration by parts that

bj :=− a

j!

∫ 2πN

0

sin(t)(−at)j−1 dt

=a
(−2πNa)j−1

j!
+

(−a)j−1

j(j − 2)!

∫ 2πN

0

cos(t)tj−2 dt

=a
(−2πNa)j−1

j!
− (−a)j−1

j(j − 3)!

∫ 2πNa

0

sin(t/a)tj−3 dt

=− 1

2πN

(−2πNa)j

j!
− (−a)j−1(j − 2)

j
bj−2

(6.8)

for any j > 2. Similarly,

b1 = 0, b2 = −2πNa2

2
.

In particular, we have

J1 =
∞∑
j=2

bj.

Choose nowN be the smallest integer larger than 1/(8πa). By denoting
βj := |bj| we deduce by (6.8) that

βj ≤ a
22−j

j!
+ aβj−2
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for all j > 2. Sum the estimate over j to obtain

∞∑
j=3

βj ≤ a4e1/2 + a

∞∑
j=1

βj,

readily implying

|J1| =

∣∣∣∣∣
∞∑
j=2

bj

∣∣∣∣∣ ≤
∞∑
j=2

βj ≤
a

1− a

(
4e1/2 + β2

)
+ β2 ≤ ca

for some constant c independent of a.
Second, by changing variables as in the beginning of the proof we

obtain∫ (2k+2)π

(2k+1)π

sin(t)

t

(
e−at − 1

)
dt =

∫ (2k+1)π

2kπ

sin(t+ π)

t+ π

(
e−a(t+π) − 1

)
dt

=−
∫ (2k+1)π

2kπ

sin(t)

t+ π

(
e−a(t+π) − 1

)
dt

for any k ≥ N . Applying further the identity

e−at − 1

t
− e−a(t−π) − 1

t+ π
=

e−at

t+ π
(1− eaπ)− π

t(t+ π)
,

we arrive at∫ 2(k+1)π

2kπ

sin(t)

t

(
e−at − 1

)
dt =(1− eaπ)

∫ (2k+1)π

2kπ

sin(t)

t+ π
e−at dt

− π

∫ (2k+1)π

2kπ

sin(t)

t(t+ π)
dt.

Using then the fact that k ≥ N this leads to∣∣∣∣∣
∫ 2(k+1)π

2kπ

sin(t)

t

(
e−at − 1

)
dt

∣∣∣∣∣
≤ eaπ − 1

2πN

∫ 2(k+1)π

2kπ

e−at dt+
π√
2πN

∫ 2(k+1)π

2kπ

1√
t(t+ π)

dt

and we conclude with

|J2| ≤
eaπ − 1

2πN

∫ ∞

1

e−at dt+
π√
2πN

∫ ∞

1

1√
t(t+ π)

dt ≤ c
√
a,

again with a constant c independent of a. Estimates for J1 and J2
establishes the continuity of I on the interval [0,∞) and finishes the
proof. �
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6.1.2. Dual operator of the Hilbert transform. We next briefly comment
few aspects concerning the dual space Lp(R)′ of Lp(R), i.e. collection
of all bounded linear functionals acting on Lp(R), and their connection
to the Hilbert transform. A well-known fact (see e.g. Theorem 6.16 in
Rudin, Real and Complex Analysis) is that for every Ψ ∈ Lp(R)′ there
is g ∈ Lp′(R) such that

Ψ(f) = ⟨g, f⟩ :=
∫
R

g(x)f(x) dx ∀f ∈ Lp(R).

Therefore Lp(R)′ is isometrically isomorphic to Lp′(R) whenever 1 ≤
p < ∞.

Consider now a linear convolution operator Tf =
∫
R
h(x−y)f(y) dy,

where h ∈ Lp′(R) ∩ L∞(R) and f ∈ Lp(R), 1 < p < ∞. Then, by
Fubini’s theorem3,

Ψ(Tf) =

∫
R

g(x)(Tf)(x) dx =

∫
R

∫
R

g(x)h(x−y)f(y) dy dx = ⟨T ′g, f⟩ ,

where

(T ′g)(x) =

∫
R

h(y − x)g(y) dy.

On the other hand, we have by the reflexivity of Lp(R) that

∥η∥p′ = sup {|⟨η, ϕ⟩| : ϕ ∈ Lp(R), ∥ϕ∥p = 1} (6.9)

for all η ∈ Lp′(R), readily implying that

∥T ′g∥p′ ≤ sup {∥Tf∥p : ∥f∥p ≤ 1} ∥g∥p′ . (6.10)

The reflexivity of Lp, 1 < p < ∞, gives that (T ′)′ = T and hence we
conclude with

∥T ′∥p′ = ∥T∥p,
where we have denoted ∥T∥p := sup {∥Tf∥p : ∥f∥p ≤ 1}.

In fact, since S(R) is dense in Lp(R), we can, without losing the
generality, assume above that f, g ∈ S(R). Indeed, if a functional
Ψ ∈ Lp(R)′ corresponding g ∈ Lp′(R) via the inner product above,
is bounded on a dense subset of Lp(R), then Hahn-Banach theorem
allows for an extension to the whole Lp(R) and the norm is preserved.
By the reflexivity, roles of f and g may be changed, leading to a similar
conclusion. Therefore, if we are able to verify

∥T ′η∥p′ ≤ sup {∥Tϕ∥p : ∥ϕ∥p ≤ 1, ϕ ∈ S(R)} ∥η∥p′

for all η ∈ S(R), also (6.10) follows in the case 1 < p < ∞ for the
extensions of T and T ′ from S(R) to Lp(R).

3Fubini’s theorem is indeed at our disposal since ψ1 : (x, y) 7→ x, ψ2 : (x, y) 7→
x−y, and ψ3 : (x, y) 7→ y are Borel functions and hence g(ψ1(x, y)), h(ψ2(x, y)), and
f(ψ1(x, y)) are all product measurable, as is also the product of them. Moreover,
by the fact that h ∈ L∞(R), g(ψ1(x, y))h(ψ2(x, y))f(ψ1(x, y)) ∈ L1(R×R).
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Next, if h above is an odd function, then clearly T ′ = −T . Let us
consider now the special case

h(x) = Kε(x) :=
χε<|x|

x
,

which clearly belongs to Lp(R) for all 1 < p ≤ ∞ and is an odd
function. Recall that Kε is the kernel of the operator H(ε). By above
reasoning, we thus have⟨

g,H(ε)f
⟩
= −

⟨
H(ε)g, f

⟩
whenever f, g ∈ S(R). Recall then the bound (6.2) from the beginning
of the section implying

|g(H(ε)f)| ≤ 2

π
(∥f ′∥∞ + ∥f∥1) |g| ∈ L1(R).

A similar bound holds for (H(ε)g)f as well. Thus Lebesgue’s dominated
convergence implies that

⟨g,Hf⟩ = −⟨Hg, f⟩

and hence H ′ = −H in the class S(R). Using this result, it is im-
mediate that if ∥Hf∥p ≤ cp∥f∥p for p ≥ 2 or 1 < p < 2 and for all
f ∈ S(R), then ∥Hf∥p′ ≤ cp∥f∥p′ for all f ∈ S(R).

6.1.3. Lp-boundedness of the Hilbert Transform. After establishing the
L2-boundedness of H and characterizing H ′ in S(R), one can actually
prove the Lp-boundedness in S(R) as well. We sketch two proofs for
strong (p, p). The first one is the original due to Riesz and the second
one relies on Calderon-Zygmund decomposition. Both proofs go in
several steps and the details of the first one are left as exercises.

Theorem 6.11. Let f ∈ S(R) and 1 < p < ∞. Then there is a
constant cp depending only on p such that

∥Hf∥p ≤ cp∥f∥p.

Moreover, weak (1, 1)

|{x ∈ R : |Hf(x)| > λ}| ≤ 16

λ
∥f∥1

holds for all λ > 0.

Proof number 1 for strong (p, p). Step 1. Let f ∈ S(R). Then H̃f =

Hf . Taking Fourier transform of f2 + 2H̃(f(H̃f)), one can show that

f2 + 2H̃(f(H̃f)) = (H̃f)2. (6.12)
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(Recall that H̃f is defined via (
̂̃
Hf)(ξ) = −i sgn(ξ)f̂(ξ)!) To ob-

tain (6.12) use the fact f̂ 2 = f̂ ∗ f̂ and then show

f̂ 2(ξ) + 2[H̃(f(H̃f))]̂(ξ)
=

∫
R

f̂(η)f̂(ξ − η) [1 +m(ξ)(m(η) +m(ξ − η))] dη,

where m(ξ) = −i sgn(ξ). By verifying the identity

m(η)m(ξ − η) = 1 +m(ξ)m(η) +m(ξ)m(ξ − η),

the claimed equality (6.12) follows using

(̂H̃f)2 =
̂̃
Hf ∗ ̂̃Hf.

Step 2. Since Lp bound is true when p = 2, we may make an induction

assumption that for p = 2k, k ∈ N, there is cp such that ∥H̃f∥p ≤
cp∥f∥p. Using (6.12) as

∥H̃f∥22p = ∥f 2 + 2H̃(f(H̃f))∥p
and then the induction assumption to deduce

∥2H̃(f(H̃f))∥p ≤ 2cp∥f(H̃f)∥p ≤ 2cp∥f∥2p∥H̃f∥2p,
one can show also the L2p-boundedness with a new constant c2p. Note

here that ∥H̃f∥q = ∥Hf∥q < ∞ for all q ≥ 2 by (6.2).
Step 3. By using a Marcinkiewicz interpolation theorem and a du-

ality argument, the result follows for all 1 < p < ∞, see Step 5 in the
proof number 2. �
Proof number 2. The goal is to first establish weak (1, 1) estimate and
then interpolate using already obtained strong (2, 2).

Step 1. Application of Calderón-Zygmund decomposition. Suppose
that f ∈ S(R) and let λ > 0. Calderón-Zygmund decomposition gives
us disjoint intervals {Ij} such that

|f(x)| ≤ λ for a.e. x /∈ Ω :=
∪
j

Ij,

|Ω| ≤ 1

λ
∥f∥1,

λ < (|f |)j ≤ 2λ, (|f |)j := −
∫
Ij

|f(t)| dt.

Denote by cj the center of Ij and by 2Ij the interval centered at cj and
with the length 2|Ij|. Let 2Ω = ∪j2Ij.

Split f into the ”good part” g and the ”bad part” b as follows:

g(x) =

{
f(x), x /∈ Ω,

(f)j, x ∈ Ij,
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and
b =

∑
j

bj, bj = (f − (f)j)χIj .

Then f = g + b, |g| ≤ 2λ almost everywhere and
∫
R
bj(t) dt = 0.

Step 2. Hilbert transforms of g and b. The immediate problem is
that neither g or b does not belong to S(R), in general. Nonetheless,

Corollary 6.4 gives the linear extension H̃ to L2(R) and therefore both

H̃g and H̃b exists provided g, b ∈ L2(R) and

Hf = H̃f = H̃g + H̃b,

because f ∈ S(R). Since |Ω| < ∞ and f ∈ S(R) ⊂ L2(R), it is easy
to see that g ∈ L2(R). Also b ∈ L2(R), because using the fact that
{Ij} is a disjoint collection of intervals, we obtain

∥b∥22 =
∑
j

∫
Ij

(f − (f)j)
2 dt

≤2
∑
j

∫
Ij

(Mf)2(t) dt ≤ 2

∫
R

(Mf)2(t) dt ≤ c∥f∥22.

Here Mf is the Hardy-Littlewood maximal function of f and M is
strong (2, 2) by Theorem 2.19. Furthermore, it is easy to check that
when x /∈ 2Ij, then

(H(ε)bj)(x) =

∫
Ij∩{|x−t|>ε}

bj(t)

x− t
dt =

∫
Ij

bj(t)

x− t
dt = (Hbj)(x)

for all ε < |Ij|. By approximating bj with functions from C∞
0 (3

2
Ij), it is

not hard to show that H̃bj = Hbj in R \ 2Ij almost everywhere. Thus

the linearity of H̃ in L2 implies that

H̃b =
∑
j

H̃bj =
∑
j

Hbj

almost everywhere in R \ 2Ω.
Step 3. Bound for

∑
j

∫
R\2Ij |(H̃bj)(t)| dt. The first observation is

that if x ̸= cj, then∫
Ij

bj(t)

x− cj
dt =

1

x− cj

∫
Ij

bj(t) dt =
|Ij|

x− cj
((f)j − (f)j) = 0.

Thus, whenever x /∈ 2Ij,

(Hbj)(x) =

∫
Ij

bj(t)

x− t
dt =

∫
Ij

bj(t)(t− cj)

(x− t)(x− cj)
dt.

Therefore,∫
R\2Ij

|Hbj(x)| dx ≤
∫
R

∫
R

χR\2Ij(x)χIj(t)|bj(t)|
|t− cj|

|x− t||x− cj|
dt dx
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holds. Integrand is product measurable and also in L1(R × R). By
Fubini’s theorem it follows that∫

R\2Ij
|Hbj(x)| dx ≤

∫
Ij

|bj(t)|
∫
R\2Ij

|t− cj|
|x− t||x− cj|

dx dt

≤
∫
Ij

|bj(t)|
∫
R\2Ij

1
2
|Ij|

1
2
|x− cj|2

dx dt

=

∫
Ij

|bj(t)| dt 2|Ij|
∫ ∞

|Ij |
s−2 ds

≤4

∫
Ij

|f(t)| dt.

The estimate implies∑
j

∫
R\2Ij

|H̃bj(x)| dx =
∑
j

∫
R\2Ij

|Hbj(x)| dx ≤ 4∥f∥1.

Step 4. Weak (1,1) estimate. Since Hf = H̃f = H̃g+ H̃b (H̃ linear
in L2(R)), we have

|{x ∈ R : |Hf(x)| > λ}|

≤
∣∣∣{x ∈ R : |H̃g(x)| > λ/2}

∣∣∣+ ∣∣∣{x ∈ R : |H̃b(x)| > λ}
∣∣∣ .

Corollary 6.4, together with 0 ≤ |g| ≤ 2λ almost everywhere, implies∣∣∣{x ∈ R : |H̃g(x)| > λ}
∣∣∣ ≤ 1

λ2

∫
R

|H̃g(x)|2 dx =
1

λ2

∫
R

|g|2 dx

≤ 2

λ

∫
R

|g| dx =
2

λ

∫
R\Ω

|f | dx+
2

λ

∑
j

|Ij||(fj)| ≤
2

λ
∥f∥1.

Next, we have∣∣∣{x ∈ R : |H̃b(x)| > λ}
∣∣∣ ≤|2Ω|+ 1

λ

∫
R\2Ω

|H̃b(x)| dx ≤ 6

λ
∥f∥1

by Step 3 and by the fact that |2Ω| ≤ 2|Ω| ≤ 2λ−1∥f∥1 from the
Calderón-Zygmund decomposition. Combining estimates gives

|{x ∈ R : |Hf(x)| > λ}| ≤ 16

λ
∥f∥1,

as asserted.
Step 5. Strong (p, p) in S(R) via interpolation. In Step 4 we have

established that H is weak (1, 1) in S(R). Theorem 6.3 gives that H
is also strong (2, 2) in S(R). Going back to the proof of Marcinkiewicz
interpolation theorem 2.21, we can actually show that H is also strong
(p, p) in S(R) for all 1 < p < 2 with a constant cp.

4 The constant,

4In the proof of Theorem 2.21, taking the splitting of f into f1 and f2, both H̃f1
and H̃f2 are well-defined, because f1 and f2 belong to L2(R) and Hf = H̃f1+H̃f2.
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however, ”blows up” as p ↑ 2. We thus use the identity H ′ = −H and
obtain that, for p = 3/2 and p′ = 3, H is strong (3, 3). Appealing again
to Marcinkiewicz interpolation theorem, we get that H is strong (p, p)
for all 1 < p ≤ 2 with a ”stable constant” as p ↑ 2. Now the result
follows by the duality H = −H ′. �

Using uniform strong (2, 2) in Remark 6.7, it is straightforward to
check that in the above proof one can replace H by H(ε) and obtain
weak (1, 1) and strong (p, p) uniform in ε (in fact, the proof is much
simpler in this case). Furthermore, H(ε) is bounded on Lp(R), 1 < p <
∞, and thus we have the following:

Lemma 6.13. Let f ∈ Lp(R), 1 < p < ∞, and ε > 0. Then there is
a constant cp depending only on p such that

∥H(ε)f∥p ≤ cp∥f∥p.
Moreover, weak (1, 1)∣∣{x ∈ R : |H(ε)f(x)| > λ}

∣∣ ≤ 16

λ
∥f∥1

holds for all λ > 0.

6.1.4. Existence of the principal value in Lp. After establishing weak
(1, 1) and strong (p, p), we attack the existence of the pointwise limit.
For this, define the ”maximal operator” H(∗) as follows:

(H(∗))f(x) := sup
ε>0

|H(ε)f(x)|

for all f ∈ Lp(R), 1 < p < ∞. We first show a pointwise upper bound
for H(∗)f whenever f ∈ S(R).

Lemma 6.14. If f ∈ S(R), then

(H(∗)f)(x) ≤ M(Hf)(x) + cMf(x)

for a constant c independent of f .

Proof. Let ϕ stand for the standard mollifier supported in (−1, 1) and∫
R
ϕ(t) dt = 1. Denote ϕε(t) = 2ε−1ϕ(2t/ε), which is supported in

(−ε/2, ε/2). We rewrite the kernel of H(ε) as

χ|x|>ε
1

x
= (Hϕε)(x) +

(
χ|x|>ε

1

x
− (Hϕε)(x)

)
.

Let us first estimate the second term on the right. If |x| > ε, then∣∣∣∣χ|x|>ε
1

x
− (Hϕε)(x)

∣∣∣∣ = ∣∣∣∣1x
∫
R

ϕε(t) dt− (Hϕε)(x)

∣∣∣∣
=

∣∣∣∣∫
|t|<ε/2

ϕε(t)

(
1

x
− 1

x− t

)
dt

∣∣∣∣ ≤ ∫
|t|<ε/2

ϕε(t)
|t|

|x||x− t|
dt

≤ ε

|x|2
.
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On the other hand, if |x| < ε, then∣∣∣∣χ|x|>ε
1

x
− (Hϕε)(x)

∣∣∣∣ = |(Hϕε)(x)| =
∣∣∣∣∫

|t|<ε/2

ϕε(t)− ϕε(x)

x− t
dt

∣∣∣∣ .
Denoting x̃ = 2x/ε and making the change of variable t̃ = 2t/ε, we
have ∣∣∣∣∫

|t|<ε/2

ϕε(t)− ϕε(x)

x− t
dt

∣∣∣∣ ≤ 2

ε
sup

−1<x̃,t̃<1

∣∣∣∣ϕ(x̃)− ϕ(t̃)

x̃− t̃

∣∣∣∣ ≤ c

ε

and thus ∣∣∣∣χ|x|>ε
1

x
− (Hϕε)(x)

∣∣∣∣ ≤ cε

ε2 + |x|2
=: Ψε(x).

follows. This readily implies that∣∣∣∣∫
R

(
χ|t|>ε

1

t
− (Hϕε)(t)

)
f(x− t) dt

∣∣∣∣ ≤ (Ψε ∗ |f |)(x)

Since
∫
R
Ψε(x) dx = πc and Ψ is a radially decreasing function, we

obtain by Theorem 3.10 that∣∣∣∣∫
R

(
χ|t|>ε

1

t
− (Hϕε)(t)

)
f(x− t) dt

∣∣∣∣ ≤ (Ψε ∗ |f |)(x) ≤ cMf(x)

for a new constant c independent of ε.
Next, we have by Fubini’s theorem5 that

((Hϕε) ∗ f)(x) =
∫
R

∫
R

ϕε(t)

x− y − t
dtf(y) dy = (ϕε ∗ (Hf))(x)

and again by Theorem 3.10 (when n = 1, then C(n, ϕ) = ∥ϕ∥1),
|(ϕε ∗ (Hf))(x)| ≤ M(Hf)(x)

follows. In conclusion, we have

|H(ε)f | ≤ M(Hf)(x) + cMf(x)

for a constant c independent of ε. This finishes the proof. �
Corollary 6.15. The maximal operator H(∗) is strong (p, p) in S(R)
for 1 < p < ∞, i.e. there is a constant cp such that

∥H(∗)f∥p ≤ cp∥f∥p
for all f ∈ S(R).

Proof. Both H and M are strong (p, p) and thus, by the previous
lemma,

∥H(∗)f∥p ≤ ∥M(Hf) + cMf∥p ≤ c1∥Hf∥p + c1∥f∥p ≤ c2∥f∥p.
�

5the function ϕε(t)f(y)/(x−y−t) is product measurable and in L1(R×R) since
ϕε and f are in S(R)
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To characterize the pointwise limit, we yet need another result con-
cerning families of linear operators.

Theorem 6.16. Suppose that {Tt}t>0 is a family of linear operators.
If the maximal operator

(T ∗f)(x) := sup
t>0

|(Ttf)(x)|

is weak (p, q), i.e. there is a constant c such that

|{x ∈ R : (T ∗f)(x) > λ}| ≤ c

(
∥f∥p
λ

)q

for some p, q > 0, then the set

Ψ :=

{
f ∈ Lp(R) : lim

t↓0
(Ttf)(x) exists for a.e. x ∈ R

}
is closed in Lp(R).

Proof. If Ψ is empty, then it is trivially closed. We thus assume that it
is nonempty. Let then (fj)j∈N ⊂ Ψ be a sequence in Lp(R) converging
to f in Lp(R). We will show that f ∈ Ψ. Denote gj = limt↓0 Ttfj,
which exists for almost every x ∈ R since fj ∋ Ψ. By the linearity of
Tt, we have

lim sup
t↓0

(Ttf)(x) = lim sup
t↓0

(Tt(f − fj) + Ttfj)(x)

≤ lim sup
t↓0

(Tt(f − fj))(x) + gj(x)

and similarly

lim inf
t↓0

(Ttf)(x) ≥ lim inf
t↓0

(Tt(f − fj))(x) + gj(x)

Therefore

lim sup
t↓0

(Ttf)(x)− lim inf
t↓0

(Ttf)(x)

≤ lim sup
t↓0

(Tt(f − fj))(x)− lim inf
t↓0

(Tt(f − fj))(x)

≤ 2(T ∗(f − fj))(x)

holds, readily implying∣∣∣∣{x ∈ R : lim sup
t↓0

(Ttf)(x)− lim inf
t↓0

(Ttf)(x) > λ

}∣∣∣∣
≤ |{x ∈ R : 2(T ∗(f − fj))(x) > λ}|

for all λ > 0. Since T ∗ is weak (p, q), we obtain

|{x ∈ R : 2(T ∗(f − fj))(x) > λ}| ≤
(
2c

∥f − fj∥p
λ

)q

→ 0
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as j → ∞. It follows that∣∣∣∣{x ∈ R : lim sup
t↓0

(Ttf)(x)− lim inf
t↓0

(Ttf)(x) > 0

}∣∣∣∣ = 0

and thus f ∈ Ψ, showing that Ψ is sequently closed in Lp(R), and
therefore also topologically closed. �

We are now ready to prove the existence of the pointwise limit.

Theorem 6.17. Let f ∈ Lp(R), 1 < p < ∞. Then the limit

(Hf)(x) = lim
ε↓0

(H(ε)f)(x)

exists for almost every x ∈ R and there is a constant cp such that

∥Hf∥p ≤ cp∥f∥p.

Proof. By the previous theorem,

Ψ :=

{
f ∈ Lp(R) : lim

ε↓0
(H(ε)f)(x) exists for a.e. x ∈ R

}
is closed in Lp(R). Let (ϕj)j∈N ⊂ S(R) be a sequence converging to f
in Lp(R). Since Hϕj = limε↓0H

(ε)ϕj for every j ∈ N, (ϕj) ⊂ Ψ. But
now Ψ is closed in Lp(R) and consequently f ∈ Ψ. Thus the limit in
the statement exists.

To show the strong (p, p), infer first by Theorem 6.11 that

∥H(ϕj − ϕk)∥ ≤ cp∥ϕj − ϕk∥p.
It follows that (Hϕj)j∈N is a Cauchy sequence in Lp(R) and, by the
completeness, there is g ∈ Lp(R) such that ∥Hϕj −g∥p → 0 as j → ∞.
We proceed in showing that Hf = g almost everywhere.

By Fatou’s lemma, we have

∥Hf − g∥p =
(∫

R

lim inf
ε↓0

|(H(ε)f)(t)− g(t)|p dt
)1/p

≤ lim inf
ε↓0

∥H(ε)f − g∥p.

Fix any δ > 0 and take j ∈ N to be so large that

∥H(ε)(ϕj − f)∥p + ∥Hϕj − g∥p < δ

uniformly in ε. This is possible by Lemma 6.13 and since both ∥ϕj−f∥p
and ∥Hϕj − g∥p → 0 as j → ∞. It follows that

∥H(ε)f − g∥p ≤∥H(ε)(ϕj − f)∥p + ∥Hϕj −H(ε)ϕj∥p + ∥Hϕj − g∥p
≤δ + ∥Hϕj −H(ε)ϕj∥p

and therefore

∥Hf − g∥p ≤ lim inf
ε↓0

∥H(ε)f − g∥p < δ.
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This holds for all δ > 0 and thus ∥Hf − g∥p = 0. Finally, since

∥g∥p = lim
j→∞

∥Hϕj∥p ≤ cp lim
j→∞

∥ϕj∥p = cp∥f∥p

by Theorem 6.11, we obtain that H is strong (p, p). �
We finally proceed in showing that the limit exists also when f ∈

L1(R). The details are left as exercises, but we outline the proof.

Lemma 6.18. The maximal operator H(∗) is weak (1, 1) in S(R).

Proof. The proof follows of the second proof of Theorem 6.11.
Step 1. Calderón-Zygmund decomposition. Form the Calderón-Zygmund

decomposition as in the proof of Theorem 6.11. Then reason that if
both H(∗)g and H(∗)b satisfy weak (1, 1), also H(∗)f satisfy the same.

Step 2. Weak (1,1) for H(∗)g. Use the fact that H(∗) is strong (2, 2)
to obtain the weak (1, 1) bound for H(∗)g.

Step 3. Weak (1,1) for H(∗)b. In order to show that∣∣{x /∈ 2Ω : (H(∗)b)(x) > λ}
∣∣ ≤ c

λ
∥b1∥

for some constant c > 0, fix x /∈ 2Ω, ε > 0, and bj with the support Ij.
Treat separately cases

(1) (x− ε, x+ ε) ∩ Ij = Ij,

(2) (x− ε, x+ ε) ∩ Ij = ∅,
(3) x− ε ∈ Ij or x+ ε ∈ Ij.

In the first case show that H(ε)bj(x) = 0. In the second apply the fact
(H(ε)bj)(x) = (Hbj)(x) and then show that

|(H(ε)bj)(x)| ≤
|2Ij|

|x− cj|2
∥bj∥1.

In the third case third prove that

|(H(ε)bj)(x)| ≤
3

ε

∫ x+3ε

x−3ε

|bj(t)| dt ≤ (Mbj)(x) ≤ (Mb)(x).

From these facts weak (1,1) follows easily. �
We are ready to prove:

Theorem 6.19. Let f ∈ L1(R). Then the limit

(Hf)(x) = lim
ε↓0

(H(ε)f)(x)

exists for almost every x ∈ R and there is a constant c such that

|{x ∈ R : |(Hf)(x)| > λ}| ≤ c

λ
∥f∥1

for all λ > 0.

Proof. Using the above lemma, reproduce the proof of Theorem 6.17
in L1(R). �
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6.1.5. Connection to analytic functions. Hilbert transform appears nat-
urally in the theory of analytic functions. Suppose that f ∈ Lp(R),
1 ≤ p < ∞, and let

F (z) =
1

iπ

∫
R

f(t)

t− z
dt,

where z = x+ iy ∈ R2
+. The first observation is that when y > 0, then

Hölder’s inequality yields∫
R

∣∣∣∣ f(t)t− z

∣∣∣∣ dt ≤(∫
R

|f(t)|p dt
)1/p(∫

R

|t− z|−p′ dt

)1/p′

≤∥f∥p
(∫

R

(
y2 + (t− x)2

)−p′/2
dt

)1/p′

< ∥f∥pC(y, p),

because p′ = p/(p− 1) > 1. Next, the function

FN(z) :=
1

iπ

∫ N

−N

f(t)

t− z
dt,

is analytic in R2
+, because

FN(z + h)− FN(z)

h
=

1

iπh

∫ N

−N

(
f(t)

t− z − h
− f(t)

t− z

)
dt

=
1

iπ

∫ N

−N

f(t)

(t− z − h)(t− z)
dt → 1

iπ

∫ N

−N

f(t)

(t− z)2
dt

as h → 0 and the integral on the right exists for all z ∈ R2
+. Moreover,

for any fixed y0 > 0 and y ≥ y0 we have

FN(z) → F (z)

uniformly. Therefore also F (z) is analytic in R2
+. Decomposing

1

t− z
=

1

t− x− iy
=

t− x

(t− x)2 + y2
+ i

y

(t− x)2 + y2

we arrive at

F (z) =
1

π

∫
R

f(t)
y

(t− x)2 + y2
dt+

i

π

∫
R

f(t)
x− t

(t− x)2 + y2
dt

=:(f ∗ Py)(x) + i(f ∗Qy)(x).

Here Py is the Poisson kernel, see Example 3.18, and

Qy(x) :=
1

π

x

x2 + y2

so-called conjugate Poisson kernel. The function f is real-valued and
hence f ∗ Py is the real and f ∗Qy is the imaginary part of F .

Theorem 3.12 implies that f ∗ Py → f almost everywhere as y ↓
0. (The convergence is even nontangential, see Definition 3.19, by
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Corollary 3.21.) But what about the convergence of f ∗Qy? We would
like to infer

lim
y↓0

(f ∗Qy)(x) = lim
y↓0

1

π

∫
R

f(t)
x− t

(t− x)2 + y2
dt.

If such a limit exists, this would readily imply that also the limit
limy↓0 F (x + iy) exists. The next theorem says that the limit exists
and it is precisely the Hilbert transform of f .

Theorem 6.20. Let f ∈ Lp(R), 1 ≤ p < ∞. Then

lim
y↓0

(f ∗Qy)(x) = (Hf)(x)

for almost every x ∈ R.

Proof. Let us write the difference of the kernels of f ∗Qy and H(y)f :

Qy(t)−K(y)(t) =
t

t2 + y2
− χ|t|>y

1

t

=
1

t(t2 + y2)

(
t2 − χ|t|>y(t

2 + y2)
)

=
t

t2 + y2
χ|t|≤y −

y2

t(t2 + y2)
χ|t|>y =: ϕy(t).

Denote

ϕ(t) = yϕy(yt) =
t

t2 + 1
χ|t|≤1 −

1

t(t2 + 1)
χ|t|>1.

Since ϕ is an odd function, we have∫
R

ϕ(t) dt = 0.

Moreover, it is not hard to see that ϕ has a radially decreasing inte-
grable majorant

Ψ(t) =


1

2
, |t| ≤ 1,

1

|t|(t2 + 1)
, |t| > 1.

Then Theorem 3.12 (see also the preceding remark) implies that

ϕy ∗ f → 0

almost everywhere as y → 0. But since (H(y)f)(x) → (Hf)(x) for
almost every x ∈ R, we obtain that (f ∗Qy)(x) → (Hf)(x) for almost
every x ∈ R, concluding the proof. �

As a corollary F defined above attains ”boundary values” as y ↓ 0.

Corollary 6.21. Let f ∈ Lp(R), 1 ≤ p < ∞. Then

F (x+ iy) =
1

iπ

∫
R

f(t)

t− x− iy
dt → f(x) + i(Hf)(x)

as y ↓ 0 for almost every x ∈ R.
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6.2. Riesz transform. We continue our studies of singular integral
operators with the Riesz transform, which is a natural generalization
of the Hilbert transform to higher dimensions. It is defined in sense of
principal values, i.e. as

(Rjf)(x) := lim
ε↓0

(R
(ε)
j f) = lim

ε↓0
cn

∫
|y|>ε

yj
|y|n+1

f(x− y) dy,

whenever the limit exists. Here

cn =
Γ
(
n+1
2

)
π(n+1)/2

=
2

ωn

.

In the case of the Hilbert transform, we gave a rather complete treat-
ment of the Lp-theory. For the Riesz transform we will be somewhat
informal and, for example, will prove strong (p, p) later in context of
more general convolution type operators. Our point of view here will
be in the study of the connection between the Riesz transform and the
theory of harmonic functions and Fourier analysis.

As in the case of the Hilbert transform, we first give a simple condi-
tion to guarantee the existence of the limit.

Lemma 6.22. Let f ∈ Lp(Rn), 1 ≤ p < ∞. Suppose that at the point
x ∈ Rn,

|f(y)− f(x)| ≤ C|x− y|α

for all y ∈ B(x, δ), for some C > 0 and α, δ > 0. Then the limit
(Rjf)(x) exists. Moreover, under the same condition on f ,

lim
t↓0

(Qj,t ∗ f)(x) = (Rjf)(x), Qj,t(y) :=
yj

(t2 + |y|2)(n+1)/2
.

Proof. Exercise. �

In particular, if f ∈ S(Rn), limits above exist for all x ∈ Rn. Fur-
thermore, in S(Rn), there is a powerful pointwise bound for the Riesz
transform, which belongs to Lp(Rn) for all p > 1:

Lemma 6.23. For all f ∈ S(Rn) there is a constant c depending on
f and n such that

sup
0<ε<1/2

∣∣∣∣∫
|y|>ε

yj
|y|n+1

f(x− y) dy

∣∣∣∣ ≤ c

(1 + |x|)n
.

Proof. Let 0 < ε < 1/2. Rewrite the integral as∫
|y|>ε

yj
|y|n+1

f(x− y) dy

=

∫
1/2>|y|>ε

yj
|y|n+1

f(x− y) dy +

∫
|y|≥1/2

yj
|y|n+1

f(x− y) dy

=: I1(x) + I2(x).
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Since the kernel χ1/2>|y|≥εyj/|y|n+1 is an odd function, we have that

I1(x) =

∫
1/2>|y|≥ε

yj
|y|n+1

(f(x− y)− f(x)) dy.

By defining g(s) = f(x+ s(z−x)), it is not hard to prove the estimate

|f(z)− f(x)|
|z − x|

≤ 2n(1 + |x|)−n sup
y∈Rn

(1 + |y|)n|∇f(y)|

provided that |z − x| ≤ |x|/2. Therefore,

|I1(x)| ≤ 2n(1 + |x|)−n sup
y∈Rn

(1 + |y|)n|∇f(y)|
∫
1/2>|y|≥ε

|y|1−n dy

follows. The integral is bounded uniformly in t and ε and thus

|I1(x)| ≤
c

(1 + |x|)n
.

Next, if |x| ≤ 1, then

|I2(x)| ≤ 2n
∫
Rn

|f(x− y)| dy = 2n∥f∥1 ≤
c

(1 + |x|)n
.

If |x| > 1, split the integral into two parts:

I2(x) =

∫
1/2≤|y|≤|x|/2

yj
|y|n+1

f(x− y) dy

+

∫
|y|>|x|/2

yj
|y|n+1

f(x− y) dy =: I2,1(x) + I2,2(x).

The last term we estimate simply as

|I2,2(x)| ≤ 2n|x|−n

∫
|y|>|x|/2

|f(x− y)| dy ≤ 2n|x|−n∥f∥1 ≤
c

(1 + |x|)n
.

For the first term, observe that the condition |y| ≤ |x|/2 implies |x|/2 ≤
|x| − |y| ≤ |x− y| and therefore

|I2,1(x)| ≤2n
∫
1/2≤|y|≤|x|/2

|x− y|−2n|x− y|2n|f(x− y)| dy

≤4nωn|x|−n sup
z∈Rn

|z|2n|f(z)| ≤ c

(1 + |x|)n
.

The result follows. �

A similar argument provides us information about convolutions with
Poisson and conjugate Poisson kernels

Pt(y) := cn
t

(t2 + |y|2)(n+1)/2
, Qk,t(y) := cn

yk
(t2 + |y|2)(n+1)/2

,

respectively.
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Lemma 6.24. For all f ∈ S(Rn) there is a constant c depending on
f and n such that

|Pt ∗ f(x)| ≤
c(1 + t)

(1 + t2 + |x|2)(n+1)/2

and
|Qk,t ∗ f(x)| ≤

c

(1 + t2 + |x|2)n/2

Proof. The details are left as an exercise. �
Combining results of Lemmata 6.22–6.25 gives us the following:

Lemma 6.25. Let f ∈ S(Rn). Then

lim
t↓0

∥Qj,t ∗ f −Rjf∥p = 0, lim
t↓0

∥Pt ∗ f − f∥p = 0,

for all p > 1.

Proof. In view of the Theorem 3.12,

lim
t↓0

(Pt ∗ f − f) = 0

pointwise (almost) everywhere and, on the other hand, Lemma 6.22
gives

lim
t↓0

(Qj,t ∗ f −Rjf) = 0.

But now by Lemmata 6.31 and 6.25.

|(Pt ∗ f − f)(x)| ≤ |f |+ c

(1 + |x|2)(n+1)/2

and
|(Qj,t ∗ f −Rjf)(x)| ≤

c

(1 + |x|2)n/2
.

for all 0 < t < 1 with a constant c depending only on f and n, we
obtain the desired result by the dominated convergence. �
6.2.1. Fourier transform of the Riesz transform. Following the path we
took in the analysis of the Hilbert transform, we calculate the Fourier
transform of the Riesz transform of Schwartz functions. Although we
have defined Fourier transform only in R, an analogous theory holds
in Rn. Fourier transform of f ∈ S(Rn) is defined as

f̂(ξ) =

∫
Rn

f(x)e−i2πx·ξ dξ.

It has the following basic properties.

Lemma 6.26. Suppose that f ∈ S(Rn). Then

(i) ̂(αf + βg) = αf̂ + βĝ,

(ii)
(̂

∂f
∂xj

)
(ξ) = 2πiξj f̂(ξ), j = 1, . . . , n,

(iii) ∂f̂
∂ξj

(ξ) = ̂(−2πixjf)(ξ), j = 1, . . . , n,
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(iv) f̂ is continuous,

(v) ||f̂ ||∞ ≤ ||f ||1,
(vi) f̂(εx) = 1

ε
f̂( ξ

ε
) = f̂ε(ξ), ε > 0,

(vii) f̂g = f̂ ∗ ĝ,
(viii) f̂ ∗ g = f̂ ĝ.

The proof is similar to the one-dimensional case and we leave it as
an exercise.

We now take from the literature the Fourier transform of the Poisson
kernel. The proof is somewhat hideous, but standard.

Lemma 6.27.

P̂ (ξ, t) = e−2πt|ξ|.

The preceding lemma lets us to calculate

Theorem 6.28. Let f ∈ S(Rn). Then

(̂Rjf)(ξ) = −i
ξj
|ξ|

f̂(ξ)

for j = 1, . . . , n and for all ξ ∈ Rn \ {0}.

Proof. We will pursue the fact from the previous section that

f ∗Qj,t → Rjf.

in L2(Rn) as t ↓ 0. Since

Qj,t(x) =
xj

t
Pt(x),

we have

Q̂j,t(ξ) =
̂

(
xj

t
Pt(x)) =

1

i2πt
̂(i2πxjPt(x)) =

1

i2πt

(
− ∂

∂ξj
P̂t(ξ)

)
.

Lemma 6.27 implies that

∂

∂ξj
P̂t(ξ) = −2πt

ξj
|ξ|

P̂t(ξ),

an therefore

Q̂j,t(ξ) = −i
ξj
|ξ|

P̂t(ξ).

Then

Q̂j,t(ξ)f̂(ξ) + i
ξj
|ξ|

f̂(ξ) = −i
ξj
|ξ|

(
P̂t(ξ)f̂(ξ)− f̂(ξ)

)
and, in particular, Plancerel’s formula implies

∥ − iξj|ξ|−1f̂(ξ)(P̂t(ξ)− 1)∥2 ≤ ∥P̂t(ξ)f̂(ξ)− f̂(ξ)∥2 = ∥Pt ∗ f − f∥2.
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Using two above formulaes, together with the triangle inequality and
again Plancerel’s formula, leads to

∥R̂jf + iξj|ξ|−1f̂(ξ)∥2
≤ ∥Q̂j,t(ξ)f̂(ξ) + iξj|ξ|−1f̂(ξ)∥2 + ∥Q̂j,t(ξ)f̂(ξ)− R̂jf∥2
≤ ∥Pt ∗ f − f∥2 + ∥Qj,t ∗ f −Rjf∥2

and letting t ↓ 0, we obtain by Lemma 6.25 that the two norms on the
right tend to zero and consequently,

R̂jf = −i
ξj
|ξ|

f̂(ξ),

concluding the proof. �
As in the case of the Hilbert transform, we get an extension for the

Riesz transform to whole L2(Rn).

Corollary 6.29. The Riesz transform Rj allows for an extension R̃j

to L2(R) via the Fourier transform

(̂R̃jf)(ξ) = −i
ξj
|ξ|

f̂(ξ), ξ ∈ Rn \ {0},

for all f ∈ L2(Rn).

Finally, using the Fourier transformation of the Riesz transform, one
obtains one of the cornerstones of Harmonic Analysis.

Theorem 6.30. Let f ∈ S(Rn). Then∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥
2

≤ ∥∆f∥2.

6.2.2. Conjugate harmonic functions in Rn+1
+ . Our first task is to find

the connection between the Riesz transform and the Poisson integral.
For this, let u be a harmonic function in Rn+1

+ . Define

U(x) = (u1(x), . . . , un+1(x)) = ∇u(x) =

(
∂u

∂x1

, . . . ,
∂u

∂xn+1

)
.

Each component of U is a harmonic function and they satisfy a gener-
alized Cauchy-Riemann system

∂uk

∂xj

=
∂uj

∂xk

, 1 ≤ j, k ≤ n+ 1,

n+1∑
j=1

∂uj

∂xj

= 0.

In other words, when defining the higher dimensional curl of a vector
field V via

curl(V )jk =
∂Vk

∂xj

− ∂Vj

∂xk

,
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we have

curl(U) = 0, div(U) = 0, in Rn+1
+ .

Conversely, if curl(U) = 0 in Rn+1
+ , then there is a potential H such

that U = ∇H. The existence of such a potential follows by the gener-
alized Stokes theorem and the fact that Rn+1

+ is simply connected. If,
in addition, div(U) = 0 in Rn+1

+ , then ∆H = 0 in Rn+1
+ . Consequently

U is the gradient of a harmonic function H, implying, in particular,
that each component of U is harmonic as well.

Let now f ∈ S(Rn) and define the Poisson integral of f as

u(x, t) := (f ∗ Pt)(x), Pt(x) = cn
t

(t2 + |x|2)(n+1)/2
,

where cn = 2/ωn. Then u is a harmonic function, see Example 3.18. A
natural question is that whether u is a component of a system of con-
jugate functions in Rn+1

+ , i.e. is there a vector field U = (u1, . . . , un, u)
satisfying the generalized Cauchy-Riemann system? Note first that by
defining

H(x, t) :=
cn

1− n

∫
Rn

f(y)
1

(t2 + |x− y|2)(n−1)/2
dy,

we have

u(x, t) =
∂H

∂t
(x, t).

Here we may indeed take the derivative inside the integral since f ∈
S(Rn). Define

uk(x, t) :=
∂H

∂xk

(x, t), k = 1, . . . , n.

Differentiating under the integral gives

uk(x, t) = (f ∗Qk,t)(x, t), k = 1, . . . , n,

Qk,t being the conjugate Poisson kernel. It is easy to verify that U =
(u1, . . . , un, u) satisfies the generalized Cauchy-Riemann system. But
what happens when t ↓ 0? As we showed before,

lim
t↓0

uk(x, t) = lim
t↓0

(f ∗Qk)(x, t) = (Rkf)(x)

whenever f ∈ S(Rn). Thus Riesz transforms are ”boundary values” of
particular solutions to the generalized Cauchy-Riemann system.

6.3. Singular integrals of convolution type. We will now set our
sails towards more general theory of integral operators. We confine
ourselves to study only integral operators of convolution type, while
different methods would provide results for even more general type of
kernels. Nonetheless, many arguments we are using here work as such
in the more general case.
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Define the integral operator T of convolution type as

(Tf)(x) = lim
ε↓

(T (ε)f)(x) = lim
ε↓

∫
|y|>ε

Ω(y)

|y|n
f(x− y) dy,

where the kernel function Ω has the following properties:

(i) Ω is homogeneous, i.e. Ω(rx) = Ω(x) for all r > 0,
(ii) Ω is bounded, i.e. |Ω(x)| ≤ A1, A1 ≥ 0, for all x ∈ Sn−1 := {x ∈

Rn : |x| = 1},
(iii) Ω is Dini continuous, that is, the modulus of continuity

ω(r) := sup
x,y∈Sn−1,|x−y|≤r

|Ω(x)− Ω(y)|

satisfies ∫ 1

0

ω(r)
dr

r
≤ A2, A2 ≥ 0,

(iv) The average of Ω on Sn−1 is zero, i.e.∫
Sn−1

Ω(x) dHn−1 = 0.

Here Hn−1 is the codimension one Hausdorff-measure or, in other
words, the surface measure on Sn−1.

In general, the last condition is necessary for the principal value
to exist. We leave this as an exercise. Moreover, it will allow us to
calculate the Fourier transform of T (ε)f and Tf .

The structure of this section is suggested by the section considering
the Hilbert transform. Indeed, we first calculate the Fourier transform
of T (ε)f and Tf and using them, we deduce strong (2, 2) in S(Rn).
This, in particular, allows us to extend operators in the whole L2(Rn).
We then show strong (p, p) using rather modern approach, which in
this context is nowadays often cited as Nonlinear Calderón-Zygmund
theory. This technique, for instance, turns out to be extremely useful in
the study of nonlinear PDEs. After establishing strong (p, p), we study
the maximal operator T (∗) and show a pointwise integrable bound for
it and strong (p, p) as well. These results will guarantee the existence
of principal values in Lp(Rn) as in the case of the Hilbert transform.

To begin with, analogous arguments used to prove Lemmata 6.22
and 6.31 give

Lemma 6.31. For all f ∈ S(Rn) the limit (Tf)(x) = limε↓(T
(ε)f)(x)

exists and there is a constant c depending on f and n such that

sup
ε>0

∣∣∣∣∫
|y|>ε

Ω(y)

|y|n
f(x− y) dy

∣∣∣∣ ≤ c

(1 + |x|)n
.

The lemma, in particular, shows that whenever f ∈ S(Rn), we also
have the converge in Lp(Rn) and that supε>0 |(T (ε)f)(x)| belongs to
Lp(Rn) for all 1 < p ≤ ∞.
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6.3.1. Fourier transform of the operator. The next theorem is the start-
ing point for our study:

Theorem 6.32. Let f ∈ S(Rn). Then there is a constant c depending
only on n and A2, but independent of ε, such that

|T̂ (ε)f(ξ)| ≤ c|f̂(ξ)|, |T̂ f(ξ)| ≤ c|f̂(ξ)|

for ξ ∈ Rn \ {0}. In particular, both T (ε) and T allow for extensions

T̃ (ε) and T̃ , respectively, to L2(Rn).

Proof. Write first

(T (ε,k)f)(x) =

∫
ε<|y|<k/|ξ|

Ω(y)

|y|n
f(x− y) dy,

k > max{1, ε|ξ|}. Then we have

T̂ (ε,k)f(ξ) = T̂ (ε,k)(ξ)f̂(ξ),

where

T̂ (ε,k)(ξ) =

∫
ε<|y|<k/|ξ|

Ω(y)

|y|n
e−i2πξ·y dy.

Fix then ξ ∈ Rn \ {0}. Make first the change of variables z = y/|ξ|,
dy = |ξ|ndz, we have

T̂ (ε,k)(ξ) =

∫
|ξ|ε<|y|<k

Ω(y)

|y|n
e−i2πξ′·y dy,

where we have written ξ′ = ξ/|ξ|. In polar coordinates y = ru, u ∈
Sn−1, this takes the form

T̂ (ε,k)(ξ) =

∫ k

|ξ|ε

∫
Sn−1

Ω(ru)

|ru|n
e−i2πrξ′·u dHn−1(u) rn−1 dr

=

∫ k

|ξ|ε

∫
Sn−1

Ω(u)e−i2πrξ′·u dHn−1(u)
dr

r
.

Applying Fubini’s theorem, we obtain

T̂ (ε,k)(ξ) =

∫
Sn−1

Ω(u)

(∫ k

|ξ|ε
e−i2πrξ′·u dr

r

)
dHn−1(u).

Since
∫
Sn−1 Ω(u) dHn−1(u) = 0, we may add a constant to the integrand

and hence

T̂ (ε,k)(ξ) =

∫
Sn−1

Ω(u)

(∫ 1

min{|ξ|ε,1}

(
e−i2πrξ′·u − 1

) dr

r

)
dHn−1(u)

+

∫
Sn−1

Ω(u)

(∫ k

max{|ξ|ε,1}
e−i2πrξ′·u dr

r

)
dHn−1(u)

=I1(ξ)− iI2(ξ),
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where

Iε,k1 (ξ) =

∫
Sn−1

Ω(u)

(∫ 1

min{|ξ|ε,1}
(cos(2πrξ′ · u)− 1)

dr

r

)
dHn−1(u)

+

∫
Sn−1

Ω(u)

(∫ k

max{|ξ|ε,1}
cos(2πrξ′ · u) dr

r

)
dHn−1(u)

and

Iε,k2 (ξ) =

∫
Sn−1

Ω(u)

(∫ k

|ξ|ε
sin(2πrξ′ · u) dr

r

)
dHn−1(u)

Performing the change of variables s = r|ξ′ · u| in the inner integrals
(the cone {u ∈ Sn−1 : |ξ′ · u| << 1} requires some care but can be
nevertheless handled), we arrive at the following identities:

Jε,k
1 (ξ, u) :=

∫ 1

min{|ξ|ε,1}
(cos(2πrξ · u)− 1)

dr

r

=

∫ |ξ′·u|

|ξ′·u|min{|ξ|ε,1}
(cos(2πs)− 1)

ds

s
,

Jε,k
2 (ξ, u) :=

∫ k

max{|ξ|ε,1}
cos(2πrξ′ · u) dr

r
=

∫ |ξ′·u|k

|ξ′·u|max{|ξ|ε,1}
cos(2πs)

ds

s

Jε,k
3 (ξ, u) :=

∫ k

|ξ|ε
sin(2πrξ · u) dr

r
= sgn(ξ · u)

∫ |ξ′·u|k

|ξ·u|ε
sin(2πs)

ds

s

We now distinguish ourselves into two cases. First, assume that

|ξ′ · u|k ≤ 1 ⇐⇒ k ≤ 1

|ξ′ · u|
.

Then∣∣∣Jε,k
1 (ξ, u) + Jε,k

2 (ξ, u)
∣∣∣ ≤(∫ |ξ′·u|k

|ξ′·u|min{|ξ|ε,1}
|cos(2πs)− 1| ds

s

+

∫ |ξ′·u|k

|ξ′·u|max{|ξ|ε,1}

ds

s

)
χ|ξ′·u|k≤1

≤
(∫ 1

0

|cos(2πs)− 1| ds
s

+ log (k)

)
χ|ξ′·u|k≤1

≤
(
c− log |u · ξ′|

)
χ|ξ′·u|k≤1.
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If |ξ′ · u|k > 1, rewrite

Jε,k
1 (ξ, u) =

∫ 1

min{1,|ξ′·u|max{|ξ|ε,1}}
(cos(2πs)− 1)

ds

s

+

∫ 1

min{1,|ξ′·u|max{|ξ|ε,1}}

ds

s

+

∫ |ξ′·u|k

max{1,|ξ′·u|max{|ξ|ε,1}}
cos(2πs)

ds

s
.

Therefore,

Jε,k
1 (ξ, u) + Jε,k

2 (ξ, u) =

∫ 1

min{1,|ξ·u|ε}
(cos(2πs)− 1)

ds

s

+

∫ 1

min{1,|ξ′·u|max{|ξ|ε,1}}

ds

s

+

∫ |ξ′·u|k

max{1,|ξ′·u|max{|ξ|ε,1}}
cos(2πs)

ds

s
.

The second integral on the right is∫ 1

min{1,|ξ′·u|max{|ξ|ε,1}}

ds

s
= − log(min{1, |ξ′ · u|max{|ξ|ε, 1}})

Now, Lemma 6.5, and an analogous version, where sin is replaced with
cos, proves that there is a universal constant c, independent of ξ, ε,
and k, such that

|J (ε,k)
j (ξ, u)| ≤ c (1− log |u · ξ′|) , j = 1, 2, 3.

But since |Ω| is bounded by the constant A2 and log |u · ξ′| ∈ L1(Sn−1),
we arrive at the result with a constant depending only on n and A2

after letting k → ∞. �
In fact, analyzing further the above proof, we obtain:

Theorem 6.33. Let f ∈ S(Rn). Then

T̂ f(ξ) =

∫
Sn−1

Ω(u)

(
1

log |u · ξ/|ξ||
− i

π

2
sgn(u · ξ)

)
dHn−1(u)f̂(ξ)

for all ξ ∈ Rn \ {0}.

Proof. Exercise. �
This theorem would allow us to relax the condition on the bounded-

ness of Ω in connection to strong (2, 2). Define

Ωo(u) =
1

2
(Ω(u)− Ω(−u)) , Ωe(u) =

1

2
(Ω(u) + Ω(−u)) .

Then clearly Ωo is an odd function and Ωe is an even function.
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Theorem 6.34. Let f ∈ S(Rn). Suppose that Ωo ∈ L1(Sn−1) and
Ωe ∈ (L log(L))(Sn−1), i.e.

|Ωe|max (log(|Ωe|), 0) ∈ L1(Sn−1).

Then T is strong (2, 2) in S(Rn).

Proof. Exercise. The proof goes in two steps. First, show that

AB ≤ A log(A) + eB, A ≥ 1, B ≥ 0.

Second, using the above estimate and Theorem 6.33, conclude the
proof. �

6.3.2. Strong (p, p). The next step in our approach is to show strong
(p, p). For this we apply methods from the Nonlinear Calderón-Zygmund
Theory.

Theorem 6.35. Let 1 < p < ∞ and f ∈ S(Rn). Then there is a
constant cp = cp(n, p, c2, A1, A2) such that

∥Tf∥p ≤ cp∥f∥p, ∥T (ε)f∥p ≤ cp∥f∥p,

for all ε > 0.

Proof. Step 1: Basic notation. To stylize the notation, we will hence-

forth use the abbreviation T = T̃ , when using the extension from S(Rn)
to L2(Rn), or T = T (ε), when considering the case ε > 0. The exten-
sion of T is used when we are for instance splitting f into two parts,
which are not necessarily in S(Rn) anymore.

To begin with, set

λ2
0 =

∫
Rn

|Tf |2 dx+ δ−2

∫
Rn

|f |2 dx

for a small constant δ ∈ (0, 1), which will be fixed on the course of the
proof. Define

fλ :=
f

λλ0

, λ > 0,

and

Jλ(U) := −
∫
U

|Tfλ|2 dx+ δ−2−
∫
U

|f |2 dx

for any Borel set U in Rn with |U | > 0. Recall that −
∫
U

= |U |−1
∫
.

Moreover, we denote the level set as

Eλ = Eλ(1) := {x ∈ Rn : |Tfλ(x)| > 1} .

Step 2: Decomposition of the level set. In Step 2 we will prove the
following lemma:
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Lemma 6.36. For any λ > 0 there exists a numerable family of disjoint
balls {B(xi, ϱi)}i, xi ∈ Eλ and ϱi = ϱi(xi, λ) > 0, such that

Jλ(B(xi, ϱi)) = 1, Jλ(B(xi, ϱi)) ≤ 1 ∀ϱ > ϱi, (6.37)

and
Eλ ⊂

∪
i

B(xi, 5ϱi). (6.38)

Moreover, for any θ > 1, we have∑
i

∫
B(xi,θϱi)

|f |2 dx ≤2δ2θn
∫
{|Tfλ|>1/2}

|Tfλ|2 dx

+ 2θn
∫
|fλ|>δ/2

|fλ|2 dx.
(6.39)

Proof. Estimate first

Jλ(B(x, ϱ)) =−
∫
B(x,ϱ)

|Tfλ|2 dx+ δ−2−
∫
B(x,ϱ)

|fλ|2 dx

=
1

B(x, ϱ)

1

(λλ0)2

(∫
B(x,ϱ)

|Tf |2 dx+ δ−2

∫
B(x,ϱ)

|f |2 dx
)

≤ 1

B(x, ϱ)

1

(λλ0)2

(∫
Rn

|Tf |2 dx+ δ−2

∫
Rn

|f |2 dx
)

=
1

λ2B(x, ϱ)
.

Thus, for r = r(λ) > 0 such that λ2|Br| = 1, we have

sup
x∈Rn,ϱ≥r

Jλ(B(x, ϱ)) ≤ 1

for all ϱ ≥ r. On the other hand, Lebesgue’s differentiation theorem
gives that

lim
ϱ→0

Jλ(B(x, ϱ)) > 1

for almost every x ∈ Eλ(1), implying, in particular, that for almost
every x ∈ Eλ(1) there is ϱx ∈ (0, r] such that

Jλ(B(x, ϱx)) = 1, Jλ(B(x, ϱ)) ≤ 1, ϱ > ϱx.

Indeed, for a fixed x, it is easy to see that Jλ(B(x, ·)) : R+ 7→ R+ is
continuous. Since this can be done for almost every x ∈ Eλ(1), there
is a dense subset {x̃i} ⊂ Eλ(1) for which each member x̃i satisfy the
above condition and Eλ(1) ⊂ ∪iB(x̃i, ϱx̃i

). Appealing then to Vitali’s
covering theorem, Theorem 2.13, we find a (countable) subset {xi}
of {x̃i} such that {B(xi, ϱi)}, ϱi = ϱxi

, is a disjoint family of balls
satisfying (6.37) and (6.38).

Next, denote in short Bi := B(xi, ϱi). Since Jλ(Bi) = 1, we have

|Bi| =
∫
Bi

|Tfλ|2 dx+ δ−2

∫
Bi

|fλ|2 dx.
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Using the elementary inequality∫
Bi

|Tfλ|2 dx ≤
∫
Bi∩{|Tfλ|>1/2}

|Tfλ|2 dx+
1

4
|Bi|

and similarly for the term containing fλ, we obtain

|Bi| ≤ 2

∫
Bi∩{|Tfλ|>1/2}

|Tfλ|2 dx+
2

δ2

∫
Bi∩{|fλ|>δ/2}

|fλ|2 dx.

Moreover, for any θ ≥ 1,

1

δ2

∫
B(xi,θϱi)

|fλ|2 dx ≤ θn|Bi|Jλ(B(xi, θϱi)) ≤ θn|Bi|.

The last two estimates give (6.39), since {Bi}i is a disjoint family of
balls. �

Step 3: Decomposition of f . Fix i ≥ 1 and let

f1
λ(x) :=

{
fλ(x) in B(xi, 25ϱi),

0 otherwise,

and

f 2
λ(x) = fλ(x)− f1

λ(x) .

We will now show that Tf 2
λ is bounded in B(xi, 5ϱi).

Lemma 6.40. There exists N depending only on n,A1, A2 such that

sup
x∈B(xi,5ϱi)

|Tf 2
λ(x)| ≤ N.

Proof. Let us use the short-hand notation θBi := B(xi, θϱi), θ > 0.
Let z ∈ 5Bi. Rewrite

Tf 2
λ(z) = −

∫
5Bi

Tf 2
λ dx+−

∫
5Bi

(Tf 2
λ(z)− Tf 2

λ) dx =: I1 + I2.

We first estimate I1. For this, estimate simply as

|I1| ≤−
∫
5Bi

|Tf 2
λ | dx ≤ −

∫
5Bi

|Tf 1
λ | dx+−

∫
5Bi

|Tfλ| dx.

Hölder’s inequality, together with (6.37), implies

−
∫
5Bi

|Tfλ| dx ≤
(
−
∫
5Bi

|Tfλ|2 dx
)1/2

≤ (Jλ(5Bi))
1/2 ≤ 1.
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Strong (2, 2) with the constant c2 = c2(n,A2), on the other hand, gives

−
∫
5Bi

|Tfλ| dx ≤
(
−
∫
5Bi

|Tf 1
λ |2 dx

)1/2

≤
(

c2
|5Bi|

∫
Rn

|f 1
λ |2 dx

)1/2

=

(
c25

n−
∫
25Bi

|f1
λ |2 dx

)1/2

≤ δ
√
c25n.

Therefore,

|I1| ≤ 1 +
√
c25n ≤ N

5

for suitably large N .
We then estimate I2. Note first that for any x ∈ 5Bi,

|Tf2
λ(z)− Tf 2

λ(x)|

≤
∫
Rn\25Bi

∣∣∣∣Ω(x− y)

|x− y|n
χ|x−y|>ε −

Ω(z − y)

|z − y|n
χ|z−y|>ε

∣∣∣∣ |f 2
λ(y)| dy.

Rewrite the kernel as∣∣∣∣Ω(x− y)

|x− y|n
χ|x−y|>ε −

Ω(z − y)

|z − y|n
χ|z−y|>ε

∣∣∣∣
=

∣∣∣∣Ω(x− y)

|x− y|n
− Ω(z − y)

|z − y|n

∣∣∣∣χ|x−y|,|z−y|>ε

+

∣∣∣∣Ω(x− y)

|x− y|n

∣∣∣∣χ|x−y|>ε,|z−y|≤ε

+

∣∣∣∣Ω(z − y)

|z − y|n

∣∣∣∣χ|z−y|>ε,|x−y|≤ε.

(6.41)

Let us first handle the last two terms on the right. Since f2
λ(y) = 0 in

25Bi, we may assume that y ∈ Rn \ 25Bi. Moreover, since z, x ∈ 5Bi,
we have

20ϱi ≤ min{|z − y|, |x− y|}, |z − x| ≤ 10ϱi

In particular, if |z − y| > ε and |x− y| ≤ ε, then

ε ≥ |x− y| ≥ 20ϱi, ε < |z − y| ≤ |x− y|+ |z − x| ≤ ε+ 10ϱi ≤
3

2
ε.

It follows that

|y − xi| ≤ |y − z|+ |z − xi| ≥ ε+ 5ϱi ≤
3

2
ε+

1

4
ε < 2ε.
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Therefore,∣∣∣∣Ω(z − y)

|z − y|n

∣∣∣∣χ|z−y|>ε,|x−y|≤ε|f2
λ(y)|

≤ 2A1ε
−n|fλ(y)|χ|y−xi|<2ε ≤ 2n+1A1

χB(xi,2ε)(y)

|B(xi, 2ε)|
|fλ(y)|

and consequently also∫
Rn

∣∣∣∣Ω(z − y)

|z − y|n

∣∣∣∣χ|z−y|>ε,|x−y|≤ε|f 2
λ(y)| dy ≤ δ2n+1A1 ≤

N

5

holds by Hölder’s inequality and the fact that Jλ(B(xi, 2ε)) ≤ 1, ε > ϱi.
Similarly, we obtain∫

Rn

∣∣∣∣Ω(x− y)

|x− y|n

∣∣∣∣χ|x−y|>ε,|z−y|≤ε|f2
λ(y)| dy ≤ δ2n+1A1 ≤

N

5
.

We will then estimate the remaining term in (6.41) preliminary as∣∣∣∣Ω(x− y)

|x− y|n
− Ω(z − y)

|z − y|n

∣∣∣∣
≤ A1

∣∣∣∣ 1

|x− y|n
− 1

|z − y|n

∣∣∣∣
+

1

|x− y|n
|Ω(x− y)− Ω(z − y)|

(6.42)

Thus we need upper bounds for

I3 :=

∫
Rn\25Bi

∣∣∣∣ 1

|x− y|n
− 1

|z − y|n

∣∣∣∣ |f 2
λ(y)| dy

and

I4 :=

∫
Rn\25Bi

1

|x− y|n
|Ω(x− y)− Ω(z − y)| |f 2

λ(y)| dy

Recall here that x, z ∈ 5Bi and y ∈ Rn \ 25Bi so that

|x− z| ≤ 10ϱi, |y − z| ≥ 20ϱi ≥ 2|x− z|
By considering the smooth function g : [0, 1] 7→ R,

g(t) =
1

|z − y + t(x− z)|n
,

we find by the mean value theorem t0 ∈ [0, 1] such that∣∣∣∣ 1

|x− y|n
− 1

|z − y|n

∣∣∣∣
= |g(1)− g(0)| = |g′(t0)| =

n|x− z|
|z − y + t0(x− z)|n+1

≤ 10n2n+1 ϱi
|z − y|n+1

≤ 10n4n+1 ϱi
|xi − y|n+1

.
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We obtain

I3 =

∫
Rn\25Bi

∣∣∣∣ 1

|x− y|n
− 1

|z − y|n

∣∣∣∣ |f 2
λ(y)| dy

≤10n4n+1

∞∑
j=2

∫
5j+1Bi\5jBi

ϱi
|xi − y|n+1

|f2
λ(y)| dy

≤10n4n+1

∞∑
j=2

5−j−
∫
5j+1Bi

|f 2
λ(y)| dy

But now Hölder’s inequality gives

−
∫
5j+1Bi

|f2
λ(y)| dy ≤ 2−

∫
5j+1Bi

|fλ(y)| dy

≤ 2

(
−
∫
5j+1Bi

|fλ(y)|2 dy
)1/2

≤ 2δ
√

Jλ(5j+1Bi) ≤ 2δ

(6.43)

and thus

A1I3 ≤ 20n4n+1δA1 ≤
N

5
follows.

We then estimate I4. The homogeneity of Ω first gives

|Ω(x− y)− Ω(z − y)| =
∣∣∣∣Ω( x− y

|x− y|

)
− Ω

(
z − y

|z − y|

)∣∣∣∣ .
Since ∣∣∣∣ x− y

|x− y|
− z − y

|z − y|

∣∣∣∣ ≤ |x− z|
|x− y|

+ |z − y|
∣∣∣∣ 1

|x− y|
− 1

|z − y|

∣∣∣∣ ,
and by considering the smooth function g : [0, 1] 7→ R,

g(t) =
1

|x− y − t(x− z)|
,

the mean value theorem gives t1 ∈ [0, 1] such that∣∣∣∣ 1

|x− y|
− 1

|z − y|

∣∣∣∣ = |x− z|
|x− y − t1(x− z)|

,

we obtain similarly as before that∣∣∣∣ x− y

|x− y|
− z − y

|z − y|

∣∣∣∣ ≤ 40ϱi
|xi − y|

.

Therefore, ∣∣∣∣Ω( x− y

|x− y|

)
− Ω

(
z − y

|z − y|

)∣∣∣∣ ≤ ω

(
40ϱi

|xi − y|

)
.

In an annuli y ∈ 5j+1Bi \ 5jBi we thus obtain

ω

(
40ϱi

|xi − y|

)
≤ ω(53−j).
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Estimate then

I4 =
∞∑
j=2

∫
5j+1Bi\5jBi

1

|x− y|n
|Ω(x− y)− Ω(z − y)| |f 2

λ(y)| dy

≤10n
∞∑
j=2

ω(53−j)−
∫
5j+1Bi

|f 2
λ(y)| dy

≤2δ10n
∞∑
j=2

ω(53−j),

where we have also applied (6.43). The sum on the right has an upper
bound

∞∑
j=2

ω(53−j) =
4∑

j=2

ω(53−j) +
∞∑
j=4

ω(53−j)

≤6A1 +
∞∑
j=1

ω(5−j) (log(5))−1

∫ 51−j

5−j

dr

r

≤6A1 + (log(5))−1

∫ 1

0

ω(r)
dr

r

≤6A1 + (log(5))−1 A2 ≤ (2δ10n)−1N

5
.

The result follows. �

Step 3: Final conclusion. The details are left as an exercise. First
show using Lemma 6.40 that

|{x ∈ 5Bi : |Tfλ| > 2N}| ≤ c

∫
5Bi

|fλ|2 dx.

Prove then the general principle in the measure theory: If g ∈ Lp(Rn),
then ∫

Rn

|g|p dx = (p− 2)

∫ ∞

0

µp−3

(∫
Rn∩{|g|>µ}

|g|2 dx
)

dµ.

Finally, prove applying Lemma 6.36 and previous two estimates∫
Rn

|Tf |p dx ≤c(n, p, A1, A2)δ
2

∫
Rn

|Tf |p dx

+ c(n, p, A1, A2, δ)

∫
Rn

|f |p dx,

and make the final conclusion from this. �

We end up the section by noting that modifying calculations in Step
2. above, it is possible to prove the following two lemmata:
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Lemma 6.44. There is a constant c = c(n,A1, A2) such that∫
Rn∩{|y|>2|x|}

∣∣∣∣Ω(y − x)

|y − x|n
− Ω(y)

|y|n

∣∣∣∣ dy ≤ c

for all x ∈ Rn.

Proof. Exercise. Use already proved estimates from Step 2 above. �
Lemma 6.45. Let ε > 0 and suppose that f ∈ S(Rn). Let x0 ∈
Rn, ϱ > 0, and g = (1 − χB(x0,25ϱ))f . Then there is a constant c =
c(n,A1, A2) such that∣∣T (ε)g(z)− T (ε)g(x)

∣∣ ≤ cMf(x), |Tg(z)− Tg(x)| ≤ cMf(x)

for all x, z ∈ B(x, 5ϱ).

Proof. Exercise. Use already proved estimates from Step 2 above. �
6.3.3. Weak (1,1). Weak (1,1) is attainable via modification of the sec-
ond proof of Theorem 6.11. This gives naturally an alternative way to
prove strong (p, p) via Marcinkiewicz interpolation theorem using du-
ality and strong (2, 2). Since the proof is essentially the same, we only
sketch the needed modifications.

Theorem 6.46. Let f ∈ S(Rn). Then there is a constant c depending
only on n,A1, A2 such that weak (1, 1)

|{x ∈ Rn : |Tf(x)| > λ}| ≤ c

λ
∥f∥1

holds for all λ > 0. The same estimate holds if T is replaced with T (ε).

Proof. Suppose that f ∈ S(R) and let λ > 0.
Step 1. Application of Calderón-Zygmund decomposition. Calderón-

Zygmund decomposition gives us disjoint dyadic cubes {Qj} such that

|f(x)| ≤ λ for a.e. x /∈ Ξ :=
∪
j

Qj,

|Ξ| ≤ 1

λ
∥f∥1,

λ < (|f |)j ≤ 2nλ, (|f |)j := −
∫
Qj

|f(t)| dt.

Denote by cj the center of Qj and by θQj the cube centered at cj and
with θ times longer sides. Let θΞ = ∪jθQj.

Split f as follows:

g(x) =

{
f(x), x /∈ Ξ,

(f)j, x ∈ Qj,

and
b =

∑
j

bj, bj = (f − (f)j)χQj
.
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Then f = g + b, |g| ≤ 2λ almost everywhere and
∫
Rn bj(t) dt = 0.

Step 2. Bound for
∫
Rn\

√
4nQj

T̃ bj(x) dx. Using the extension of T (or

T (ε)) to L2(Rn), both T̃ g and T̃ b exist. Since bj has zero integral, we
have formally

T̃ bj(x) =

∫
Qj

K(x− y)bj(y) dy =

∫
Qj

(K(x− y)−K(x− cj)) bj(y) dy.

for almost every x ∈ Rn. Here we have denoted

K(x) =
Ω(x)

|x|n
.

(To make the calculation rigorous, one should justify T̃ bj = Tbj almost
everywhere. This goes along the lines made for the Hilbert transform.)
Fubini’s theorem now gives∣∣∣∣∣

∫
Rn\

√
4nQj

T̃ bj(x) dx

∣∣∣∣∣
≤
∫
Qj

|bj(y)|

(∫
Rn\

√
4nQj

|K(x− y)−K(x− cj)| dx

)
dy.

The inner integral is bounded by Lemma 6.44, since

Rn \
√
4nQj ⊂ {x ∈ Rn : |x− cj| > 2|y − cj|},

and it follows that∣∣∣∣∣
∫
Rn\

√
4nQj

T̃ bj(x) dx

∣∣∣∣∣ ≤ c

∫
Qj

|bj(y)| dy.

Step 3. Weak (1,1) estimate. Since Tf = T̃ f = T̃ g + T̃ b (T̃ linear
in L2(Rn)), we have

|{x ∈ Rn : |Hf(x)| > λ}|

≤
∣∣∣{x ∈ Rn : |T̃ g(x)| > λ/2}

∣∣∣+ ∣∣∣{x ∈ Rn : |T̃ b(x)| > λ}
∣∣∣ .

Since T̃ is strong (2,2), together with the fact that 0 ≤ |g| ≤ 2nλ almost
everywhere, implies∣∣∣{x ∈ Rn : |T̃ g(x)| > λ}

∣∣∣ ≤ 1

λ2

∫
Rn

|T̃ g(x)|2 dx =
c2
λ2

∫
Rn

|g|2 dx

≤ c

λ

∫
Rn

|g| dx =
c

λ

∫
Rn\Ξ

|f | dx

Next, we have∣∣∣{x ∈ Rn : |T̃ b(x)| > λ}
∣∣∣ ≤|

√
4nΞ|+ 1

λ

∫
Rn\

√
4nΞ

|T̃ b(x)| dx ≤ c

λ
∥f∥1
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by Step 2 and by the fact that |
√
4nΞ| ≤ (4n)n/2|Ξ| ≤ cλ−1∥f∥1 from

the Calderón-Zygmund decomposition. Combining estimates gives

|{x ∈ Rn : |Tf(x)| > λ}| ≤ c

λ
∥f∥1,

concluding the proof. �

6.3.4. Existence of limits. In this section we establish the existence
of the limit Tf whenever f ∈ Lp(Rn), 1 ≤ p < ∞. The approach
has been already paved in the study of the Hilbert transform. The
necessary object to study is the maximal operator

T (∗)f(x) := sup
ε>0

|T (ε)f (x)|.

We will first show a pointwise bound with the aid of the Hardy-Littlewood
maximal function. For this, we need a lemma.

Lemma 6.47. Let S be weak (1, 1) with the constant c1 and let ν ∈
(0, 1). Then there exists c = c(ν, c1) such that∫

E

|Sf(y)| dy ≤ c|E|1−ν∥f∥ν1

for any set E with a finite measure.

Proof. Weak (1,1), together with Cavalieri’s principle, implies∫
E

|Sf(y)|ν dy =ν

∫ ∞

0

λν−1|{x ∈ E : |Sf(x)| > λ} dλ

≤ν

∫ ∞

0

λν−1min{|E|, c1λ−1∥f∥1} dλ

=ν|E|
∫ c1∥f∥1/|E|

0

λν−1 dλ+ νc1∥f∥1
∫ ∞

c1∥f∥1/|E|
λν−2 dλ

=cν1|E|1−ν∥f∥ν1 + cν1
ν

1− ν
|E|1−ν∥f∥ν1

=
cν1

1− ν
|E|1−ν∥f∥ν1.

�
We now prove the pointwise bound commonly cited as Cotlar’s in-

equality.

Lemma 6.48. Let f ∈ S(Rn). Then, for all ν ∈ (0, 1], there is a
constant c = c(n,A1, A2, ν) such that

(T (ε)f)(x) ≤ c((M(|Tf |ν)(x)1/ν +Mf(x)). (6.49)

Proof. Fix f ∈ S(Rn) and ε > 0. Denote θB = B(x, 5−1θε), θ > 0 and
B = 1B. Let f1 = fχ5B and f2 = f − f1. Observe that

(T (ε)f)(x) = (T (ε)f2)(x) = (Tf2)(x)
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Lemma 6.45 implies that

|Tf2(x)− Tf2(z)| ≤ cMf(x)

whenever z ∈ B. It readily follows that

|(T (ε)f)(x)| ≤ cMf(x) + |(Tf1)(z)|+ |(Tf)(z)|, z ∈ B.

Assume now that |(T (ε)f)(x)| > 0, for if it is not, there is nothing to
prove. Take any λ, 0 < λ < |(T (ε)f)(x)| and define

B1 := {z ∈ B : |(Tf1)(z)| > λ/3}, B2 := {z ∈ B : |(Tf)(z)| > λ/3},
and

B3 :=

{
∅, if cMf(x) ≤ λ/3,

B, otherwise.

Then B = B1 ∪B2 ∪B3 and consequently

|B| ≤ |B1|+ |B2|+ |B3|.

The weak (1, 1) for T implies (to be accurate, we are using here T̃ , but

in B, T̃ f = Tf)

|B1| = |{z ∈ B : |(Tf1)(z)| > λ/3}| ≤ c

λ

∫
5B

|f(y)| dy ≤ c

λ
|B|Mf(x)

For |B2| we have the estimate

|{z ∈ B : |(Tf)(z)| > λ/3}| ≤ 3

λ

∫
B

|Tf(z)| dz ≤ c

λ
|B|M(Tf)(x).

If now B3 = ∅, i.e. |B| ≤ |B1|+ |B2|, then

1 ≤ c

λ
Mf(x) +

c

λ
M(Tf)(x).

If B3 = B, then
λ ≤ 3cMf(x)

In any case the result follows and for ν = 1.
Let now 0 < ν < 1. Then we actually have

|(T (ε)f)(x)|ν ≤ cMf(x)ν + |(Tf1)(z)|ν + |(Tf)(z)|ν , z ∈ B.

Averaging this over B and then taking the power 1/ν, we obtain

|(T (ε)f)(x)| ≤ cMf(x) + c

(
−
∫
B

|(Tf1)(z)|ν dz
)1/ν

+ cM(|Tf |ν)1/ν

The previous lemma implies that(
−
∫
B

|(Tf1)(z)|ν dz
)1/ν

≤ c|B|−1∥f1∥1 ≤ cMf(x),

concluding the proof. �
The pointwise bound allows us to prove strong (p, p) and weak (1, 1)

for the maximal operator T (∗). For weak (1,1), however, we need yet
another lemma concerning the dyadic maximal function Mdf .
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Lemma 6.50. Let f ∈ L1(Rn) be nonnegative. Then

|{x ∈ Rn : Mf(x) > 4nλ}| ≤ 3n |{x ∈ Rn : Mdf(x) > λ}| .

Proof. In the fifth exercise round, Exercise 5.3, it was shown that taking
the Calderón-Zygmund decomposition of f at the level λ with disjoint
dyadic cubes {Qj}j, then

{x ∈ Rn : Mdf(x) > λ} =
∪
j

Qj.

Let 3Qj be the cube with the same center as Qj, whose sides are three
times longer. Let x /∈ ∪j3Qj and let Q be any cube containing x.
Let k be an integer such that the side length of Q, ℓ(Q), satisfies
2k < ℓ(Q) ≤ 2k+1. Then there are at most m ≤ 2n of dyadic cubes, say
R1, . . . , Rm, with side lengths 2k intersecting Q. None of these cubes
are contained in {Qj}, because otherwise we would have x ∈ ∪j3Qj.
Hence the average on f on each Ri is at most λ and, consequently

−
∫
Q

f = |Q|−1

m∑
i

∫
Q∩Ri

f ≤ 2kn

|Q|

m∑
i

−
∫
Ri

f ≤ 2nmλ ≤ 4nλ.

It follows that

{x ∈ Rn : Mf(x) > 4nλ} ⊂
∪
j

3Qj

and hence

|{x ∈ Rn : Mf(x) > 4nλ}| ≤ 3n
∑
j

|Qj|

and the result follows. �

Theorem 6.51. Let f ∈ S(Rn). Then there are constants cp =
cp(n, p, A1, A2) and c1 = c1(n,A1, A2) such that T (∗) is strong (p, p)
with the constant cp and weak (1, 1) with the constant c1 when restricted
to S(Rn).

Proof. Strong (p, p) is an immediate consequence of Lemma 6.48 with
ν = 1, because both T and M are strong (p, p).

To prove weak (1,1), we argue as follows. Starting from (6.49), we
have ∣∣{x ∈ Rn : T (∗)f(x) > λ

}∣∣
≤ |{x ∈ Rn : Mf(x) > λ/(2c)}|
+
∣∣{x ∈ Rn : M(|Tf |ν)(x)1/ν > λ/(2c)

}∣∣ .
For the first term on the right we obviously have

|{x ∈ Rn : Mf(x) > λ/(2c)}| ≤ c

λ
∥f∥1.
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For the second we first use the lemma above to obtain∣∣{x ∈ Rn : M(|Tf |ν)(x)1/ν > (λ/(2c))ν
}∣∣

≤ 3n
∣∣{x ∈ Rn : Md(|Tf |ν)(x) > 4−n (λ/(2c))ν

}∣∣ .
Forming the Calderón-Zygmund decomposition of |Tf |ν at the level
4−n (λ/(2c))ν we obtain disjoint dyadic cubes {Qj} such that

E :=
{
x ∈ Rn : Md(|Tf |ν)(x) > 4−n (λ/(2c))ν

}
=
∪
j

Qj

Since f ∈ S(Rn), E has finite measure. Moreover, since

|Qj| ≤
4n(2c)ν

λν

∫
Qj

|Tf |ν ,

we have that

|E| ≤ 4n(2c)ν

λν

∫
E

|Tf |ν .

Applying then Lemma 6.47 (indeed, T is weak (1,1)), we obtain∫
E

|Tf |ν ≤ cν1
1− ν

|E|1−ν∥f∥ν1,

immediately giving

|E| ≤ c1
(1− ν)1/ν

4n/ν2c

λ
∥f∥1.

This concludes the proof for example taking ν = 1/2. �
Previous results allow us to conclude with the Lp theory of singular

integrals of convolution type. The proof is completely analogous to the
case of the Hilbert transform and we omit it.

Theorem 6.52. Let f ∈ Lp(Rn). Then the limit

Tf(x) = lim
ε↓0

T (ε)f(x)

exists for almost every x ∈ Rn. Moreover, there are constants cp =
cp(n, p, A1, A2) and c1 = c1(n,A1, A2) such that T is strong (p, p) with
the constant cp and weak (1, 1) with the constant c1.

6.4. Singular integrals of nonconvolution type: Calderón-Zyg-
mund operators. In this final section of the course we very briefly and
informally comment more general class of singular integral operators,
namely Calderón-Zygmund operators. We will consider functions

K : (Rn ×Rn) \∆ 7→ C, ∆ := {(x, x) : x ∈ Rn}
that satisfy for some constant A > 0 the size bound

|K(x, y)| ≤ A

|x− y|n
, x, y ∈ Rn, x ̸= y,
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and for some δ > 0 the regularity conditions

|K(x, y)−K(z, y)| ≤ A
|x− z|δ

(|x− y|+ |z − y|)n+δ
, x, z, y ∈ Rn, x, z ̸= y,

whenever |x− z| ≤ 2−1 max{|x− y|, |z − y|}, and

|K(x, z)−K(x, y)| ≤ A
|y − z|δ

(|x− y|+ |x− z|)n+δ
, x, z, y ∈ Rn, x ̸= y, z,

whenever |y − z| ≤ 2−1max{|x− y|, |x− z|}.
Function satisfying the above three conditions are called standard

kernels and the set of them denoted by SK(δ, A). These conditions
imply so-called Hörmander conditions∫

|x−y|>2|y−z|
|K(x, y)−K(x, z)| dx ≤ c ∀y, z ∈ Rn (6.53)

and ∫
|x−y|>2|x−z|

|K(x, y)−K(z, y)| dy ≤ c ∀x, z ∈ Rn. (6.54)

An operator T is called a (generalized) Calderón-Zygmund operator
if T is strong (2, 2) and there exists a standard kernel K ∈ SK(δ, A)
associated to T such that for f ∈ L2(Rn) with a compact support,

Tf(x) =

∫
Rn

K(x, y)f(y) dy, x /∈ spt(f).

Here spt(f) stands for the support of f . The class of such operators
is denoted by CZO(δ, A). Following ideas from previous sections it
is possible to show that T defined this way is weak (1, 1) and strong
(p, p). Actually, for this one needs only conditions (6.53) and (6.54).

To define the principal values, one very natural candidate would be
to define them as limits of the approximating operator

T (ε)f(x) =

∫
|x−y|>ε

K(x, y)f(y) dy.

However, it turns out that the limit as ε → 0 needs not to exist or
it may exist but be different from Tf(x). The non-existence of limits
occurs for example with the kernel K(x, y) = |x − y|−n−it, t > 0,
and the second phenomenon happens when considering the identity
operator T = I. This is an operator in CZO(δ, A) with the standard
kernel K(x, y) = 0. Indeed, clearly I is strong (2, 2) and If(x) = 0
whenever x /∈ spt(f). More in general, any pointwise multiplication
Tf(x) = a(x)f(x), a ∈ L∞(Rn), has the same peculiar property.

The existence of limits can be described via the following proposition.

Proposition 6.55. Let T ∈ CZO(δ, A) be associated with the kernel
K ∈ SK(δ, A), and let Let f ∈ C∞

0 (Rn). Then the limit

lim
ε↓0

T (ε)f(x)
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exists if and only if the limit

lim
ε↓0

∫
ε<|x−y|<1

K(x, y) dy

exists for almost every x ∈ Rn.

Proof. Suppose first that the limit

(Lf)(x) := lim
ε↓0

T (ε)f(x)

exists for all f ∈ C∞
0 (Rn). Fix ϕ ∈ C∞

0 (Rn) such that ϕ = 1 in B(x, 1).
Then

(Lϕ)(x) = lim
ε↓0

∫
ε<|x−y|<1

K(x, y) dy +

∫
|x−y|≥1

K(x, y)ϕ(y) dy.

The second integral on the right exists since |K(x, y)| ≤ A on {|x−y| ≥
1}. Therefore, also the limit

lim
ε↓0

∫
ε<|x−y|<1

K(x, y) dy = (Lϕ)(x)−
∫
|x−y|≥1

K(x, y)ϕ(y) dy

exists.
Conversely, assume that

L(x) := lim
ε↓0

∫
ε<|x−y|<1

K(x, y) dy

exists. Then

lim
ε↓0

T (ε)f(x) =Lf(x) + lim
ε↓0

∫
ε<|x−y|<1

K(x, y)(f(y)− f(x)) dy

+

∫
|x−y|≥1

K(x, y)(y) dy

The limit on the right exists by the dominated convergence, since

|K(x, y)(f(y)− f(x))|χε<|x−y|<1 ≤
A

|x− y|n−1
∥Df∥∞,

which is integrable over B(x, 1) with respect to y. Thus

lim
ε↓0

T (ε)f(x) = L(x)f(x)

+

∫
|x−y|<1

K(x, y)(f(y)− f(x)) dy +

∫
|x−y|≥1

K(x, y)(y) dy.

�
As noted before, the first limit above does not necessarily coincide

with Tf(x). Nonetheless, from the above proof, we have the following.

Proposition 6.56. If two operators T1, T2 ∈ CZO(δ, A) are associated
with the same kernel K ∈ SK(δ, A), then their difference is a pointwise
multiplication operator.
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An operator is called a Calderón-Zygmund singular integral operator
if it satisfies

Tf(x) = lim
ε↓0

T (ε)f(x) (6.57)

for almost every x ∈ Rn.6 As before, defining

T (∗)f(x) := sup
ε>0

|T (ε)f(x)|,

it can be shown that T (∗) is strong (p, p) and weak (1, 1), readily im-
plying that{

f ∈ Lp(Rn) : lim
ε↓0

T (ε)f exists for a.e. x ∈ Rn

}
is closed in Lp(Rn). Thus, if we can verify (6.57) for a dense subset
of Lp(Rn), say for instance C∞

0 (Rn), then the limit exists for all f ∈
Lp(Rn), 1 ≤ p < ∞.

We yet briefly comment the assumption that T ∈ CZO(δ, A) satisfies
strong (2, 2). In practice, given K ∈ SK(δ, A), verifying strong (2, 2)
is utterly non-trivial. As we have seen in the case of singular integrals
of convolution type, this is loosely speaking the starting point in the
analysis we have pursued. For a long time strong (2,2) was one of
the major open problems - and in full generality still is - in the field
of Harmonic Analysis. This question was eventually answered by G.
David and J-L. Journé in 1984 with a theorem nowadays commonly
cited as T1 Theorem (in most concise form it says that if T has the
weak boundedness property and both T1 and T ∗1 belong to function
space of bounded mean oscillations, BMO, then T is strong (2, 2)).
The proof, however, goes well beyond the scope of this course. Another
important result from Harmonic Analysis, proved in 70s by Fefferman-
Stein, considers images of L∞-functions under the singular integral
operators. This topic we have also intentionally excluded from our
approach. It turns out that T ∈ CZO(δ, A) maps L∞(Rn) to BMO.

Finally, since the function space BMO appears in these two im-
portant contexts, we give the definition of this function space. Let
f ∈ L1

loc(R
n) and Q ⊂ Rn be a cube. Define the sharp maximal

function as

M#f(x) := sup
Q∋x

−
∫
Q

|f − (f)Q| dx, (f)Q = −
∫
Q

f dx.

We say that f ∈ L1
loc(R

n) belongs to BMO if M#f ∈ L∞(Rn). Define
the corresponding seminorm as

∥f∥BMO := ∥M#f∥∞.

6Actually, in the literature, the same notion is used in the context that there is
merely a subsequence {εj}j converging to zero with the above property.


