HARMONIC ANALYSIS, 9. EXERCISE

1. (1p) Define the Fourier transform for $f \in S(\mathbf{R}^n)$ as

$$\widehat{f}(\xi) = \int_{\mathbf{R}^n} f(x) e^{-i2\pi x \cdot \xi} d\xi.$$

Suppose that $f, g \in S(\mathbf{R}^n)$ and $\alpha, \beta \in \mathbf{C}$. Show that

(i)
$$(\alpha f + \beta g) = \alpha \hat{f} + \beta \hat{g},$$

(ii) $\widehat{\left(\frac{\partial f}{\partial x_j}\right)}(\xi) = 2\pi i \xi_j \hat{f}(\xi), \ j = 1, \dots, n,$
(iii) $\frac{\partial \hat{f}}{\partial \xi_j}(\xi) = (-2\pi i x_j f)(\xi), \ j = 1, \dots, n,$
(iv) \hat{f} is continuous,
(v) $||\hat{f}||_{\infty} \leq ||f||_1,$
(vi) $\widehat{f(\varepsilon x)} = \frac{1}{\varepsilon} \hat{f}(\frac{\xi}{\varepsilon}) = \hat{f}_{\varepsilon}(\xi), \ \varepsilon > 0,$
(vii) $\widehat{fg} = \hat{f} * \hat{g}.$
(1p) Let

2. (1p)

$$P_t(y) := c_n \frac{t}{(t^2 + |y|^2)^{(n+1)/2}}, \qquad Q_{k,t}(y) := c_n \frac{y_k}{(t^2 + |y|^2)^{(n+1)/2}}.$$

Show that for all $f \in S(\mathbf{R}^n)$ there is a constant c depending only on f and n such that

$$|P_t * f(x)| \le \frac{c(1+t)}{(1+t^2+|x|^2)^{(n+1)/2}}$$

and

$$|Q_{k,t} * f(x)| \le \frac{c}{(1+t^2+|x|^2)^{n/2}}$$

3. (2p) Let $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$. Suppose that at the point $x \in \mathbf{R}^n$, $|f(y) - f(x)| \le C|x - y|^{\alpha}$

for all $y \in B(x, \delta)$, for some C > 0 and $\alpha, \delta > 0$. Show that the limit $(R_j f)(x)$ exists. Moreover, under the same condition on f, show that

$$\lim_{t \downarrow 0} (Q_{j,t} * f)(x) = (R_j f)(x), \qquad Q_{j,t}(y) := \frac{y_j}{(t^2 + |y|^2)^{(n+1)/2}}.$$

4. (1p) Let $f \in S(\mathbf{R}^n)$. Show that

$$\left\|\frac{\partial^2 f}{\partial x_i \partial x_j}\right\|_2 \le \|\Delta f\|_2.$$

Date: 11.11.2010, deadline 25.11.2010.