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Abstract

We consider a shape identification problem of growing crystals. The
shape of the crystal is to be constructed from a single interferometer
measurement. This is an ill-posed inverse problem. The forward problem
of interferogram from shape is injective if we restrict the problem to convex
shapes with known boundary. The problem is formulated as a shape
optimization problem. Our aim is to solve this numerically using the
gradient descent method. In the numerical computations of this paper we
study the behavior of the approach in simplified cases. Using H

1-gradients
(inner products) acts as a regularization method. Methods for enforcing
the convexity of shapes are discussed.

1 Introduction

Shape optimization is a field of mathematical optimization concerned with find-
ing the shape (bounded open set with Lipschitz boundary) that minimizes a
given cost functional. Boundary variational techniques can be used to compute
sensitivities of functionals with respect to shape. Comprehensive texts on the
topic of shape analysis include [10] and [17].

We consider a shape identification problem of finding the shape of a growing
3He crystal that best fits the interferogram produced in a Fabry-Pérot inter-
ferometer. Based on physical principles it is assumed that the crystal shape is
convex at all times. For an overview of the growth process of 3He crystals and
the interferometer setup, see [19].

The restriction to convex shapes can be used as a simplification tool in shape
optimization problems. In [6] the authors showed the existence of solutions to
very generic shape optimization problems with the constraint that the shapes
were convex. In our problem of determining shape from interferogram the op-
erator solving the forward problem is generally not injective if the shapes are

∗Eirola T. and Lassila T.: Optimization of convex shapes: an approach to

crystal shape identification. Proceedings of the 2nd International Conference on

Scale Space Methods and Variational Methods in Computer Vision, Voss, Nor-

way, June 2009, pp.660-671, 2009. The original publication is available at
http://www.springerlink.com/content/x2091u5661757513/. This work has been supported
by the Academy of Finland (decision number 107290/04). We would like to thank Heikki
Junes from the Low Temperature Laboratory at TKK for his input and introducing us to this
problem.

1

http://www.springerlink.com/content/x2091u5661757513/


allowed to be nonconvex. We prove that if the convexity assumption holds and
the height of the shape at the boundary of the computational domain is known
then the shape identification problem does have a unique solution.

It has been previously noted that the convexity constraint can be difficult to
handle in numerical computations, especially in higher dimensions. It is known
that pointwise conditions, such as curvature conditions, can fail to guarantee
convexity for functions sampled at discrete points. For further discussion on
this point, see [1].

Methods for optimization in the family of convex functions have been pre-
viously studied in [1, 7, 8, 9, 13]. In contrast to most of these approaches we
do not write a strict convex constraint system, but instead use a penalization
method that allows convexity to be temporarily broken when it is beneficial to
the convergence of the iteration.

The shape identification problem is solved using level set methods and gra-
dient descent for shapes. Methods for convexification by evolution equations,
such as the level set method, have been previously considered in [12, 20]. As
is typical for ill-posed inverse problems, the presence of experimental noise in
the measurements requires some type of regularization. We demonstrate that
using H1-gradients (inner products) for the shape gradients acts as a form of
regularization.

2 Shapes and Shape Evolution

2.1 Representing Shapes

We first define the notation. The computational domainD ⊂ R
d, d ∈ {1, 2}, is a

convex bounded open set. We consider convex shapes (open sets with Lipschitz
boundary) Ω ⊂ D × R

+, which are supported by D from below, that is to say

〈~n(~x), ~e3〉 < 0 =⇒ x3 = 0 , (1)

where ~n is the outward normal vector field on the surface ∂Ω.
A convex shape Ω supported by D can be represented in many ways. One

is to give a Lipschitz function φ : D × R
+ → R such that

Ω = {~x : φ(~x) < 0} , Ωc = {~x : φ(~x) ≥ 0} (2)

and |∇φ| nonvanishing on ∂Ω. Then φ is called an implicit function or a level set
function for Ω. An alternative representation of Ω is with a function u : D → R

+

defined as
u(x1, x2) = sup {x3 ≥ 0 : φ(x1, x2, x3) ≤ 0} , (3)

where φ is an implicit function for Ω. We call this the height function of Ω.
Note that if Ω is convex then u is concave. Denote by C ⊂ H1(D) ∩ C(D) the
set of concave functions on D that are continuous on D. We also define Ch ⊂ C
as the subset of concave functions that are equal to h on the boundary ∂D for
a given function h : ∂D →
mathbbR+.
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2.2 Level Set Methods

Consider an initial shape Ω0 and an evolution its boundary ∂Ω0 under a smooth
velocity field ~v(~x, t). When the shape Ω(t) at time t is represented by an im-
plicit function φ(·, t), we have an Eulerian representation of the evolution of the
implicit function in time

φt(~x, t) + vn(~x, t)|∇φ(~x, t)| = 0 , (4)

where vn is the component of ~v in the outward normal direction of ∂Ω. This is
called a level set equation. Level set methods are a generic framework of nonlin-
ear hyperbolic-parabolic PDEs for implicit functions that can be used to model
evolution of shapes under certain types of flows. For a generic introduction into
level set methods, see [16]. For a survey of level set methods specifically in
inverse problems, see [5].

3 Shape Optimization

3.1 Shape Derivatives

Let J(Ω) : Σ → R be a shape functional defined on some family of admissible
shapes Σ. The derivative with respect to shape at Ω0 in the direction of the
smooth velocity field ~v is defined as the limit

dJ(Ω0;~v) = lim
t→0+

J(Ωt) − J(Ω0)

t
(5)

when it exists. With some general assumptions (see Chap. 8 of [10] for details)
this expression is bounded and linear with respect to ~v, and has support only
on the boundary of Ω0:

dJ(Ω0;~v) =

∫

∂Ω0

D · vn dS . (6)

Using the shape derivative (6) the shape functional can be expanded as

J(Ωt) = J(Ω0) + t · dJ(Ω0;~v) + o(t) . (7)

For a given Hilbert space H(∂Ω0) we look for the unique function ∇SJ ∈
H(∂Ω0) such that

dJ(Ω0;~v) = 〈∇SJ, vn〉H . (8)

Then ∇SJ is the shape gradient of J with respect to the chosen inner product.
If the velocity normal field vn is chosen to be the negative shape gradient vn =
−∇SJ(Ω0) we have

J(Ωt) = J(Ω0) − t · ||dJ(Ω0)||
2
H(∂Ω0) + o(t) < J(Ω0) (9)

for sufficiently small t > 0. This is the method of gradient descent for shape
optimization. The negative gradient flow can be efficiently implemented with
numerical level set methods.
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3.2 Convexity Constraints

To obtain level set methods that preserve the convexity of the shape we follow
the basic idea of constrained gradient descent. Let G(Ω) be a shape constraint
functional. We consider the constrained shape optimization problem

min
Ω

J(Ω) (10)

subject to G(Ω) = 0. Then if J and G are shape differentiable and there exist
shape gradients ∇SJ and ∇SG, we let µ be a Lagrange multiplier and obtain
the necessary conditions for a constrained minimum

∇SJ(Ω) + µ∇SG(Ω) = 0 , (11)

G(Ω) = 0 . (12)

A C2 shape in the plane is convex if the curvature of its boundary is nonnegative.
In three dimensions a sufficient condition for convexity is that both principal
curvatures of the surface must be nonnegative.

Let Ω be a convex shape with the height function u. Then the minimum
curvature k1 of the surface is given by

k1 = −
ux1x1

+ ux2x2
+

√
(ux1x1

− ux2x2
)
2

+ (2ux1x2
)
2

√
1 + u2

x1
+ u2

x2

. (13)

This follows from taking the smaller eigenvalue of the matrix representation of
the second fundamental form. We extend k1 to all of D × R

+ by setting

k1(x1, x2, x3) = k1(x1, x2, u(x1, x2)) for all x3 ≥ 0 . (14)

Let Ω be supported by D and define k̃ := k1

√
1 + |∇u|2. We use the constraint

functional

G(Ω) =

∫

∂Ω

u(~x)max {0,−k1(~x)} dS . (15)

This functional vanishes if and only if k1 is everywhere nonnegative. The scaling
by u is shown to be useful by the following computation. We reformulate the
functional in terms of a change of integrals from ∂Ω to D. Then:

G(Ω) =

∫

∂Ω

max

{
0,−

u√
1 + |∇u|2

k̃

}
dS =

∫

D

max
{
0,−uk̃

}
dx1 dx2

=

∫

D

∫ u(x1,x2)

0

max
{
0,−k̃

}
dx3 dx2 dx1 =

∫

Ω

max
{
0,−k̃

}
dx .

According to Theorem 4.2 of Chap. 8 in [10] this functional has the L2 shape
gradient

∇SG̃ = max
{

0,−k̃
}

. (16)

We obtain the penalty function formulation for the level set equation (4) with
a convexity constraint

φt +
(
vn − µmax

{
0,−k̃

})
|∇φ| = 0 , (17)
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with a penalty term µ > 0. This method is a version of the min/max curvature
flows studied in [14], since

φt + vn|∇φ| = µmin {0, k1} |∇φ| . (18)

Furthermore, the minimum curvature flow will convexify the initial shape, jus-
tifying our choice of the constraint functional (15). The following theorem was
proven in [20]:

Theorem 1. In the case that vn ≡ 0, the viscosity solution of the equation (17)
converges towards the convex hull of the initial shape Ω0 as t→ ∞.

4 A Problem in 3He Crystal Imaging

4.1 Fabry-Pérot Interferometer Measurement of a Crystal

The formation of faceted crystals in low-temperature 3He has been the subject
of study in the low temperature physics community. It is known that at below
200 mK temperatures smooth facets appear that correspond to orientations of
the lattice planes. The problem of predicting which facets appear at which
temperature is still open. It is known that as the temperature is increased past
the so called roughening limit the facets become rounded out and no longer
appear. The theoretical roughening limit is much higher than what has been
observed in practical experiments.

We consider an experimental setup where liquid 3He at temperature be-
low 200 mK is placed between the two plates of a Fabry-Pérot interferometer.
Overpressure is then exerted to allow the creation of crystals to occur. As light
passes through the crystals, a diffraction pattern is observed on a CCD imaging
array. By relating the intensity of the interferogram to the phase delay through
the crystal at each point we can determine the shape of the crystal and the
orientation of all the facets.

4.2 Convexity of Crystals and the Growth Process

The growth of crystals is governed by three principal forces: the external work
done to the system by the driving overpressure, the surface tension between the
liquid and solid Helium, and gravity. When the crystal growth process is suffi-
ciently slow we can assume that at each measurement the crystal has achieved
thermal equilibrium. The crystal shape is then determined by minimizing a sur-
face energy. This leads to an anisotropic mean curvature flow that models the
growth process of crystals [21]. It is known that such flows preserve convexity
of the shapes [3]. We therefore assume that, apart from small irregularities, the
thermal equilibrium shape is also convex. This assumption has been verified in
experimental measurements.

4.3 Inverse Problem of Shape from Interferogram

Let D = [0, 1]2 be the domain of the interferogram and f : D → R a function
that gives the intensity of the interference pattern at each point on the CCD.
The physical parameters are ∆nsl, the difference between the refractive indices
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of the solid and liquid 3He, and λ, the interferometer laser wavelength, and a(~x)
the amplitude.

The intensity of the interference pattern at each point is given approximately
by

F(u)(~x) = a(~x) ϕ(
∆nsl

λ
u(~x)) = f(~x) , (19)

where ϕ : R → [−1, 1] is a continuously differentiable piecewise strictly mono-
tone waveform function. Note that this definition forbids square or sawtooth
type waveforms. To simplify things we assume the laser amplitude to be almost
constant and known, a(~x) ≈ ã. The inverse problem to be solved is: given an
interferogram f ∈ L2(D) of measured intensities (with noise), deduce the shape
of the crystal Ω.

This problem can be posed as a mathematical shape optimization problem.
Let Ω be a convex trial shape supported by D. Denote the bottom part of the
surface of the shape as Γb := ∂Ω ∩ D. We consider the shape functional with
the L2-norm

J(Ω) = 1
2

∫

∂Ω\Γb

|ϕ(x3) − Sf(x1, x2)|
2 dS , (20)

where ϕ is a continuously differentiable and piecewise strictly monotone func-
tion and S : L2(D) → H1(D) is a smoothing operator. The corresponding
mathematical shape optimization problem is then

min
Ω∈Σconvex

Γ
b

J(Ω) , (21)

where Σconvex
Γb

is a family of convex shapes with Γb fixed. The choice of this
family of will be discussed later. We have the following existence theorem from
[6]:

Theorem 2. Let f be such that Sf is continuous. Then the shape optimization
problem (21) has at least one solution.

4.4 Is the Inverse Problem Uniquely Solvable?

It is possible to construct examples that show that in the absence of a convexity
constraint the inverse problem of finding the shape Ω from its interference pat-
tern f is not uniquely solvable even when we set a perimeter constraint such as
requiring Γb to be fixed. But if we require convexity and fix u on the boundary
∂Γb, we have the following result:

Theorem 3. Let D ⊂ R
d be a bounded convex open set and Γ its boundary. Fix

a function h ∈ C(Γ) on the boundary. Let Ch be the family of concave functions
u : D → R in C(D) such that u|Γ = h. Let the operator F : H1(D) → H1(D)
be defined as

(Fu)(~x) = ϕ(u(~x)) . (22)

where ϕ is a continuously differentiable and piecewise strictly monotone func-
tion. Then the restriction of F into Ch is injective.

Proof. Case d = 1:
Let u, v : [a, b] → R be distinct concave functions such that u(a) = v(a),

u(b) = v(b), and that ϕ(u) ≡ ϕ(v). Let (ξ, η) ⊂ [a, b] be any open interval where
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u 6= v but u(ξ) = v(ξ) and u(η) = v(η). Without loss of generality we assume
u > v on (ξ, η). Since ϕ is continuously differentiable and ϕ(u(ξ)) = ϕ(v(ξ))
from the inverse function theorem it follows that ϕ′(u(ξ)) = 0.

From the assumption that ϕ is piecewise strictly monotone follows that ϕ′

has only isolated zeros. Thus the local behavior of ϕ near u(ξ) can be of only
two types, a) or b), as shown in Fig. 1.

b)a)
ϕ

u, v

u(ξ) = v(ξ) u(ξ) = v(ξ)

Figure 1: The different kinds of possible local behavior of the function ϕ(u)
near a bifurcation point ξ.

Since u is concave there exists an interval (ξ, ξ+ε) where it is either constant,
increasing, or decreasing:

1. If u was constant in some interval (ξ, ξ + ε) then so would be ϕ(v). But
because ϕ′ cannot vanish in any neighborhood of u(ξ) this would mean
that v would also be constant in (ξ, ξ + ε), a contradiction. So neither u
nor v can be locally constant past the bifurcation point ξ.

2. Assume that u is increasing in some interval (ξ, ξ+ε) and the local behavior
of ϕ is like in a). Then v must be decreasing in (ξ, ξ + ε).

3. Assume that u is decreasing in some interval (ξ, ξ + ε) and the local be-
havior of ϕ is like in b). But since u > v, case b) is impossible.

Thus immediately after the bifurcation point ξ we must have u increasing and
v decreasing. Using the same argument at η we get that u must be decreasing
and v increasing in some interval (η−ε, η). But v is concave and cannot be first
decreasing and later increasing, a contradiction.
Case d ≥ 2:

For every pair of points ~x, ~y ∈ Γ we take the line segment L connecting ~x to ~y
and look at the restrictions u|L, v|L, which are concave functions of one variable.
Since u, v coincide on all such segments L they are equal everywhere.

We remark that in when the measurement is noisy we can lose the uniqueness
of the solution. This is due to the fact that the range of the forward operator
F is nonconvex, and thus if the measurement f lies outside the range of F the
minimization problem (21) can have multiple solutions.

7



4.5 Formulation for the H
1-variation of a Shape Func-

tional

To solve optimization problem (21) using the gradient descent method we must
find the shape gradient of the functional given by (8). While the gradient could
be computed only in the L2 inner product, we prefer the H1 inner product since
the resulting gradients are smoother and hopefully also lead to a numerically
more robust algorithm. The need for regularizing the shape variations is well-
established in the literature, but the relation with regularization of ill-posed
inverse problems perhaps less so. The effect of different inner products on the
convergence of the gradient descent iteration was studied in more detail in [4].

Theorem 1. Consider the shape functional for d-dimensional convex shapes
Ω ⊂ D × R

+:

J(Ω) =

∫

∂Ω \ Γb

g(~x, ~n) dS , (23)

where g(~x, ~n) is H1 with respect to both arguments. Then J is shape differ-
entiable and the shape derivative dJ(Ω;~v) with respect to a normal variation
vn ∈ H1

0 (D) is given by

dJ(Ω;~v) =

∫

D

[
−∇ng · ∇vn + (∇xg · ~n+ κg)vn

]
|F | dξ , (24)

for all vn ∈ H1
0 (D), where |F | :=

√
1 + |∇u|2 is the change of integrals term

given by u the height function of the convex shape.

Proof. The details are given for example in [18]. Here we reproduce only the
general procedure. Let Ω be given and φ its implicit function. Then according
to the coarea formula [11] gives

J(Ω) =

∫

∂Ω \ Γb

g(~x, ~n) dS =

∫

Rd

g(~x,
∇φ

|∇φ|
) |∇φ| δ(φ) χΓc

b
d~x .

The variation can now be performed in terms of φ. Let vn = −ψ/|∇φ| be an
extension velocity field to the entire R

d such that ψ|Γb
≡ 0, i.e. the base remains

fixed. The Gâteaux derivative is, after some computations, given by

dJ(Ω;~v) =
d

dτ
J(φ+ τψ) =

∫

Rd

(
−

ψ

|∇φ|

)
∇ ·

[
∇ng + g

∇φ

|∇φ|

]
|∇φ|δ(φ) dx .

Integration by parts gives
∫

∂Ω

∇ · (∇ng) vn dS = −

∫

∂Ω

∇ng · ∇vn dS

and the result follows by using the coarea formula in the other direction and
noting that ~n = ∇φ/|∇φ| and κ = ∇ · ~n is the mean curvature of ∂Ω.

We can thus compute the negative shape gradient of J with respect to the
H1 inner product as the solution w ∈ H1

0 (D) of the elliptic equation
∫

D

(∇vn · ∇w + vnw) dξ +

∫

D

(αvn + β · ∇vn) dξ = 0, for all vn ∈ H1
0 (D) ,

(25)
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where α = |F | (∇xg · ~n+ κg) and β = −|F |∇ng as in Lemma 1, plus homo-
geneous Dirichlet boundary conditions. For the convex constrained iteration it
also beneficial to use the H1-gradient of the constraint functional (15), which
can be obtained by the same procedure from (16).

5 Numerical Experiments

5.1 Methodology

As a first approach to optimization of convex shapes we limit the numerical
experiments to 1-d and choose D = [0, 1]. The questions to be answered are:

• Does the convexity constraint penalty term improve the quality of the
recovered shapes?

• We would like to estimate the tensor of anisotropy of the mean curvature
flow that drives the crystal formation process. Can reasonable estimates
for the curvatures be obtained from the recovered shapes?

The quality of the recovered shapes was studied with two different crystal
profiles (shown in Fig. 2). Case A represents a faceted crystal, while Case
B is a smooth profile. For the forward model we used a sinusoidal waveform,
f(x) = sin(γu(x)). To measure the error of the recovered shapes we generated
a testing sample of 100 noisy realizations of the data f , each with 10% standard
deviation, and took the mean L2-error over this sample set.

0 0.2 0.4 0.6 0.8 1
0

1

2

x 10
−4 Case A

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4 Case B

Figure 2: Left: True crystal shape (solid line) and initial guess (dashed line) for
the test Case A. Right: Same for Case B.

At each descent step the shape derivative (24) was computed. The H1-
gradient was solved from equation (25). The normal velocity field was extended
to the entire computational domain and the resulting level set evolution was
solved using the Level set method toolbox [15] for Matlab. The gradient descent
step size was chosen according to the Armijo rule [2] to obtain decreasing steps
in the functional (20). The iteration was stopped when the recovered height
function u changed less than 0.1% in the L2-norm during the previous step.
For the convex constrained iteration (17) we used a penalty parameter value of
µ = 105.
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5.2 Choosing the Smoothing Operator S

To construct the smoothing operator S in (20) we considered linear diffusion
operators of the form

(Sf)(xi) = (I − δDxx)
−K

f(xi), K ∈ N , (26)

whereDxx is an operator giving the discrete approximation of the second deriva-
tive of f at xi. The simplest choice is the symmetric difference approximation
for the second derivative (in the 1-d case)

Dxx =
f(xi+1) − 2f(xi) + f(xi−1)

∆x2
. (27)

This difference approximation tends to smooth out especially the corners of f ,
so that for faceted profiles we should choose K moderately small. We chose
δ = 0.01 and considered the cases K = 0 (no smoothing) and K = 100 (with
smoothing).

5.3 Comparison of Convergence with and without the Con-
vexity Constraint

The first observation we made was that the L2-gradient descent iteration in
general does not work at all. The computed boundary variations were too os-
cillatory. After an H1-gradient was implemented the regularization was enough
to provide local convergence from an initial guess that had 15%-20% relative
L2-error.

In Table 1 we list the accuracy of the obtained shapes by the relative L2-
error from the true crystal shape. We note that in both cases the recovered
solutions were roughly within 3% of relative error. This remained the case even
with convexity constraints and smoothing of the data. The sharp corner of Case
A also produced more error than the smooth profile of Case B.

Table 1: Relative L2-error from the true profile u obtained by the unconstrained
(µ = 0) and convex constrained (µ = 105) iterations with and without smooth-
ing.

No smoothing No smoothing With smoothing With smoothing
Case µ = 0 µ = 105 µ = 0 µ = 105

A 1.71 % 2.61 % 1.98 % 2.63 %
B 0.47 % 0.51 % 0.47 % 0.61 %

5.4 Estimating the Curvature(s) of the Crystal Surface

One way of evaluating the quality of the recovered crystal shapes is to see if
useful estimates for the curvature(s) of the crystal surface can be obtained. We
ran both the unconstrained and convex constrained iterations for Case A. We
also tested the effect of increasing K in the smoothing operator (26).

The obtained curvatures are plotted in Fig. 3. In this case the curvature
should be zero almost everywhere with a singularity at one point. None of the
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curvature estimates are free from numerical artifacts. The convex constrained
solution gives curvatures that are nearly nonnegative everywhere. The effect of
added smoothing is to dampen the oscillations of the recovered curvatures.

0 0.5 1

0

0.5

1
µ = 0, No smoothing

0 0.5 1

0

0.5

1
µ = 0, With smoothing

0 0.5 1

0

0.5

1
µ = 105, No smoothing

0 0.5 1

0

0.5

1
µ = 105, With smoothing

Figure 3: Estimated curvatures for the Case A obtained with the unconstrained
and convex constrained iterations, with and without smoothing of the data. The
true curvature is denoted by a dashed line.

6 Conclusions

The inverse problem of crystal shape identification from a single interferogram
is uniquely solvable if the shape is required to be convex and we have boundary
data available. Numerical level set methods can be used to solve such prob-
lems with the gradient descent method. We added a penalty term to enforce
convexity of the shapes. By choosing H1 shape gradients we introduced regu-
larization to the problem. This allowed recovery of solutions of the otherwise
ill-posed problem. We demonstrated that local convergence is obtained even
when relatively large amounts of noise are present in the interferogram. The
convex penalty term improved the quality of the recovered surface curvatures.
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