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Abstract. We consider functions that satisfy the identity

uε(x) =
α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫
Bε(x)

uε dy

for a bounded domain in Rn. Here ε > 0 and α, and β are suitable
nonnegative coefficients such that α + β = 1. In particular, we show
that these functions are uniquely determined by their boundary values,
approximate p-harmonic functions for 2 ≤ p < ∞ (for a choice of p that
depends on α and β), and satisfy the strong comparison principle. We
also analyze their relation to the theory of tug-of-war games with noise.

1. Introduction

The goal of this paper is to study functions that satisfy the identity

(1.1) uε(x) =
α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫
Bε(x)

uε dy,

with fixed ε > 0 and suitable nonnegative α and β, with α + β = 1. Here
Bε(x) is the open Euclidean ball in Rn and Bε(x) its closure Bε(x) = {y ∈
Rn : |y − x| ≤ ε}.

Let us give an explanation for the name p-harmonious which, at this point,
seems somewhat artificial. First, note that when u is harmonic, that is, a
solution to ∆u = 0, then it satisfies the well known mean value property

u(x) =

∫
Bε(x)

u dy,(1.2)

that is (1.1) with α = 0 and β = 1. On the other hand, functions satisfying
(1.1) with α = 1 and β = 0

uε(x) =
1

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
(1.3)
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are called harmonious functions in [3] and [4]. As ε goes to zero, they
approximate solutions to the infinity Laplacian. To be more precise, Le
Gruyer proved in [3] (see also [8]) that a uniform limit when ε → 0 of a
sequence of harmonious functions is a solution to ∆∞u = 0, where ∆∞u =
|∇u|−2

∑
ij uxiuxixjuxj = |∇u|−2 ⟨D2u∇u,∇u⟩ is the 1−homogeneous in-

finity Laplacian.

Recall that the p-Laplacian is given by

∆pu = div(|∇u|p−2∇u) = |∇u|p−2 {(p− 2)∆∞u+∆u} .(1.4)

Since the p-Laplace operator can be written as a combination of the Laplace
operator and the infinity Laplacian, it seems reasonable to expect that the
combination (1.1) of the averages in (1.2) and (1.3) give an approximation
to a solution to the p-Laplacian. We will show that this is indeed the case.
To be more precise, we prove that p-harmonious functions are uniquely de-
termined by their boundary values and that they converge uniformly to the
p-harmonic function with the given boundary data. Furthermore, we show
that p-harmonious functions satisfy the strong maximum and comparison
principles. Observe that the validity of the strong comparison principle
remains in doubt for the solutions of the p-Laplace equation in Rn, n ≥ 3.

Consider a two-player zero-sum-game in a domain Ω described as follows:
starting from a point x0 ∈ Ω, Players I and II play the original tug-of-war
game described in [8] with probability α, and with probability β (recall that
α + β = 1), a random point in Bε(x0) is chosen. Once the game position
reaches the boundary, Player II pays Player I the amount given by a pay-off
function. Naturally, Player I tries to maximize and Player II to minimize
the payoff. Equation (1.1) describes the expected payoff of the above game.
Intuitively, the expected payoff at the point can be calculated by summing
up all the three cases: Player I moves, Player II moves, or a random point
is chosen, with their corresponding probabilities.

In this variant of the original tug-of-war with noise formulation of Peres
and Sheffield in [9] the noise is distributed uniformly on Bε(x). This ap-
proach allows us to use the dynamic programming principle in the form (2.3)
to conclude that our game has a value and that the value is p-harmonious.

1.1. Main results. To begin with, we recall a heuristic argument from [5]
to gain insight on (1.1). It follows from expansion (1.4) that u is a solution
to ∆pu = 0 if and only if

(p− 2)∆∞u+∆u = 0,(1.5)

because this equivalence can be justified in the viscosity sense even when
∇u = 0 as shown in [2]. Averaging the classical Taylor expansion

u(y) = u(x) +∇u(x) · (y − x) +
1

2
⟨D2u(x)(y − x), (y − x)⟩+O(|y − x|3),
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over Bε(x), we obtain

(1.6) u(x)−
∫
Bε(x)

u dy = − ε2

2(n+ 2)
∆u(x) +O(ε3),

when u is smooth. Here we used the shorthand notation∫
Bε(x)

u dy =
1

|Bε(x)|

∫
Bε(x)

u dy.

Then observe that gradient direction is almost the maximizing direction.
Thus, summing up the two Taylor expansions roughly gives us

u(x)− 1

2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}

≈ u(x)− 1

2

{
u

(
x+ ε

∇u(x)

|∇u(x)|

)
+ u

(
x− ε

∇u(x)

|∇u(x)|

)}
= −ε2

2
∆∞u(x) +O(ε3).

(1.7)

Next we multiply (1.6) and (1.7) by suitable constants α and β, α+ β = 1,
and add up the formulas so that we have the operator in (1.5) on the right
hand side. This process gives us the choices of the constants

(1.8) α =
p− 2

p+ n
, and β =

2 + n

p+ n
.

and we deduce

u(x) =
α

2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ β

∫
Bε(x)

u dy +O(ε3)

as ε → 0.

Consider a bounded domain Ω ⊂ Rn and fix ε > 0. To prescribe boundary
values for p−harmonious functions, let us denote the compact boundary strip
of width ε by

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.

Definition 1.1. The function uε is p-harmonious in Ω with boundary values
a bounded Borel function F : Γε → R if

uε(x) =
α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫
Bε(x)

uε dy for every x ∈ Ω,

where α, β are defined in (1.8), and

uε(x) = F (x), for every x ∈ Γε.



4 J. J. MANFREDI, M. PARVIAINEN, AND J. D. ROSSI

The reason for using the boundary strip Γε instead of simply using the
boundary ∂Ω is the fact that for x ∈ Ω the ball Bε(x) is not necessarily
contained in Ω.

To prove our main results, we assume that 2 ≤ p < ∞. The case p = ∞
is considered in [3] and [8].

First, with a fixed boundary data, there exists a unique p-harmonious
function.

Theorem 1.2. Let Ω ⊂ Rn be a bounded open set. Then there exists a
unique p-harmonious function in Ω with given boundary values F .

Furthermore, p-harmonious functions satisfy the strong maximum princi-
ple.

Theorem 1.3. Let Ω ⊂ Rn be a bounded, open, and connected set. If uε is
p-harmonious in Ω with boundary values F , then

sup
Γε

F ≥ sup
Ω

uε.

Moreover, if there is a point x0 ∈ Ω such that uε(x0) = supΓε
F , then uε is

constant in Ω.

In addition, p-harmonious functions with continuous boundary values sat-
isfy the strong comparison principle. Note that the validity of the strong
comparison principle is not known for the p-harmonic functions in Rn, n ≥ 3.

Theorem 1.4. Let Ω ⊂ Rn be a bounded, open and connected set, and let uε
and vε be p-harmonious functions with continuous boundary values Fu ≥ Fv

in Γε. Then if there exists a point x0 ∈ Ω such that uε(x0) = vε(x0), it
follows that

uε = vε in Ω,

and, moreover, the boundary values satisfy

Fu = Fv in Γε.

To prove that p-harmonious functions converge to the unique solution of
the Dirichlet problem for the p-Laplacian in Ω with fixed continuous bound-
ary values, we assume that the bounded domain Ω satisfies the following
boundary regularity condition:

Boundary Regularity Condition 1.5. There exists δ′ > 0 and µ ∈ (0, 1)
such that for every δ ∈ (0, δ′] and y ∈ ∂Ω there exists a ball

Bµδ(z) ⊂ Bδ(y) \ Ω.

For example, when Ω satisfies the exterior cone condition it satisfies this
requirement. This is indeed the case when Ω is a Lipschitz domain.
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Theorem 1.6. Let Ω be a bounded domain satisfying Condition 1.5 and F
be a continuous function. Consider the unique viscosity solution u to

(1.9)

{
div(|∇u|p−2∇u)(x) = 0, x ∈ Ω

u(x) = F (x), x ∈ ∂Ω,

and let uε be the unique p-harmonious function with boundary values F .
Then

uε → u uniformly in Ω

as ε → 0.

The above limit only depends on the values of F on ∂Ω, and therefore
any continuous extension of F |∂Ω to Γε0 gives the same limit.

Organization of the paper. The rest of the paper is organized as
follows: In Section 2 we discuss the relation between p-harmonious functions
and tug-of-war games, in Section 3 we prove the maximum principle and
the strong comparison principle of p-harmonious functions, and finally in
Section 4, we prove the convergence result as ε goes to zero, Theorem 1.6.

2. p-harmonious functions and Tug-of-War games

In this section, we describe the connection between p-harmonious func-
tions and tug-of-war games. Fix ε > 0 and consider the following two-player
zero-sum-game. At the beginning, a token is placed at a point x0 ∈ Ω and
the players toss a biased coin with probabilities α and β, α + β = 1. If
they get heads (probability α), they play a tug-of-war, that is, a fair coin is
tossed and the winner of the toss is allowed to move the game position to
any x1 ∈ Bε(x0). On the other hand, if they get tails (probability β), the
game state moves according to the uniform probability to a random point
in the ball Bε(x0). Then they continue playing the same game from x1.

This procedure yields a possibly infinite sequence of game states x0, x1, . . .
where every xk is a random variable. We denote by xτ ∈ Γε the first point
in Γε in the sequence, where τ refers to the first time we hit Γε. The payoff
is F (xτ ), where F : Γε → R is a given payoff function. Player I earns F (xτ )
while Player II earns −F (xτ ).

A history of a game up to step k is a vector of the first k+1 game states,
for example, (x0, x1, . . . , xk). We denote a set of all histories up to step k
by Hk, that is, it contains all possible sequences of game states of length k.
The set of all finite histories is denoted by

H =

∞∪
k=0

Hk.
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A strategy SI for Player I is a function defined on H that gives the next
game position

SI(x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

given a history h if Player I wins the toss. Similarly Player II plays according
to a strategy SII

Let Ωε = Ω∪Γε ⊂ Rn be equipped with the natural topology, and the σ-
algebra B of the Lebesgue measurable sets. The space of all game sequences

H∞ = Ωε × Ωε × . . . ,

is a product space endowed with the product topology.

Let {Fk}∞k=0, F0 ⊂ F1 ⊂ . . . ⊂ F∞, denote the following σ-algebras: the
σ-algebra Fk is generated by cylinder sets of the form

A0 ×A1 ×A2 × . . .×Ak × Ωε × . . .

with Ai ∈ B and F∞ is the σ-algebra generated by ∪∞
k=0Fk.

For ω = (ω0, ω1, . . .) ∈ H∞, we define

xk(ω) = ωk, xk : H∞ → Rn, k = 0, 1, . . .

so that xk is an Fk-measurable random variable. Let

τ(ω) = inf{k : xk(ω) ∈ Γε, k = 0, 1, . . .}.

This τ(ω) is a stopping time relative to the filtration {Fk}∞k=0.

The fixed starting point x0 and the strategies SI and SII determine a
unique probability measure Px0

SI ,SII
in H∞ relative to the product σ-algebra

F∞. This measure is built by applying Kolmogorov’s extension theorem to
the initial distribution δx0(A), and the family of transition probabilities

πSI,SII
(x0(ω), . . . , xk(ω), A) = πSI,SII

(ω0, . . . , ωk, A)

= β
|A ∩Bε(ωk)|
|Bε(ωk)|

+
α

2
δSI(ω0,...,ωk)(A) +

α

2
δSII(ω0,...,ωk)(A).

(2.1)

To this end, we define probability measures inductively on finite products
as

µ0,x0

SI,SII
(A0) = δx0(A0),

µk,x0

SI,SII
(A0 ×A1 × . . .×Ak−1 ×Ak)

=

∫
A0×A1×...×Ak−1

πSI,SII
(ω0, . . . , ωk−1, Ak) dµ

k−1,x0

SI,SII
(ω0, . . . , ωk−1).

Note that

µk,x0

SI,SII
(A0 ×A1 × . . .×Ak) = µk+1,x0

SI,SII
(A0 ×A1 × . . .×Ak × Ωε).
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We only concentrate on the nontrivial case x0 ∈ A0. The first two mea-
sures are

µ1,x0

SI,SII
(A0 ×A1) =

∫
A0×A1

dµ1,x0

SI,SII
(ω0, ω1)

=

∫
A1

dµ1,x0

SI,SII
(x0, ω1) = πSI,SII

(x0, A1)

and

µ2,x0

SI,SII
(A0 ×A1 ×A2) =

∫
A1

πSI,SII
(x0, ω1, A2) dπSI,SII

(x0, ω1).

The expected payoff, when starting from x0 and using the strategies
SI, SII, is

Ex0
SI,SII

[F (xτ )] =

∫
H∞

F (xτ (ω)) dPx0
SI,SII

(ω).(2.2)

Note that, due to the fact that β > 0, or equivalently p < ∞, the game
ends almost surely

Px0
SI,SII

({ω ∈ H∞ : τ(ω) < ∞}) = 1

for any choice of strategies.

The value of the game for Player I is given by

uεI (x0) = sup
SI

inf
SII

Ex0
SI,SII

[F (xτ )]

while the value of the game for Player II is given by

uεII(x0) = inf
SII

sup
SI

Ex0
SI,SII

[F (xτ )].

The values uεI (x0) and uεII(x0) are the best expected outcomes each player
can guarantee when the game starts at x0.

We start by the statement of the Dynamic Programming Principle (DPP)
applied to our game. Given the transition probabilities (2.1) we obtain

Lemma 2.1 (DPP). The value function for Player I satisfies

uεI(x0) =
α

2

{
sup

Bε(x0)

uεI + inf
Bε(x0)

uεI

}
+ β

∫
Bε(x0)

uεI dy, x0 ∈ Ω,

uεI(x0) = F (x0), x0 ∈ Γε.

(2.3)

The value function for Player II, uεII, satisfies the same equation.

Formulas similar to (2.3) can be found in Chapter 7 of [7]. A detailed
proof adapted to our case can also be found in [6].

Let us explain intuitively why the DPP holds by considering the expec-
tation of the payoff at x0. Whenever the players get heads (probability
α) in the first coin toss, they toss a fair coin and play the tug-of-war. If
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Player I wins the fair coin toss in the tug-of-war (probability 1/2), she steps
to a point maximizing the expectation and if Player II wins, he steps to a
point minimizing the expectation. Whenever they get tails (probability β)
in the first coin toss, the game state moves to a random point according to
a uniform probability on Bε(x0). The expectation at x0 can be obtained by
summing up these different alternatives.

We warn the reader that, in general, the value functions are discontinuous
as the next example shows.

Example 2.2. Consider the case Ω = (0, 1) and

F (x) = uεI (x) =

{
1, x ≥ 1

0, x ≤ 0.

In this case the optimal strategies for both players are clear: Player I moves
ε to the right and Player II moves ε to the left. Now, there is a positive
probability of reaching x ≥ 1 that can be uniformly bounded from below in
(0, 1) by C = (2/α)−(1/ε+1). This can be seen by considering the probability
of Player I winning all the time until the game ends with x ≥ 1. Therefore
uεI > C > 0 in the whole (0, 1). This implies a discontinuity at x = 0 and
hence a discontinuity at x = ε. Indeed, first, note that uε is nondecreasing
and hence

uεI (ε−) = lim
x↗ε

α

2
sup

|x−y|≤ε
uεI (y) +

β

2ε

∫ 2ε

0
uεI dy =

α

2
uεI (2ε−) +

β

2ε

∫ 2ε

0
uεI dy,

because sup|x−y|≤ε u
ε
I (y) = uεI (x + ε) and inf |x−ε|≤ε u

ε
I is zero for x ∈ (0, ε).

However,

uεI (ε+) ≥ α

2
C + lim

x↘ε

α

2
sup

|x−y|≤ε
uεI (y) +

β

2ε

∫ 2ε

0
uεI dy ≥ α

2
C + uεI (ε−)

because sup|x−y|≤ε u
ε
I (y) = uεI (x + ε) ≥ uεI (2ε−) and inf |x−ε|≤ε u

ε
I ≥ C for

x > ε.

By adapting the martingale methods used in [8], we prove a comparison
principle. This also implies that uεI and uεII are respectively the smallest and
the largest p-harmonious function.

Theorem 2.3. Let Ω ⊂ Rn be a bounded open set. If vε is a p-harmonious
function with boundary values Fv in Γε such that Fv ≥ Fuε

I
, then v ≥ uεI .

Proof. We show that by choosing a strategy according to the minimal values
of v, Player II can make the process a supermartingale. The optional stop-
ping theorem then implies that the expectation of the process under this
strategy is bounded by v. Moreover, this process provides an upper bound
for uεI .
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Player I follows any strategy and Player II follows a strategy S0
II such that

at xk−1 ∈ Ω he chooses to step to a point that almost minimizes v, that is,
to a point xk ∈ Bε(xk−1) such that

v(xk) ≤ inf
Bε(xk−1)

v + η2−k

for some fixed η > 0. We start from the point x0. It follows that

Ex0

SI,S
0
II
[v(xk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

Bε(xk−1)
v + η2−k + sup

Bε(xk−1)

v

}
+ β

∫
Bε(xk−1)

v dy + η2−k

≤ v(xk−1) + η2−(k−1),

where we have estimated the strategy of Player I by sup and used the fact
that v is p-harmonious. Thus

Mk = v(xk) + η2−k

is a supermartingale. Since Fv ≥ Fuε
I
at Γε, we deduce

uεI (x0) = sup
SI

inf
SII

Ex0
SI,SII

[Fuε
I
(xτ )] ≤ sup

SI

Ex0

SI,S
0
II
[Fv(xτ ) + η2−τ ]

≤ sup
SI

lim inf
k→∞

Ex0

SI,S
0
II
[v(xτ∧k) + η2−(τ∧k)]

≤ sup
SI

ESI,S
0
II
[M0] = v(x0) + η,

where τ ∧ k = min(τ, k), and we used Fatou’s lemma as well as the optional
stopping theorem for Mk. Since η was arbitrary this proves the claim. �

Similarly, we can prove that uεII is the largest p-harmonious function:
Player II follows any strategy and Player I always chooses to step to the
point where v is almost maximized. This implies that v(xk) − η2−k is a
submartingale. Fatou’s lemma and the optional stopping theorem then prove
the claim.

Next we show that the game has a value. This together with the previous
comparison principle proves the uniqueness of p-harmonious functions with
given boundary values.

Theorem 2.4. Let Ω ⊂ Rn be a bounded open set, and F a given boundary
data in Γε. Then uεI = uεII, that is, the game has a value.

Proof. Clearly, uεI ≤ uεII always holds, so we are left with the task of showing
that uεII ≤ uεI . To see this we use the same method as in the proof of the
previous theorem: Player II follows a strategy S0

II such that at xk−1 ∈ Ω,
he always chooses to step to a point that almost minimizes uεI , that is, to a
point xk such that

uεI (xk) ≤ inf
Bε(xk−1)

uεI + η2−k,
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for a fixed η > 0. We start from the point x0. It follows that from the choice
of strategies and the dynamic programming principle for uεI that

Ex0

SI,S
0
II
[uεI (xk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
sup

Bε(xk−1)

uεI + inf
Bε(xk−1)

uεI + η2−k

}
+ β

∫
Bε(xk−1)

uεI dy + η2−k

= uεI (xk−1) + η2−(k−1).

Thus
Mk = uεI (xk) + η2−k

is a supermartingale. We get by Fatou’s lemma and the optional stopping
theorem that

uεII(x0) = inf
SII

sup
SI

Ex0
SI,SII

[F (xτ )] ≤ sup
SI

Ex0

SI,S
0
II
[F (xτ ) + η2−τ ]

≤ sup
SI

lim inf
k→∞

Ex0

SI,S
0
II
[uεI (xτ∧k) + η2−(τ∧k)]

≤ sup
SI

ESI,S
0
II
[uεI (x0) + η] = uεI (x0) + η.

Similarly to the previous theorem, we also used the fact that the game ends
almost surely. Since η > 0 is arbitrary, this completes the proof. �

Theorems 2.3 and 2.4 imply Theorem 1.2.

Proof of Theorem 1.2. Due to the dynamic programming principle, the val-
ues of the games are p-harmonious functions. This proves the existence
part of Theorem 1.2. Theorems 2.3 and 2.4 imply the uniqueness part of
Theorem 1.2. �
Corollary 2.5. The value of the game with pay-off function F coincides
with the p-harmonious function with boundary values F .

3. Maximum principles for p-harmonious functions

In this section, we show that the strong maximum and strong comparison
principles hold for p-harmonious functions. The latter result is interesting
since the strong comparison principle is not known for p-harmonic functions
in Rn for n ≥ 3.

We start with the strong maximum principle: The p-harmonious function
uε attains its maximum at the boundary. Furthermore, if this value is also
attained inside the domain, then uε is constant.

Proof of Theorem 1.3. The proof uses the fact that if the maximum is at-
tained inside the domain then all the quantities in the definition of a p-
harmonious function must be equal to the maximum. This is possible in a
connected domain only if the function is constant.
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We begin by observing that a p-harmonious function uε with a boundary
data F satisfies

sup
Ω

|uε| ≤ sup
Γε

|F | ,

as stated in Lemma 4.3. Assume then that there exists a point x0 ∈ Ω such
that

uε(x0) = sup
Ω

uε = sup
Γε

F.

Then we employ the definition of a p-harmonious function, Definition 1.1,
and obtain

uε(x0) =
α

2

{
sup

Bε(x0)

uε + inf
Bε(x0)

uε

}
+ β

∫
Bε(x0)

uε dy.

Since uε(x0) is the maximum, the terms

sup
Bε(x0)

uε, inf
Bε(x0)

uε, and

∫
Bε(x0)

uε dy

on the right hand side must be smaller than or equal to uε(x0). On the
other hand, when p > 2, it follows that α, β > 0 and thus the terms must
equal to uε(x0). Therefore,

uε(x) = uε(x0) = sup
Ω

uε(3.1)

for every x ∈ Bε(x0) when p > 2. Now we can repeat the argument for
each x ∈ Bε(x0) and by continuing in this way, we can extend the result to
the whole domain because Ω is connected. This implies that u is constant
everywhere when p > 2.

Finally, if p = 2, then (3.1) holds for almost every x ∈ Bε(x0) and conse-
quently for almost every x in the whole domain. Then since

u(x) =

∫
Bε(x)

u dy

holds at every point in Ω and u is constant almost everywhere, it follows
that u is constant everywhere. �

Using similar ideas we prove the strong comparison principle: Let uε and
vε be p-harmonious with boundary data Fu ≥ Fv in Γε. Then if there exists
a point x0 ∈ Ω with uε(x0) = vε(x0), it follows that

uε = vε in Ω,

and, moreover, the boundary values satisfy

Fu = Fv in Γε.

The proof heavily uses the fact that p < ∞. Note that it is known that the
strong comparison principle does not hold for infinity harmonic functions.
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Proof of Theorem 1.4. According to Corollary 2.5 and Theorem 2.3, Fu ≥
Fv implies uε ≥ vε. By the definition of a p-harmonious function, we have

uε(x0) =
α

2

{
sup

Bε(x0)

uε + inf
Bε(x0)

uε

}
+ β

∫
Bε(x0)

uε dy

and

vε(x0) =
α

2

{
sup

Bε(x0)

vε + inf
Bε(x0)

vε

}
+ β

∫
Bε(x0)

vε dy.

Next we compare the right hand sides. Because uε ≥ vε, it follows that

sup
Bε(x0)

uε ≤ sup
Bε(x0)

vε,

inf
Bε(x0)

uε ≤ inf
Bε(x0)

vε, and∫
Bε(x0)

uε dy ≤
∫
Bε(x0)

vε dy.

(3.2)

Since

uε(x0) = vε(x0),

we must have equalities in (3.2). In particular, we have equality in the third
inequality in (3.2), and thus

uε = vε almost everywhere in Bε(x0).

Again, the connectedness of Ω immediately implies that

uε = vε almost everywhere in Ω ∪ Γε.

In particular,

Fu = Fv everywhere in Γε

since Fu and Fv are continuous. Because the boundary values coincide, the
uniqueness result, Theorem 1.2, shows that uε = vε everywhere in Ω. �

4. Convergence to the p-harmonic function as ε → 0

In this section, we show that p-harmonious functions with a fixed bound-
ary data converge to the unique p-harmonic function. First, we prove a
convergence result under additional assumptions by employing game theo-
retic arguments from [8] and [9]. Then we present a different proof that
avoids the technical restrictions. The second proof uses a fact that although
p-harmonious functions are, in general, discontinuous, they are, in a certain
sense, asymptotically uniformly continuous.

Let Ω be a bounded open set. We assume below that u is p-harmonic
in an open set Ω′ such that Ω ∪ Γε ⊂ Ω′. In addition, we assume that
∇u ̸= 0 in Ω′. This assumption guarantees that u is real analytic according
to a classical theorem of Hopf [1], and thus equation (4.1) below holds with
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a uniform error term in Ω. Later we show how to deal directly with the
Dirichlet problem without this extra assumption.

Theorem 4.1. Let u be p-harmonic with nonvanishing gradient ∇u ̸= 0 in
Ω′ as above and let uε be the p-harmonious function in Ω with the boundary
values u in Γε. Then

uε → u uniformly in Ω

as ε → 0.

Proof. The proof uses some ideas from the proof of Theorem 2.4 in [9]. As
stated at the end of Section 2, the p-harmonious function with boundary
values coincides with the value of the game and thus we can use a game
theoretic approach.

Recall from the introduction (see also [5]) that u satisfies

(4.1) u(x) =
α

2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ β

∫
Bε(x)

u dy +O(ε3)

with a uniform error term for x ∈ Ω as ε → 0. The error term is uniform
due to our assumptions on u.

Assume, for the moment, that p > 2 implying α > 0 so that the strategies
are relevant. Now, Player II follows a strategy S0

II such that at a point
xk−1 he chooses to step to a point that minimizes u, that is, to a point
xk ∈ Bε(xk−1) such that

u(xk) = inf
Bε(xk−1)

u(y).

Choose C1 > 0 such that
∣∣O(ε3)

∣∣ ≤ C1ε
3. Under the strategy S0

II

Mk = u(xk)− C1kε
3

is a supermartingale. Indeed,

ESI,S
0
II
(u(xk)− C1kε

3 |x0, . . . , xk−1)

≤ α

2

{
sup

Bε(xk−1)

u+ inf
Bε(xk−1)

u

}
+ β

∫
Bε(xk−1)

u dy − C1kε
3

≤ u(xk−1)− C1(k − 1)ε3.

(4.2)

The first inequality follows from the choice of the strategy and the second
from (4.1). Now we can estimate uεII(x0) by using Fatou’s lemma and the
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optional stopping theorem for supermartingales. We have

uεII(x0) = inf
SII

sup
SI

Ex0
SI,SII

[F (xτ )]

≤ sup
SI

Ex0

SI,S
0
II
[u(xτ )]

≤ sup
SI

Ex0

SI,S
0
II
[u(xτ ) + C1τε

3 − C1τε
3]

≤ sup
SI

(
lim inf
k→∞

Ex0

SI,S
0
II
[u(xτ∧k)− C1(τ ∧ k)ε3] + C1ε

3Ex0

SI,S
0
II
[τ ]

)
≤ u(x0) + C1ε

3 sup
SI

Ex0

SI,S
0
II
[τ ].

This inequality and the analogous argument for Player I implies for uε =
uεII = uεI that

u(x0)− C1ε
3 inf
SII

Ex0

S0
I ,SII

[τ ] ≤ uε(x0) ≤ u(x0) + C1ε
3 sup

SI

Ex0

SI,S
0
II
[τ ].(4.3)

Letting ε → 0 the proof is completed if we prove that there exists C such
that

Ex0

SI,S
0
II
[τ ] ≤ Cε−2.(4.4)

To establish this bound, we show that

M̃k = −u(xk)
2 + u(x0)

2 + C2ε
2k

is a supermartingale for small enough ε > 0. If Player II wins the toss, we
have

u(xk)− u(xk−1) ≤ −C3ε

because ∇u ̸= 0, as we can choose for example C3 = infx∈Ω |∇u|. It follows
that

ESI,S
0
II
[
(
(u(xk)− u(xk−1)

)2 |x0, . . . , xk−1]

≥ α

2

(
(−C3ε)

2 + 0
)
+ β · 0 =

αC3
2

2
ε2.

(4.5)

We calculate

ESI,S
0
II
[M̃k − M̃k−1 |x0, . . . , xk−1]

= ESI,S
0
II
[−u(xk)

2 + u(xk−1)
2 + C2ε

2 |x0, . . . , xk−1]

= ESI,S
0
II
[−

(
u(xk)− u(xk−1)

)2 |x0, . . . , xk−1]

− ESI,S
0
II
[2
(
u(xk)− u(xk−1)

)
u(xk−1) |x0, . . . , xk−1] + C2ε

2.

(4.6)

By subtracting a constant if necessary, we may assume that u < 0. Moreover,
u(xk−1) is determined by the point xk−1, and thus, we can estimate the
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second term on the right hand side as

−ESI,S
0
II
[2
(
u(xk)− u(xk−1)

)
u(xk−1) |x0, . . . , xk−1]

= −2u(xk−1)
(
ESI,S

0
II
[u(xk) |x0, . . . , xk−1]− u(xk−1)

)
≤ 2 ||u||∞C1ε

3.

The last inequality follows from (4.1) similarly as estimate (4.2). This to-
gether with (4.5) and (4.6) implies

ESI,S
0
II
[M̃k − M̃k−1 |x0, . . . , xk−1] ≤ 0,

when

−ε2αC3
2/2 + 2 ||u||∞C1ε

3 + C2ε
2 ≤ 0.

This holds if we choose, for example, C2 such that C3 ≥ 2
√

C2/α and

take ε < C2/(2 ||u||∞C1). Thus, M̃k is a supermartingale. Recall that we
assumed that p > 2 implying α > 0.

According to the optional stopping theorem for supermartingales

Ex0

SI,S
0
II
[M̃τ∧k] ≤ M̃0 = 0,

and thus

C2ε
2Ex0

SI,S
0
II
[τ ∧ k] ≤ Ex0

SI,S
0
II
[u(xτ∧k)

2 − u(x0)
2].

The result follows by passing to the limit with k since u is bounded in Ω.

Finally, if p = 2, then the mean value property holds without a correction
for u due to the classical mean value property for harmonic functions and
the claim immediately follows by repeating the beginning of the proof till
(4.3) without the correction term. �

Above we obtained the convergence result for p-harmonious functions un-
der the extra assumption that ∇u ̸= 0. Now we show how to deal directly
with the Dirichlet problem and give a different proof for the uniform conver-
gence without using this hypothesis. The proof is based on a variant of the
classical Arzela-Ascoli’s compactness lemma, Lemma 4.2. The functions uε
are not continuous, in general, as shown in Example 2.2. Nonetheless, the
jumps can be controlled and we will show that the p-harmonious functions
are asymptotically uniformly continuous as shown in Theorem 4.6.

Lemma 4.2. Let {uε : Ω → R, ε > 0} be a set of functions such that

(1) there exists C > 0 so that |uε(x)| < C for every ε > 0 and every
x ∈ Ω,

(2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0
and any x, y ∈ Ω with |x− y| < r0 it holds

|uε(x)− uε(y)| < η.



16 J. J. MANFREDI, M. PARVIAINEN, AND J. D. ROSSI

Then, there exists a uniformly continuous function u : Ω → R and a subse-
quence still denoted by {uε} such that

uε → u uniformly in Ω,

as ε → 0.

Proof. First, we find a candidate to be the uniform limit u. Let X ⊂ Ω be a
dense countable set. Because functions are uniformly bounded, a diagonal
procedure provides a subsequence still denoted by {uε} that converges for
all x ∈ X. Let u(x) denote this limit. Note that at this point u is defined
only for x ∈ X.

By assumption, given η > 0, there exists r0 such that for any x, y ∈ X
with |x− y| < r0 it holds

|u(x)− u(y)| < η.

Hence, we can extend u to the whole Ω continuously by setting

u(z) = lim
X∋x→z

u(x).

Our next step is to prove that {uε} converges to u uniformly. We choose
a finite covering

Ω ⊂
N∪
i=1

Br(xi)

and ε0 > 0 such that

|uε(x)− uε(xi)| , |u(x)− u(xi)| < η/3

for every x ∈ Br(xi) and ε < ε0 as well as

|uε(xi)− u(xi)| < η/3,

for every xi and ε < ε0. To obtain the last inequality, we used the fact that
N < ∞. Thus for any x ∈ Ω, we can find xi so that x ∈ Br(xi) and

|uε(x)− u(x)|
≤ |uε(x)− uε(xi)|+ |uε(xi)− u(xi)|+ |u(xi)− u(x)|
< η,

for every ε < ε0, where ε0 is independent of x. �

Next we show that for fixed F , a family of p-harmonious functions, with ε
as the parameter, satisfies the conditions of Lemma 4.2. First observe that
p-harmonious functions are bounded since

min
y∈Γε

F (y) ≤ F (xτ ) ≤ max
y∈Γε

F (y)

for any xτ ∈ Γε implies:
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Lemma 4.3. A p-harmonious function uε with boundary values F satisfies

(4.7) min
y∈Γε

F (y) ≤ uε(x) ≤ max
y∈Γε

F (y).

Next we will show that p-harmonious functions are asymptotically uni-
formly continuous. We give two proofs for this result. The first proof applies
Theorem 2.3 and a comparison with solutions for the p-Dirichlet problem in
annular domains. We also use Theorem 4.1 for these solutions, which satisfy
the conditions of the theorem. The proof utilizes some ideas from [9] but
does not explicitly employ probabilistic tools.

Lemma 4.4. Let {uε} be a family of p-harmonious functions in Ω with a
fixed continuous boundary data F . Then this family satisfies condition (2)
in Lemma 4.2.

Proof. Observe that the case x, y ∈ Γε readily follows from the continuity of
F , and thus we can concentrate on the cases x ∈ Ω, y ∈ Γε, and x, y ∈ Ω.

We divide the proof into three steps: First for x ∈ Ω, y ∈ Γε, we em-
ploy comparison with a p-harmonious function close to a solution for the
p-Dirichlet problem in an annular domain. It follows that the p-harmonious
function with the boundary data F is bounded close to y ∈ Γε by a slightly
smaller constant than the maximum of the boundary values. Second, we
iterate this argument to show that the p-harmonious function is close to the
boundary values near y ∈ Γε when ε is small. Third, we extend this result
to the case x, y ∈ Ω by translation, by taking the boundary values from the
strip already controlled during the previous steps.

To start, we choose Bµδ(z) ⊂ Bδ(y) \ Ω, δ < δ′, by Condition (1.5), and
consider a problem

div(|∇u|p−2∇u)(x) = 0, x ∈ B4δ(z) \Bµδ(z),

u(x) = supB5δ(y)∩Γε
F, x ∈ ∂Bµδ(z),

u(x) = supΓε
F, x ∈ ∂B4δ(z).

(4.8)

We denote r = |x− z|. This problem has an explicit, radially symmetric
solution of the form

u(r) = ar−(n−p)/(p−1) + b(4.9)

when p ̸= n and

u(r) = a log(r) + b,(4.10)

when p = n. We extend the solutions to B4δ+2ε(z) \ Bµδ−2ε(z) and use
the same notation for the extensions. Now because ∇u ̸= 0, Theorem 4.1
shows that for the p-harmonious functions {uεfund} in B4δ+ε(z) \ Bµδ−ε(z)
with boundary values u, it holds that

uεfund → u, uniformly in B4δ+ε(z) \Bµδ−ε(z)
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as ε → 0.

It follows that

|uεfund − u| = o(1) in B4δ+ε(z) \Bµδ−ε(z),

where o(1) → 0 as ε → 0. For small enough ε, the comparison principle,
Theorem 2.3, implies that in Bδ(y)∩Ω ⊂ B2δ(z)∩Ω there is θ ∈ (0, 1) such
that

uε ≤ uεfund + o(1) ≤ u+ o(1) ≤ sup
B5δ(y)∩Γε

F + θ(sup
Γε

F − sup
B5δ(y)∩Γε

F ).

Observe that by solving a, b in (4.9) or (4.10) above, we see that 0 < θ < 1
does not depend on δ.

To prove the second step, we solve the p-harmonic function in Bδ(z) \
Bµδ/4(z) with boundary values supB5δ(y)∩Γε

F at ∂Bµδ/4(z) and from the
previous step

sup
B5δ(y)∩Γε

F + θ(sup
Γε

F − sup
B5δ(y)∩Γε

F )

at ∂Bδ(z). Again the explicit solution and the comparison principle implies
for small enough ε > 0 that

uε ≤ sup
B5δ(y)∩Γε

F + θ2(sup
Γε

F − sup
B5δ(y)∩Γε

F ) in Bδ/4(y) ∩ Ω.

Continuing in this way, we see that for small enough ε > 0 that

uε ≤ sup
B5δ(y)∩Γε

F + θk(sup
Γε

F − sup
B5δ(y)∩Γε

F ) in Bδ/4k(y) ∩ Ω.

This gives an upper bound for uε. The argument for the lower bound is
similar. We have shown that for any η > 0, we can choose small enough
δ > 0, large enough k, and small enough ε > 0 above so that for x ∈ Ω, y ∈ Γε

with |x− y| < δ/4k it holds

(4.11) |uε(x)− F (y)| < η.

This shows that the second condition in Theorem 4.2 holds when y ∈ Γε.

Next we extend the estimate to the interior of the domain. First choose
small enough δ and large enough k so that

(4.12)
∣∣F (x′)− F (y′)

∣∣ < η

whenever |x′ − y′| < δ/4k, and ε > 0 small enough so that (4.11) holds.

Next we consider a slightly smaller domain

Ω̃ = {z ∈ Ω : dist(z, ∂Ω) > δ/4k+2}

with the boundary strip

Γ̃ = {z ∈ Ω : dist(z, ∂Ω) ≤ δ/4k+2}.
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Suppose that x, y ∈ Ω with |x− y| < δ/4k+2. First, if x, y ∈ Γ̃, then we can
estimate

(4.13) |uε(x)− uε(y)| ≤ 3η

by comparing the values at x and y to the nearby boundary values and using
(4.11). Finally, let x, y ∈ Ω̃ and define

F̃ (z) = uε(z − x+ y) + 3η in Γ̃.

We have

F̃ (z) ≥ uε(z) in Γ̃

by (4.11), (4.12), and (4.13). Solve the p-harmonious function ũε in Ω̃

with the boundary values F̃ in Γ̃. By the comparison principle and the
uniqueness, we deduce

uε(x) ≤ ũε(x) = uε(x− x+ y) + 3η = uε(y) + 3η in Ω̃.

The lower bound follows by a similar argument. �

The second proof for Lemma 4.4 is based on the connection to games and
a choice of a strategy. In Lemma 4.6, we prove slightly stronger estimate that
implies Lemma 4.4. The proof of this lemma avoids the use of Theorem 4.1
but we assume a stronger boundary regularity condition instead.

At each step, we make a small correction in order to show that the process
is a supermartingale. To show that the effect of the correction is small also
in the long run, we need to estimate the expectation of the stopping time
τ . We bound τ by the exit time τ∗ for a random walk in a larger annular
domain with a reflecting condition on the outer boundary.

Lemma 4.5. Let us consider an annular domain BR(y) \Bδ(y) and a ran-
dom walk such that when at xk−1, the next point xk is chosen according to
a uniform distribution at Bε(xk−1) ∩BR(y). Let

τ∗ = inf{k : xk ∈ Bδ(y)}.

Then

Ex0(τ∗) ≤ C(R/δ) dist(∂Bδ(y), x0) + o(1)

ε2
,(4.14)

for x0 ∈ BR(y) \Bδ(y). Here o(1) → 0 as ε → 0.

Proof. We will use a solution to a corresponding Poisson problem to prove
the result. Let us denote

gε(x) = Ex(τ∗).

The function gε satisfies a dynamic programming principle

gε(x) =

∫
Bε(x)∩BR(y)

gε dz + 1
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because the number of steps always increases by one when making a step to
one of the neighboring points at random. Further, we denote vε(x) = ε2gε(x)
and obtain

vε(x) =

∫
Bε(x)∩BR(y)

vε dz + ε2.

This formula suggests a connection to the problem
∆v(x) = −2(n+ 2), x ∈ BR+ε(y) \Bδ(y),

v(x) = 0, x ∈ ∂Bδ(y),
∂v

∂ν
= 0, x ∈ ∂BR+ε(y),

(4.15)

where ∂u
∂ν refers to the normal derivative. Indeed, when Bε(x) ⊂ BR+ε(y) \

Bδ(y), the classical calculation shows that the solution of this problem sat-
isfies the mean value property

v(x) =

∫
Bε(x)

v dz + ε2.(4.16)

The solution of problem (4.15) is positive, radially symmetric, and strictly
increasing in r = |x− y|. It takes the form v(r) = −ar2− br2−n+ c, if n > 2
and v(r) = −ar2 − b log(r) + c, if n = 2.

We extend this function as a solution to the same equation to Bδ(y) \
Bδ−ε(y) and use the same notation for the extension. Thus, v satisfies (4.16)
for each Bε(x) ⊂ BR+ε(y) \Bδ−ε(y). In addition, because v is increasing in
r, it holds for each x ∈ BR(y) \Bδ(y) that∫

Bε(x)∩BR(y)
v dz ≤

∫
Bε(x)

v dz = v(x)− ε2.

It follows that

E[v(xk) + kε2 |x0, . . . , xk−1] =

∫
Bε(xk−1)

v dz + kε2 = v(xk−1) + (k − 1)ε2,

if Bε(xk−1) ⊂ BR(y) \Bδ−ε(y), and if Bε(xk−1) \BR(y) ̸= ∅, then

E[v(xk) + kε2 |x0, . . . , xk−1] =

∫
Bε(xk−1)∩BR(y)

v dz + kε2

≤
∫
Bε(xk−1)

v dz = v(xk−1) + (k − 1)ε2.

Thus v(xk) + kε2 is a supermartingale, and the optional stopping theorem
yields

Ex0 [v(xτ∗∧k) + (τ∗ ∧ k)ε2] ≤ v(x0).(4.17)

Because xτ∗ ∈ Bδ(y) \Bδ−ε(y), we have

0 ≤ −Ex0 [v(xτ∗)] ≤ o(1).
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Furthermore, the estimate

0 ≤ v(x0) ≤ C(R/δ) dist(∂Bδ(y), x0)

holds for the solutions of (4.15). Thus, by passing to a limit with k in (4.17),
we obtain

ε2Ex0 [τ∗] ≤ v(x0)− E[u(xτ∗)] ≤ C(R/δ)(dist(∂Bδ(y), x0) + o(1)).

This completes the proof. �

By estimating the dominating terms br−n+2 or b log(r) of explicit solutions
to (4.15) close to r = δ, we see that

|Ex0 [v(xτ∗)]| ≤ C log(1 + ε).(4.18)

Thus the error term o(1) could be improved to C log(1 + ε).

Next we derive an estimate for the asymptotic uniform continuity of the
family of p-harmonious functions which implies Lemma 4.4. For simplicity,
we assume that Ω satisfies an exterior sphere condition: For each y ∈ ∂Ω,
there exists Bδ(z) ⊂ Rn\Ω such that y ∈ ∂Bδ(z). With this assumption, the
iteration used in the first proof of Lemma 4.4 can be avoided. To simplify
the notation and to obtain an explicit estimate, we also assume that F is
Lipschitz continuous in Γε.

Lemma 4.6. Let F and Ω be as above. The p-harmonious function uε with
the boundary data F satisfies

(4.19) |uε(x)− uε(y)| ≤ Lip(F )δ + C(R/δ)(|x− y|+ o(1)),

for every small enough δ > 0 and for every two points x, y ∈ Ω ∪ Γε.

Proof. As in the first proof of Lemma 4.4, the case x, y ∈ Γε is clear. Thus,
we can concentrate on the cases x ∈ Ω and y ∈ Γε as well as x, y ∈ Ω.

We utilize the connection to games. Suppose first that x ∈ Ω and y ∈ Γε.
By the exterior sphere condition, there exists Bδ(z) ⊂ Rn \ Ω such that
y ∈ ∂Bδ(z). Player I chooses a strategy of pulling towards z, denoted by
Sz
I . Then

Mk = |xk − z| − Cε2k

is a supermartingale for a constant C large enough independent of ε. Indeed,

Ex0
Sz
I ,SII

[|xk − z| |x0, . . . , xk−1]

≤ α

2
{|xk−1 − z|+ ε+ |xk−1 − z| − ε}+ β

∫
Bε(xk−1)

|x− z| dx

≤ |xk−1 − z|+ Cε2.

The first inequality follows from the choice of the strategy, and the second
from the estimate∫

Bε(xk−1)
|x− z| dx ≤ |xk−1 − z|+ Cε2.
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By the optional stopping theorem, this implies that

Ex0
Sz
I ,SII

[|xτ − z|] ≤ |x0 − z|+ Cε2Ex0
Sz
I ,SII

[τ ].(4.20)

Next we estimate Ex0
Sz
I ,SII

[τ ] by the stopping time of Lemma 4.5. Player I

pulls towards z and Player II uses any strategy. The expectation of |xk − z|
when at xk−1 is at the most |xk−1 − z| when we know that the tug-of-war
occurs. On the other hand, if the random walk occurs, then we know that the
expectation of |xk − z| is greater than or equal to |xk−1 − z|. Therefore we
can bound the expectation of the original process by considering a suitable
random walk in BR(z) \ Bδ(z) for BR(z) such that Ω ⊂ BR/2(z). When

xk ∈ BR(z) \ Bδ(z), the successor xk+1 is chosen according to a uniform
probability in Bε(x) ∩ BR(z). The process stops when it hits Bδ(z). Thus,
by (4.14),

ε2Ex0
Sz
I ,SII

[τ ] ≤ ε2Ex0
Sz
I ,SII

[τ∗] ≤ C(R/δ)(dist(∂Bδ(z), x0) + o(1)).

Since y ∈ ∂Bδ(z),

dist(∂Bδ(z), x0) ≤ |y − x0| ,

and thus, (4.20) implies

Ex0
Sz
I ,SII

[|xτ − z|] ≤ C(R/δ)(|x0 − y|+ o(1)).

We get

F (z)− C(R/δ)(|x− y|+ o(1)) ≤ Ex0
Sz
I ,SII

[F (xτ )]

≤ F (z) + C(R/δ)(|x− y|+ o(1)).

Thus, we obtain

sup
SI

inf
SII

Ex0
SI,SII

[F (xτ )] ≥ inf
SII

Ex0
Sz
I ,SII

[F (xτ )]

≥ F (z)− C(R/δ)(|x0 − y|+ o(1))

≥ F (y)− Lip(F )δ − C(R/δ)(|x0 − y|+ o(1)).

The upper bound can be obtained by choosing for Player II a strategy where
he points to z, and thus, (4.19) follows.

Finally, let x, y ∈ Ω and fix the strategies SI, SII for the game starting
at x. We define a virtual game starting at y: we use the same coin tosses
and random steps as the usual game starting at x. Furthermore, the players
adopt their strategies Sv

I , S
v
II from the game starting at x, that is, when the

game position is yk−1 a player chooses the step that would be taken at xk−1

in the game starting at x. We proceed in this way until for the first time
xk ∈ Γε or yk ∈ Γε. At that point we have |xk − yk| = |x− y|, and we may
apply the previous steps that work for xk ∈ Ω, yk ∈ Γε or for xk, yk ∈ Γε. �

Note that, thanks to Lemmas 4.3 and 4.4 (or alternatively Lemma 4.6),
the family uε satisfies the hypothesis of the compactness Lemma 4.2.
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Corollary 4.7. Let {uε} be a family of p-harmonious functions with a fixed
continuous boundary data F . Then there exists a uniformly continuous u
and a subsequence still denoted by {uε} such that

uε → u uniformly in Ω.

Next we prove that the limit u in Corollary 4.7 is a solution to (1.9).
The idea is to work in the viscosity setting and to show that the limit is
a viscosity sub- and supersolution. To accomplish this, we utilize some
ideas from [5], where p-harmonic functions were characterized in terms of
asymptotic expansions. We start by recalling the viscosity characterization
of p-harmonic functions, see [2].

Definition 4.8. For 1 < p < ∞ consider the equation

−div
(
|∇u|p−2∇u

)
= 0.

(1) A lower semi-continuous function u is a viscosity supersolution if
for every ϕ ∈ C2 such that ϕ touches u at x ∈ Ω strictly from below
with ∇ϕ(x) ̸= 0, we have

−(p− 2)∆∞ϕ(x)−∆ϕ(x) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every
ϕ ∈ C2 such that ϕ touches u at x ∈ Ω strictly from above with
∇ϕ(x) ̸= 0, we have

−(p− 2)∆∞ϕ(x)−∆ϕ(x) ≤ 0.

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

Theorem 4.9. Let F and Ω be as in Theorem 1.6. Then the uniform limit
u of p-harmonious functions {uε} is a viscosity solution to (1.9).

Proof. First, u = F on ∂Ω due to Lemma 4.4, and we can focus attention
on showing that u is p-harmonic in Ω in the viscosity sense. To this end, we
recall from [5] an estimate that involves the regular Laplacian (p = 2) and
an approximation for the infinity Laplacian (p = ∞). Choose a point x ∈ Ω
and a C2-function ϕ defined in a neighborhood of x. Let xε1 be the point at
which ϕ attains its minimum in Bε(x)

ϕ(xε1) = min
y∈Bε(x)

ϕ(y).

It follows from the Taylor expansions in [5] that

α

2

{
max

y∈Bε(x)
ϕ(y) + min

y∈Bε(x)
ϕ(y)

}
+ β

∫
Bε(x)

ϕ(y) dy − ϕ(x)

≥ βε2

2(n+ 2)

(
(p− 2)

⟨
D2ϕ(x)

(
xε1 − x

ε

)
,

(
xε1 − x

ε

)⟩
+∆ϕ(x)

)
+ o(ε2).

(4.21)
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Suppose that ϕ touches u at x strictly from below and that ∇ϕ(x) ̸= 0.
Observe that according to Definition 4.8, it is enough to test with such func-
tions. By the uniform convergence, there exists sequence {xε} converging to
x such that uε − ϕ has an approximate minimum at xε, that is, for ηε > 0,
there exists xε such that

uε(x)− ϕ(x) ≥ uε(xε)− ϕ(xε)− ηε.

Moreover, considering ϕ̃ = ϕ− uε(xε)− ϕ(xε), we can assume that ϕ(xε) =
uε(xε). Thus, by recalling the fact that uε is p-harmonious, we obtain

ηε ≥ −ϕ(xε) +
α

2

{
max
Bε(xε)

ϕ+ min
Bε(xε)

ϕ

}
+ β

∫
Bε(xε)

ϕ(y) dy,

and thus, by (4.21), and choosing ηε = o(ε2), we have

0 ≥ βε2

2(n+ 2)
((p− 2)

⟨
D2ϕ(xε)

(
xε1 − xε

ε

)
,

(
xε1 − xε

ε

)⟩
+∆ϕ(xε))

+o(ε2).

Since ∇ϕ(x) ̸= 0, letting ε → 0, we get

0 ≥ β

2(n+ 2)
((p− 2)∆∞ϕ(x) + ∆ϕ(x)) .

Therefore u is a viscosity supersolution.

To prove that u is a viscosity subsolution, we use a reverse inequality to
(4.21) by considering the maximum point of the test function and choose a
function ϕ that touches u from above. �

End of the proof of Theorem 1.6. We just have to observe that since the vis-
cosity solution of (1.9) is unique, then we have convergence for the whole
family {uε} as ε → 0. �
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