EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS
FOR THE p(z)-LAPLACIAN
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ABSTRACT. We consider different notions of solutions to the p(z)-Lap-
lace equation
— div(| Du(z)|"™™) "% Du(z)) = 0

with 1 < p(z) < co. We show by proving a comparison principle that
viscosity supersolutions and p(z)-superharmonic functions of nonlinear
potential theory coincide. This implies that weak and viscosity solu-
tions are the same class of functions, and that viscosity solutions to
Dirichlet problems are unique. As an application, we prove a Radé type
removability theorem.

1. INTRODUCTION

During the last fifteen years, variational problems and partial differential
equations with various types of nonstandard growth conditions have become
increasingly popular. This is partly due to their frequent appearance in
applications such as the modeling of electrorheological fluids [2, 25] and
image processing [20], but these problems are very interesting from a purely
mathematical point of view as well.

In this paper, we focus on a particular example, the p(z)-Laplace equation

(1.1) ~Apyu(z) == —div(|Du(z) P72 Du(z)) = 0

with 1 < p(z) < oo. This is a model case of a problem exhibiting so-called
p(z)-growth, which were first considered by Zhikov in [27]. Our interest is
directed at the very notion of a solution to (1.1). Since this equation is of
divergence form, the most natural choice is to use the distributional weak
solutions, whose definition is based on integration by parts. However, if the
variable exponent x — p(z) is assumed to be continuously differentiable,
then also the notion of viscosity solutions, defined by means of pointwise
touching test functions, is applicable. Our objective is to prove that weak
and viscosity solutions to the p(x)-Laplace equation coincide. The proof
also implies the uniqueness of viscosity solutions of the Dirichlet problem.
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For a constant p, similar results were proved by Juutinen, Lindqvist, and
Manfredi in [17].

The modern theory of viscosity solutions, introduced by Crandall and
Lions in the eighties, has turned out to be indispensable. It provides a notion
of generalized solutions applicable to fully nonlinear equations, and crucial
tools for results related to existence, stability, and uniqueness for first and
second order partial differential equations, see for example Crandall, Ishii,
and Lions [7], Crandall [6], and Jensen [14]. Viscosity theory has also been
used in stochastic control problems, and more recently in stochastic games,
see for example [24]. The variable exponent viscosity theory is also useful.
Indeed, as an application, we prove a Radd type removability theorem: if a
function u € C1(€) is a solution to (1.1) outside its set of zeroes {z: u(z) =
0}, then it is a solution in the whole domain €. A similar result also holds
for the zero set of the gradient. We do not know how to prove this result
without using both the concept of a weak solution and that of a viscosity
solution.

To prove our main result, we show that viscosity supersolutions of the
p(z)-Laplace equation are the same class of functions as p(x)-superharmonic
functions, defined as lower semicontinuous functions obeying the comparison
principle with respect to weak solutions. The equivalence for the solutions
follows from this fact at once. A simple application of the comparison prin-
ciple for weak solutions shows that p(x)-superharmonic functions are viscos-
ity supersolutions. The reverse implication, however, requires considerably
more work. To show that a viscosity supersolution obeys the comparison
principle with respect to weak solutions, we first show that weak solutions
of (1.1) can be approximated by the weak solutions of

(1.2) —Ap(gg)u = —¢

and then prove a comparison principle between viscosity supersolutions and
weak solutions of (1.2). The comparison principle for viscosity sub— and
supersolutions can be reduced to this result as well.

Although the outline of our proof is largely the same as that of [17] for the
constant p case, there are several significant differences in the details. Per-
haps the most important of them is the fact that the p(x)-Laplace equation
is not translation invariant. At first thought, this property may not seem
that consequential, but one should bear in mind that we are dealing with
generalized solutions, not with classical solutions. The core of our argument,
the proof of the comparison principle for viscosity solutions, is based on the
maximum principle for semicontinuous functions. Applying this principle is
not entirely trivial even for such simple equations as

(1.3) —div(a(x)Du) =0,

with a smooth and strictly positive coefficient a(z). In the case of the p(x)-
Laplacian, the proof is quite delicate. We need to carefully exploit the infor-
mation coming from the maximum principle for semicontinuous functions,
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and properties such as the local Lipschitz continuity of the matrix square
root as well as the regularity of weak solutions of (1.2) play an essential role
in the proof.

In addition, we have to take into account the strong singularity of the
equation at the points where the gradient vanishes and p(z) < 2. Further,
since 1 < p(z) < oo, the equations we encounter can be singular in some
parts of the domain and degenerate in others, and we have to find a way to
fit together estimates obtained in the separate cases. For a constant p, this
problem never occurs. Finally, if we carefully compute A, ;) u, the result is
the expression

~Apyu(@) = — [DufPD 7 (Au+ (p(z) — 2)Asu)

(1.4)
— |Du|P~2 Dp(x) - Du log | Dul,

where

Aooti := |Du|"? D*u Du - Du
is the normalized oco-Laplacian. Obviously, the first order term involving
log | Du| does not appear if p(z) is constant.

The p(z)-Laplacian (1.1) is not only interesting in its own right but also
provides a useful test case for generalizing the viscosity techniques to a wider
class of equations as indicated by (1.3). One important observation is that
our proof uses heavily the well established theory of weak solutions. More
precisely, we repeatedly exploit the existence, uniqueness and regularity of
the weak solutions to (1.1). In particular, we use the fact that weak solutions
can be approximated by the weak solutions of (1.2). To emphasize this point,
we consider another variable exponent version of the p-Laplace equation,
given by

(1.5) —Aé\éx)u(x) = —Au(x) — (p(r) — 2)Ascu(z) = 0.

The study of this equation has been recently set forth in [3], and it certainly
looks simpler than (1.4). Indeed, one can quite easily prove a comparison
principle for viscosity subsolutions and strict supersolutions. However, ow-
ing to the incompleteness of the theory of weak solutions of (1.5), the full
comparison principle and the equivalence of weak and viscosity solutions
remain open.
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2. THE SPACES LP(®) anp Wlr(@)

In this section, we discuss the variable exponent Lebesgue and Sobolev
spaces. These spaces provide the functional analysis framework for weak
solutions. Most of the results below are from [19].

Let p: R® — [1,00), called a variable exponent, be in C*(R") and let
be a bounded open set in R". We denote

pT =supp(z) and p~ = inf p(z),
x€eQ) zef

and assume that
(2.1) 1<p <p'<oo.

Observe that our arguments are local, so it would suffice to assume that
(2.1) holds in compact subsets of ). However, for simplicity of notation, we
use the stronger assumption.

The variable exponent Lebesque space LP()(Q) consists of all measurable
functions u defined on € for which the p(z)-modular

wmmzémmﬂﬂw

is finite. The Luxemburg norm on this space is defined as

[ull Lo () = inf {)\ >0: /

Q

Equipped with this norm LP(®*)(Q) is a Banach space. If p(z) is constant,
LP®)(Q) reduces to the standard Lebesgue space.

In estimates, it is often necessary to switch between the norm and the
modular. This is accomplished by the coarse but useful inequalities

P

+
y ”uHLp(:c)(Q)} < Qp(a:) (U)

mln{ ||u||Lp(z') (Q) ’

X .
< max{[ull? ) ) 10l o)

which follow from the definition of the norm in a straightforward manner.
Note that these inequalities imply the equivalence of convergence in norm
and in modular. More specifically,

lw = will o)) = 0 if and only if g (u —ui) = 0

as ¢ — 00.
A version of Holder’s inequality,

(2.3) | 190 < C Lo oy Noluoey
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holds for functions f € LP*)(Q) and g € L¥'®)(Q), where the conjugate
exponent p/(z) of p(z) is defined pointwise. Further, if 1 < p~ < p* < oo,
the dual of LP(*)(Q) is L' (*)(Q), and the space LP(*)(Q) is reflexive.

The variable exponent Sobolev space W P(®)(Q) consists of functions u €
LP0)(Q) whose weak gradient Du exists and belongs to LP() (). The space
Wr()(Q) is a Banach space with the norm

”UHWLp(z)(Q) = ||U||Lp(z)(g) + HDU||Lp<z)(Q)~

The local Sobolev space I/Vlt’f(m)(ﬁ) consists of functions u that belong to
WP (Q) for all open sets Q' compactly contained in €.

loc

The density of smooth functions in WP(*)(Q) turns out to be a surpris-
ingly nontrivial matter. However, our assumption p(x) € C!, or even the
weaker log-Holder continuity, implies that smooth functions are dense in the
Sobolev space WhP()(Q), see [8, 26]. Due to the Holder inequality (2.3),
density allows us to pass from smooth test functions to Sobolev test functions
in the definition of weak solutions by the usual approximation argument.

The Sobolev space with zero boundary values, VVO1 P (x)(Q), is defined as
the completion of C§°(Q) in the norm of W'P(®)(Q). The following vari-
able exponent Sobolev-Poincaré inequality for functions with zero boundary
values was first proven by Edmunds and Rékosnik in [9].

Theorem 2.1. For every u € Wol’p(x) (), the inequality
(2.4) [l o) () < € diam(Q) [ Dufl o ()

holds with the constant C depending only on the dimension n and p.

3. NOTIONS OF SOLUTIONS

In this section, we discuss the notions of weak solutions, p(x)-superhar-
monic functions and viscosity solutions to the equation

(3.1) ~Apyu(z) = —div(| Du(z) P2 Du(z)) = 0.
Definition 3.1. A function u € V[/lif(x)(ﬁ) is a weak supersolution to (3.1)
in Q if
(3.2) / |Du(z) P2 Du(x) - Dp(x)dz > 0
Q

for every nonnegative test function ¢ € C3°(€2). For subsolutions, the in-
equality in (3.2) is reversed, and a function u is a weak solution if it is both
a super— and a subsolution, which means that we have equality in (3.2) for

all p € C§°(2).
Ifue Wl’p(””)(Q), then by the usual approximation argument, we may

employ test functions belonging to VVO1 P (‘T)(Q). Note also that u is a subso-
lution if and only if —u is a supersolution.
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Since (3.1) is the Euler-Lagrange equation of the functional

v r—>/ L |Dv[P@®) da,
o p(z)

the existence of a weak solution v € WP (Q) such that u—g € Wol’p(x)(Q)
for a given g € WHP(®)(Q) readily follows by the direct method of the calculus
of variations. Moreover, by regularity theory [1, 4, 10|, there always exists
a locally Holder continuous representative of a weak solution.

Assume for a moment that p(z) is radial, and that p™ < n. In such a
case, we may modify a well-known example, the fundamental solution of the
p-Laplacian. Indeed, consider the function

1

o) = [ ey 00D
||

in the unit ball B(0,1) of R™. Then v is a solution in B(0, 1) \ {0}, but not

a weak supersolution in the whole ball B(0,1). See [11, Section 6] for the

details. A computation shows that

/ |Dv|P™) dz = oo
B(0,p)

for any p < 1. To include functions like v in our discussion, we use the
following class of p(z)-superharmonic functions.

Definition 3.2. A function u : Q — (—o0, 00| is p(z)-superharmonic, if
(1) w is lower semicontinuous
(2) w is finite almost everywhere and
(3) the comparison principle holds: if % is a weak solution to (3.1) in
D & Q, continuous in D, and

u>h on 0D,

then
u>h in D.

A function u : Q — [—00, 00) is p(z)-subharmonic, if —u is p(x)-superhar-
monic.

In the case of the Laplace equation, that is, p(z) = 2, this potential
theoretic definition of superharmonic functions goes back to F. Riesz. For
constant values p # 2, p—superharmonic functions and, in particular, their
relationship to the weak supersolutions were studied by Lindqvist in [21].
We next review briefly some relevant facts known in the variable exponent
case. We shall use the lower semicontinuous regularization

3.3 u*(z) = essliminf u(y) = lim essinf u.
(33) (@) = esslimnf u(y) = Jim essin

First, every weak supersolution has a lower semicontinuous representative

which is p(x)-superharmonic.
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Theorem 3.3. Let u be a weak supersolution in €. Then u = u* almost
everywhere and u* is p(x)-superharmonic.

This theorem follows from [11, Theorem 6.1] and [12, Theorem 4.1]. For
the reverse direction, we have (see [11, Corollary 6.6])

Theorem 3.4. A locally bounded p(x)-superharmonic function is a weak
supersolution.

With these results in hand, we may conclude that being a weak solution
is equivalent to being both p(z)-super— and p(x)-subharmonic. Indeed, any
function with the latter properties is continuous and hence locally bounded.
Then Theorem 3.4 implies that the function belongs to the right Sobolev
space, and verifying the weak formulation is easy. For the converse, it suffices
to note that the comparison principle for the continuous representative of a
weak solution follows from Theorem 3.3.

Next we define viscosity solutions of the p(x)-Laplace equation. To accom-
plish this, we need to evaluate the operator A, on C? functions. Carrying
out the differentiations, we see that

Apyp(x) = Dol (Ap + Dp - Dplog| Dl + (p(x) — 2)Acoip(x))
for functions ¢ € C*(Q), where

Dyp(x) — Dep(x)
[De(x)|  |Dep()|

is the normalized oco-Laplacian.

In order to use the standard theory of viscosity solutions, A,,,)¢(z) should
be continuous in x, Dy, and D?p. Since Dp(z) is explicitly involved, it is
natural to assume that p(z) € C!. However, this still leaves the problem
that at the points were p(z) < 2 and Dp(z) = 0, the expression A, ()
is not well defined. As in [17], it will turn out that we can ignore the test

functions whose gradient vanishes at the point of touching.

Definition 3.5. A function u : Q — (—o00,00] is a viscosity supersolution
o (3.1), if

(1) w is lower semicontinuous.

(2) w is finite almost everywhere.

(3) If p € C?(R) is such that u(xg) = (o), u(z) > ¢(x) for x # xo,
and Dp(zg) # 0, it holds that

—AP(I)QD(CEQ) Z 0.

A function u : Q — [—00, 00) is a viscosity subsolution to (3.1) if it is upper
semicontinuous, finite a.e., and (3) holds with the inequalities reversed.

Finally, a function is a viscosity solution if it is both a viscosity super—
and subsolution.
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We often refer to the third condition above by saying that ¢ touches u at
xg from below. The definition is symmetric in the same way as before: w is a
viscosity subsolution if and only if —u is a viscosity supersolution. Observe
that nothing is required from u at the points in which it is not finite.

One might wonder if omitting entirely the test functions whose gradient
vanishes at the point of touching could allow for “false” viscosity solutions
for the equation. Our results ensure that this is not the case. Indeed,
we show that the requirements in Definition 3.5 are stringent enough for
a comparison principle to hold between viscosity sub— and supersolutions,
and, moreover, that the definition is equivalent with the definition of a weak
solution. Finally, we want to emphasize that Definition 3.5 is tailor-made for
the equation —A,yv(r) = 0, and it does not work as such for example in
the case of a non-homogeneous p(r)-Laplace equation —A,yv(z) = f(z).

4. EQUIVALENCE OF WEAK SOLUTIONS AND VISCOSITY SOLUTIONS

We turn next to the equivalence between weak and viscosity solutions
to (3.1). This follows from the fact that viscosity supersolutions and p(x)-
superharmonic functions are the same class of functions. This is our main
result.

Theorem 4.1. A function v is a viscosity supersolution to (3.1) if and only
if it is p(x)-superharmonic.

As an immediate corollary we have

Corollary 4.2. A function u is a weak solution of (3.1) if and only if it is
a viscosity solution of (3.1).

Let us now start with the proof of Theorem 4.1. Proving the fact that a
p(x)-superharmonic function is a viscosity supersolution is straightforward,
cf. for example [22]: Suppose first that v is p(x)-superharmonic. To see
that v is a viscosity supersolution, assuming the opposite we find a function
¢ € C?(2) such that v(zg) = ¢(x0), v(z) > @(z) for all z # xo, Dp(xg) # 0,
and

—Ap(x)ga(a:g) < 0.

By continuity, there is a radius r such that D(x) # 0 and
—Ap(x)cp(x) <0

for all z € B(zo,r). Set

m= inf (v(z)—¢(x)) >0,

|x—x0|="r
and

p=p+m.
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Then ¢ is a weak subsolution in B(xg,r), and ¢ < v on dB(zg,r). Thus ¢ <
v in B(zg,r) by the comparison principle for weak sub— and supersolutions,
Lemma 5.1 below, but

¢(xo) = ¢(x0) +m > v(w0),
which is a contradiction.

The proof of the reverse implication is much more involved. Let us sup-
pose that v is a viscosity supersolution. In order to prove that v is p(x)-
superharmonic, we need to show that v obeys the comparison principle with
respect to weak solutions of (3.1). To this end, let D € Q and let h € C(D)
be a weak solution of (3.1) such that v > h on dD. Owing to the lower
semicontinuity of v, for every § > 0 there is a smooth domain D’ € D such
that h <v+¢ in D\ D’. The reason for passing to D’ is that we aim to use
h as boundary values and therefore it should belong to the global Sobolev
space instead of I/Vli’p(x)(D).

C
For € > 0, let h. be the unique weak solution to

—Apyhe =—¢, >0

such that he —h € Wol’p(x)(D’). Then h, is locally Lipschitz in D', see [1, 5],
v+ 6 > he on 0D’ because of the smoothness of D’, and it follows from
Lemma 5.2 below that h. — h locally uniformly in D’ as € — 0. Hence, in
order to prove that v > h in D, it suffices to prove that v+ > h. in D’ and
then let first ¢ — 0 and then § — 0. As v+ is also a viscosity supersolution
of (3.1), the proof of Theorem 4.1 thus reduces to

Proposition 4.3. Let D' € Q, and suppose that v is a viscosity supersolu-
tion to the p(x)-Laplace equation in D', and let ¢ > 0. Assume further that
he is a locally Lipschitz continuous weak solution of

(4.1) _Ap(w)hg = —c
in D' such that

v>h. on OD.
Then

v>h. in D.

A similar statement holds for viscosity subsolutions u, and locally Lips-
chitz continuous weak solutions he of

(4.2) _Ap(ac)%E = E&.

In other words, if

then
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The proof for Proposition 4.3 turns out to be both long and technically
complicated. It requires three Lemmas for weak solutions that we prove in
Section 5 below. The proof itself is given in Section 6.

We close this section by proving a comparison principle for a viscosity
subsolution u and a supersolution v. Roughly, the idea is to fix a smooth
boundary value function which lies between v and v+4, > 0, at the bound-
ary of an approximating smooth domain and find the unique weak solution
he to (4.1). Since h is locally Lipschitz continuous, we can use Proposi-
tion 4.3 for h. and v to show that v > h.. The argument for the solution ﬁg
to (4.2) and w is analogous, and Lemma 5.2 completes the proof by showing
that h,, he converge to h as ¢ — 0, where h is the unique weak solution to
(3.1) with the same boundary values. Details are given below.

Theorem 4.4. Let ) be a bounded domain. Assume that u is a viscosity
subsolution, and v a viscosity supersolution such that

(4.3) limsup u(z) < limﬁ\inffu(z)

T—z

for all z € 9, where both sides are not simultaneously —oo or co. Then
u<v in Q.

Corollary 4.5. Let §2 be a bounded domain, and f : 92 — R be a continuous
function. If u and v are viscosity solutions of (3.1) in  such that

Jim u(e) = f(0) and Jim ofx) = f(xo)
for all xg € 092, then u = v.

Proof of Theorem 4.4. Owing to (4.3), for any 6 > 0 there is a smooth
subdomain D & €2 such that

u<v+d
in Q\ D. By semicontinuity, there is a smooth function ¢ such that
u<p<v+d on OID.

Let h be the unique weak solution to (3.1) in D with boundary values .
Then

u<h<v+9

on D, and h is locally Lipschitz continuous in D by the local C'b* regularity
of p(x)-harmonic functions, see [1, 5].

For ¢ > 0, let h. be the unique weak solution to (4.2) such that h, — h €
VVO1 p(@) (D). Then h, is locally Lipschitz in D and it follows from Proposition
4.3 that u < h. in D. In view of Lemma 5.2, this shows that © < h in D,
and a symmetric argument, using equation (4.1), gives h < v+4 in D. Thus
we have u < v+4 in D, and since this inequality was already known to hold
in Q\ D, we finally have v < v+ 6 in Q. The claim now follows by letting
o — 0. (]
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5. THREE LEMMAS FOR WEAK SOLUTIONS

In this section, we prove three lemmas that are needed in the proofs of
Theorem 4.1 above, and of Proposition 4.3 in the next section. The following

well-known vector inequalities will be used several times below:
22741 — | if ¢ > 2,
G (€726 =" n) - (E—m) > g2 o
(- Diefipte fl<a<2

In particular, we have

(5.2) (P2 e — [pP) =2 ) - (¢ =) > 0

for all £,7 € R™ such that £ #n and 1 < p(x) < oo.

We begin with the following form of the comparison principle. Note that
the second assumption holds if u is a weak subsolution, and v a weak su-
persolution. For this reason, the lemma is also the basis of the proof of the
p(x)-superharmonicity of weak supersolutions, Theorem 3.3.

Lemma 5.1. Let u and v be functions in WP (Q) such that (u —v), €
W@ (). 1

/ |DulP™~2 Dy - Dpda < / |Dv|P®~2 Dy - Dy da
Q Q
for all positive test functions ¢ € Wol’p(w)(Q), then u < v almost everywhere
in ).
Proof. By the assumption and (5.2), we see that
0< /(]Du\p(a:)_2 Du — | Dv[P® =2 Dv) - D(u — v)4 dz < 0.
Q
Thus D(u—v)4+ = 0, and since (u—v)4 has zero boundary values, the claim
follows. 0
Lemma 5.2. Let u € WHP®)(Q) be a weak solution of
—-A

p@)t =0

in Q, and us: a weak solution of
—Apu=¢, €>0,
such that u — u. € W()l’p($)(ﬂ). Then
ue = u locally uniformly in €,

as € — 0.

Proof. We begin the proof by deriving a very rough estimate for |Du — Du,|
in LP(®). To this end, since u. minimizes the functional

1
v »—>/ ( | Do [P®) —z-:v) dz,
a \p(z)
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using Holder’s inequality, Sobolev-Poincaré (Theorem 2.1), and the modular
inequalities (2.2), we have

/ |Du. [P®) dz SC'/ (|Du\p(x) + € |ue —u|) dz
Q Q
<c ( [ 1D o+ 1 o~ U’me(ﬂ))

(1 1Dl ) g + & (1Dl ooy + 1 Dotell i) ) -

IN

Alternatively, we could start by testing the weak formulation for u. with
U— Us € WO1 P (x)(Q), use Young’s inequality, and then continue in the same
way as above. Using (2.2) again, and absorbing one of the terms into the
left gives

1/p~
(5.3) 1D oy < € (14 IDul )
with a constant C' independent of € for all € > 0 small enough, and thus

(5.4) |Du = Dl otor gy < € (14 DUy ) -

Next we use u — u: € I/VO1 P (x)(Q) as a test-function in the weak for-
mulations of —A,yu = 0 and —A,;)u. = €, and subtract the resulting
equations. This yields

p(z)

/ (|Du[P®~2 Dy — | Du P2 Du.) - (Du — Du.) dx
Q

ze/Q(uE—u) dz.

The right hand side can be estimated as above:

(5.5)

5/9 (ue —u) dz < Ce||Due — Dul| o) (g -

In order to obtain a suitable lower bound for the left hand side of (5.5), we
use the two inequalities in (5.1), and therefore we need to consider separately
the subsets Q™ = {z € Q: 1 < p(z) < 2}, and Q" := {x € Q: p(z) > 2}.
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Let us first concentrate on Q~. By using Hoélder’s inequality (2.3), and
the modular inequalities (2.2), we have

Du- — D p(z)
/ |Du — Du ™) dz < C Due Z(L)
Q- (|Du| 4 |Dug|) 2 ?=P) L%(Q_)
o aput+ e
L2-p@) (Q-)

. 2 P/2
<C max / | Due Du2| dx
relpt -} \Ja- (|Dul + [Duc|)?-#@

1/2
« <1+/ (]Du\—i—\Dug\)p(”)dx) ,
-

where p~ = infq- p(z) and pT = supgy- p(z). The vector inequality (5.1),
Young’s inequality, and the fact that 1 < p—, p7 < 2 imply

2
|Du. — Dul? v/
max () dx
peipt. i} \Jao- (|Dul + [Du.|)>~P

p/2
< max C ( / (|1DuP™ 72 Du — | Du[P® =2 Du,) - (Du — Duy) dx)
pe{ﬁ+7ﬁ7} -

<C (522? + 5 / (|DulP™~2 Dy — | Du|P® =2 Du,) - (Du — Du) d:c>
o-

for any 0 < § < 1, to be chosen later. Combining this with (5.3), which can
be used to bound the term (1 + [, (|Du| + [Du.|)P®) dz), we obtain

/ |Du — Du€|p(x) dx < 05#
(5.6) - ,

+C§ / (|Du‘p(m)72 Du — ‘Dua|p(x)72 Du,) - (Du— Du,)dx
-

for 0 < § < 1 and for a constant C' depending on u but independent of &
and 9.
For QT = {z € Q: p(x) > 2}, (5.1) gives

/ |Du — Du.|P®) dx
O+

<C | (IDulP®72 Du— |DuP® =% Du.) - (Du — Du.) da,
O+
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and summing up this with (5.6) and using (5.5) yields
/ |Du — Du.|P® dz
Q
2 2 9 9
<C (52@ +6 / (|IDuP™~2 Dy — | Du [P =2 Du,) - (Du — Due)dx)
Q

_2 "
<C (52_;3* +0 » e|Du— DUeHLp(w)(Q)) :

(-9 )p~
Now we choose § =~ 4, and have

/Q |Du — Du.|P®) dz < Ce?™ /2 (1 + [Du = Duel| o) ) )

Owing to (5.4) and the modular inequalities, we obtain
[Du — Due|| oy () = 0 as € —0.

It follows from this and another application of Poincaré’s inequality as
well as inequalities (2.2) that

(5.7) ue —u in WHPEQ) as e —0.

Then we choose €1 and €9 such that e; > €2 and subtract the corresponding
equations to get

/(|Du€1|p(m)_2 Duc, — |Due, P72 Du.,) - Dpdz = (e, — 52)/ pdx >0
Q Q

for positive ¢. According to Lemma 5.1, we have u., > u., almost every-
where. This together with (5.7) implies that

ue — u  almost everywhere in Q.

The claim about the locally uniform convergence follows from C7} _-estimates
for u. which are uniform in e due to the results in [10, Section 4]. g

We use the next lemma to deal with the singularity in the equation in the
region where 1 < p(x) < 2.

Lemma 5.3. Let v. € W'P@)(Q) be a weak solution of
(5.8) —Ap(x)v =E.

Suppose that ¢ € C%(Q) is such that ve(xg) = @(x0), ve(z) > @(z) for
x # xo, and that either xq is an isolated critical point of ¢, or Dy(xg) # 0.
Then
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Proof. We may, of course, assume that zog = 0. We make a counterassump-
tion, which yields a radius r > 0 such that
Do(x) #0 and — App(r) <e

for 0 < |z| <.
We aim at showing first that ¢ is a weak subsolution of (5.8) in B, =
B(0,7). Let 0 < p < r. For any positive n € C§°(B,), we have

—/ D™ 2 Dy L ds = |DpP™) 2 Dy - Dy dz
lz|=p P p<|z|<r

+ / (Ap@)p)ndz
p<|z|<r

by the divergence theorem. The left hand side tends to zero as p — 0, since

+_-1 ——1 -1
< CInlloe max{[[ Del[5, ", [ Dell5 ~ 1o

/ 0Dl 2 Dy - = ds
|lz|=p P

By the counterassumption,

/ NAp@)pdr > —6/ ndx > —5/ ndzx.
p<lz|<r p<|z|<r B,

Letting p tend to zero, we see that

/ | DP9 Dy - Dda < 6/ ndz,

which means that ¢ is indeed a weak subsolution.

Now a contradiction follows from the comparison principle in a similar
fashion as in the first part of the proof of Theorem 4.1. Indeed, we have
m = infgp. (v: —¢) > 0. Then ¢ = ¢ + m is a weak subsolution such that
» < wv. on OB, but ¢(0) > v:(0). O

6. THE COMPARISON PRINCIPLE

As seen in Section 4, Proposition 4.3 is the core of the proof of the equiv-
alence of weak and viscosity solutions. To prepare for its proof, we write
Ap(z)®(z) in a more convenient form. For a vector § # 0, { ® ¢ is the matrix
with entries &&;. Let

Ar,€) = P2 <I +la) - 2) 5 é|> ,

B(x,€) = ¢ log[¢| € - Dp(x),
and
F(z,&,X) = trace(A(z,£)X) + B(z,§)
for x € Q, £ € R, and X a symmetric n X n matrix. Then we may write
Apayp(z) =F(z, Dp(z), D*p())
= trace(A(x, Do(x))D*¢(x)) + B(x, Do(x))
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if Dp(x) # 0.

We prove the claim about viscosity subsolutions in Proposition 4.3, the
case of supersolutions then following by symmetry. For the convenience of
the reader, we repeat the statement before proceeding with the proof.

Proposition 6.1. Let Q be a bounded domain, and suppose that u is a
viscosity subsolution to the p(z)-Laplace equation, and v is a locally Lipschitz
continuous weak solution of

(6.1) Ay =¢, €>0,
i Q such that

u < v on Of).
Then

u<wvin .

Proof. The argument follows the usual outline of proving a comparison prin-
ciple for viscosity solutions to second-order elliptic equations. We argue by
contradiction and assume that u — v has a strict interior maximum, that is,

(6.2) sup(u — v) > sup(u — v).
Q o0

We proceed by doubling the variables; consider the functions

wj(ﬂj‘,y):’UJ(J')—U(y)—\IJj(l‘,y), j:172>"'7
where
\Il](may) = %‘l’ - y‘qa

and

1 p~ = inf p(z) > 1.

> 2
g > max{ pm—1 zeQ

Let (z;,y;j) be a maximum of w; relative to Q x . By (6.2), we see that for
Jj sufficiently large, (z;,y;) is an interior point. Moreover, up to selecting a
subsequence, x; — & and y; — & as j — 00 and & is a maximum point for
u — v in . Finally, since
J
u(z;) —v(z;) < ulz;) —oly;) — p |z — 5",

and v is locally Lipschitz, we have

J

i y;l" < olx) —oly;) < Claj —y;l,
and hence dividing by |z; — yj|1_5 we get
(6.3) glz; —y T =0 as j — oo for any 6 > 0.

Observe that although w is, in general, an extended real valued function, it
follows from Definition 3.5 that u is finite at x;.
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In what follows, we will need the fact that x; # y;. To see that this holds,
let us denote

ei(y) = =Y;(xj,y) + v(y;) + ¥ (x5,95),
and observe that since
u(z) —v(y) — ¥z, y) < ulz;) —oly;) — Y (25, y5)
for all z,y € Q, we obtain by choosing x = z; that
v(y) = =V;(x;,y) + v(y;) + Y5, v5)
for all y € Q. That is, ¢; touches v at y; from below, and thus
(6.4) limsup(—Ap@y0;(y) > €

Y—yY;

by Lemma 5.3. On the other hand, a calculation yields
Ay (y) = P a; — y| I D @@ 72 a2 [n +q—2+(p(y) —2)(g — 1)

+log(j [ — yl" ") (xj —y) - DP@/%}

where
(¢—1Dp(y) —2)+q—2=q(p(y) —1) —ply) >0
by the choice of ¢q. Hence if z; = y;, we would have

lim sup(—A, )i (y)) =0,
Y—=Yj
contradicting (6.4). Thus x; # y; as desired.

For equations that are continuous in all the variables, viscosity solutions
may be equivalently defined in terms of the closures of super— and subjets.
The next aim is to exploit this fact, together with the maximum principle
for semicontinuous functions, see [6, 7, 18]. Since (x;,y;) is a local maxi-
mum point of w;(z,y), the aforementioned principle implies that there exist
symmetric n X n matrices X, Y; such that

727_*_
(D2¥;(x,y5), X5) €17 ulxy),
727_
(=Dy V() 5), Y3) €7 v(y;),
where 72’+u(xj) and 72’_v(yj) are the closures of the second order superjet
of u at x; and the second order subjet of v at y;, respectively. Further,
writing z; = x; — y;, the matrices X; and Y; satisfy
X; 0 1 2
( N _yj.) < D*Wj(x;,95) +3 [D*W; (), y5)]
. _ _ I -1
(65) =il 2P (1 )

(g — a4 120-6y (2 ® 2z —2j 92
ke = D15l 2l (2197 507,
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where

D*W;(z;,y;) = (

Observe that (6.5) implies

XGE-€=Y5¢-C< g [l + 20 P 1€ = ¢
(6.6) +4(g —2) [z + 241 251*7%] (25 - (€ — Q)
< j[(a= Dzl + 20g = 12220 g - ¢

for all £, € R™.

Now, wu is a viscosity subsolution of the p(z)-Laplace equation, and v a
viscosity solution of —A,yv = e. By the equivalent definition in terms of
jets, we obtain that

—trace(A(z;,n;)X;) — B(zj,n;) <0
and

—trace(A(y;,1;)Y;) — B(yj,n;) > .
Here it is crucial that

0y = DaWy(xj,y5) = =Dy Wy(s,5) = jlaj — vl "7 (25 — yy)

is nonzero as observed above. This guarantees that the p(z)-Laplace equa-
tion is non-singular at the neighborhoods of (xj,7;, X;) and (y;,n;,Y;),
which in turn allows us to use jets. Notice also that since v is locally Lips-
chitz, there is a constant C' > 0 such that |n;| < C for at least large j’s, for
the reason that (1;,Y;) € jz’_v(yj).

Since n; # 0, A(-,-) is positive definite, so that its matrix square root
exists. We denote AY%(x;) = A(zj,n;)/? and AY2(y;) = A(y;,n;)"/%.
Observe that the matrices X, Yj as well as A(-, -), and A'/?(-) are symmetric.
We use matrix calculus to obtain

trace(A(zj,n;)X;) = trace(A1/2(xj)A1/2(:rj)Xj)
= trace(AUz(xj)TXjAl/z(xj))

- 1/2 1/2
=" x4 (@) - A @),
k=1
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where A,lc/g(a:j) denotes the kth column of A'/2(z;) This together with (6.6)
implies

0 < e < B(zj,n;) — B(yj,nj)

n

34 @) - A 2) = S YA () - A ()
k=1 k=1

< Blay,n) ~ Bly ) + Ci loy — w5172 A2 (a5) — 42|
< B(xj,7m;) — B(y;: )

Cj |z — il "
(Min(AY/2(27)) + Auin (A () )

_l’_

5 [A(z,m5) — Aly;m)I3 -

The last inequality is the local Lipschitz continuity of A — A1/2, see [13,
p. 410], and Apin (M) denotes the smallest eigenvalue of a symmetric n x n
matrix M.

Since p(x) € C1(R"), and

g P72 oy 002 = Jexcplog ;) 72) — exp(log; "))

< [Demtie—DlogInb )

-2
"

= [log([n; DI [njI™ ™~ Ip(z;) = plys)l,

for some s € [p(x;),p(y;)], we have

B(xj,m;) — B(yj,n5)
= |n; ") "2 log |n;| n; - Dp(xz) — |nj|P¥) =2 log || n; - Dp(y;)
< [P [log [ngl| | Dp(a;) — Dp(y;)|
+ [nj| [log ;1] 1 Dp(y;)| |1 [P#9)7% — g [P =2
< [n; ") log |nyl| |Dp(;) — Dp(y))|
+C In;|* " log? ] p(x;) — ply;)] -
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Moreover,
| A(zj,m5) — Alyzm5)ll,
< ‘|77j ’p(xj)*Q —In; |p(yj)*2‘
+ I P (ply) = 2) = Iy P72 (py) = 2)
-2
< maxx {3 = pla;), pa;) — 1} llog | Ins1*2 Ip(;) — pyy)
+ P92 p(5) — p(y;)]
< ((* + 1) ltog Il Iy + Iy P72 farj = 1.

and
1 1/2
)\min(Al/2("Ej)) = ()‘mln(A(:EJan))) /2 = <I£I|1H} A(%,m)ﬁ f)
. p(z;)—2
me{l, p<xj>1}|nj| ;
Thus
0 <e < [P log |n;|| |Dp(a;) — Dp(y;)]
+ O ;[P og? |nj] Ip(5) — ply;)]
(6.7)

N o\ 2
C (v + 1) [log [ | Insl*~2 + s P4 2)

s — ]9
' ploj)=2 sp—2\27 2 = vl
min{l,p~ — 1} <|77]| T 4yl e )

+

The first two terms on the right hand are easily shown to converge to 0
as j — o0o. Indeed, since z; — &, p(Z) > 1 and |n;| < C, we have that
0 ]p(xj)_l [log |n;|| remains bounded as j — oo. Thus, owing to the conti-
nuity of x — Dp(x), the first term converges to zero as j — oco. The second
term is treated in a similar way.

Finally, we deal with the third term. Recalling that |n;| = j |z; — yj\q_l,
we have

2
llog |;1| In;|°~* . 2
P(Zj>72j ’ p(y;)—2 J |xj - yj|q < 10g2 |77j‘ |77J| smpleg) |x] - yJ|q
il 2 4+ Inil 2
< log? || 52 Pt 35 — .|q+(q71)(287p(xj)*2)
) B ) 1 12s—p(zj)—1
= log®(j z; — y;|? 1)[] |25 — v 1] 25 — 4l

2s—p(z;)—1
. —1\ [ —1+6 i 1-6(2s—p(z;)—1
= log®(j [z — y;|* )[J T } |zj — ;| 0@ P
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Now, since 2s —p(zj)—1 = p(£)—1 > 0 and j |z; — Z/j’q_H(S

we see that

—0asj— oo,

)—1

_ 2s—p(; )
y;l? 1+9 —0 as j — oo.

[j |z —
Further, we write

|q—1) |1—5(25—p($]')—1)

log?(j |zj — y; |z — y;

sy /1 (1-8(25—p(a;)—1))
. 1\, - . nEsmRE) ) q—1
=log?(j lwj — ") lzj —ys|") T o (]) ’
and note that choosing § > 0 so small that 1 — §(p™ — 1) > 0 suffices for

the third term to converge to zero as j — oco. A contradiction has been
reached. 0

7. AN APPLICATION: A RADO TYPE REMOVABILITY THEOREM

The classical theorem of Radé says that, if the continuous complex func-
tion f is analytic when f(z) # 0, then it is analytic in its domain of defini-
tion. This result has been extended for solutions of various partial differen-
tial equations, including the Laplace equation and the p-Laplace equation,
see the references in [16]. Here we prove a corresponding removability result
for p(x)-harmonic functions.

Theorem 7.1. If a function v € C*(Q) is a weak solution of (3.1) in
Q\ {z: u(z) =0}, then u is a weak solution in the entire domain Q.

Proof. A key step in the proof is to observe that if u € C1(Q) is a weak
solution in

Q\ {a: ulx) = 0},
then it is a weak solution in Q \ U, where
U:={z: u(z) =0 and Du(x) # 0}.

This readily follows from Corollary 4.2, because in the definition of a viscos-
ity solution we ignore the test functions with Dp(xg) = 0. Since u € C1(Q),
it follows that if Du(zg) = 0, then Dp(zq) = 0.

Thus the original problem has been reduced to proving the removability
of U, which is locally a C'-hypersurface. There are at least two ways to ac-
complish this. One option is to apply [16, Theorem 2.2}, which means using
viscosity solutions and an argument similar to Hopf’s maximum principle.
The second alternative is to use a coordinate transformation and map U to a
hyperplane, and then prove the removability of a hyperplane by a relatively
simple computation. The price one has to pay in this approach is that the
equation changes, but fortunately this is allowed in [23, Lemma 2.22]. O
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Remark 7.2. We do not know how to prove Theorem 7.1 without using
viscosity solutions, not even in the simpler case when p(z) is constant. In
particular, the removability of a level set is an open question for the weak
solutions of (3.1) when p(z) is, say, only continuous. Theorem 7.1 fails if u
is assumed to be only Lipschitz continuous.

8. THE NORMALIZED p(z)-LAPLACIAN

There has recently been some interest in another variable exponent version
of the p-Laplacian, called the normalized p(z)-Laplacian

(8.1) A]]D\Ex)u(x) = Au(z) + (p(z) — 2)Asu(z),

where
Du(z)  Du(x)
|Du(z)| - |Du(z)|’

In particular, the weak solutions of the equation —Aé\zx)u(a:) = 0, or rather a

Asou(r) = D*u(z)

scaled version of it, were studied by Adamowicz and Hésto [3] in connection
with mappings of finite distortion. In this section, we prove the compar-
ison principle for viscosity subsolutions and strict viscosity supersolutions
of this equation. Hence we obtain an almost exact analogue of Proposition
4.3. However, owing to the fact that some of the major tools in the weak
theory (comparison principle, uniqueness, stability) for the normalized p(x)-
Laplace equation are still missing, the uniqueness of viscosity solutions and
the equivalence of weak and viscosity solutions remain open.

The normalized p(z)-Laplacian has a bounded singularity at the points
where the gradient Du vanishes, and the viscosity solutions can thus be
defined in a standard way, by using the upper and lower semicontinuous
envelopes of the operator (8.1). For any constant ¢ € R, we say that
an upper semicontinuous function v: @ — R is a viscosity subsolution
to —A;\éx)v(:n) = c if, whenever ¢ € C?() is such that v(zg) = @(x0),
v(z) < p(x) for x # g, then

— Al ye(wo) < e, if Dp(xo) # 0

—Ap(z0) — (p(70) — 2)Amin(D%@(z0)) < ¢, if Dp(xg) = 0 and p(xg) < 2,
—Ap(w0) = (p(20) = 2)Amax(D*@(w0)) < ¢, if Dp(xg) = 0 and p(zg) > 2,

where Apax(A) and Apin(A) denote the largest and the smallest eigenvalue,
respectively, of a symmetric n X n matrix A. And as usual, a lower semi-
continuous function w is a viscosity supersolution if —w is a viscosity sub-
solution.

Proposition 8.1. Suppose that 2 is a bounded domain, u € C(Q) is a vis-

cosity subsolution to —Aé\éx)u =0, andv € C(Q) is a viscosity supersolution
of

—Aﬁm)v =g, >0
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in Q such that
u<ov on Of.

Then

u<ov in Q.

Proof. The proof is quite similar to that of Proposition 4.3. We again argue
by contradiction and assume that u — v has an interior maximum. Consider
the functions
wj(z,y) =u(z) —v(y) — ¥Y,(z,y), i=12,...,
where this time
j 4

\P]($,y) = i‘.’I) - y‘ )
and let (z;,y;) be a maximum of w; relative to Q x Q. For j sufficiently
large, (x;,v;) is an interior point. Moreover, j|z; — y;|* — 0 as j — oo, and

xj,y; — & and & is a maximum point for v — v in €.
Again we see that v + ¥;(z;,-) has a local minimum at y;, and thus

AN (= Ti(x5,y) > e

If p(y;) > 2, this implies that

e <AV (25, y;) + (P(Y)) — 2) Amax (DT (25, ;)
=j(n+2) |z; — yj|* + 35(p(y;) — 2) |zj — ;[

and if 1 < p(y;) < 2, then
e <AV (25, 45) + (P(Y5) — 2)Amin (DY (25, y5))
=j(n+2)|z; —y;|* +i(ply;) — 2) |lzj — y;°

In particular, in any case we must have x; # y;.

Since (xj,y;) is a local maximum point of w;(z,y), the maximum prin-
ciple for semicontinuous functions implies that there exist symmetric n x n
matrices X;,Y; such that

—2,+
(Doj(xj,y;), X;) € T ulxy),

—2,—
(_Dy\pj(xjvyj)vy) €J U(y])a

and
X: 0 1 2
< 0 _Y]) < D*Wj(x;,95) +3 [D?W; (. y5)]
We have

. I -1 2Rz =2 Q%
20 (s ) — » e ‘o2
D\I/J(xg,yg)—ﬂzj’<_[ ]>+2j <—Zj®zj Zj®zj>,
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where z; = z; — y;, and thus
X, 0 I I
J < |z + 2|2:|*
<0 *}/j _J(‘J‘ + |]|> —I I

. Rz —z2i Rz
2j(1+8|z?) ( 255 TEEA
T ‘7( T ZJ)(—ZJ'@Z]' zj®zj>

(8.2)

This implies

(8.3) Xj€ €= Y¢-C < 5 [3lz1” +18]zY] € — ¢
for all £, € R™. In particular, X; <Y; and hence trace(X;) < trace(Yj).
Since u is a viscosity solution of —Aﬁm)u = 0, v satisfies —Aﬁz)v = g,

and n; = j|x; — yj|2 (xj —y;j) # 0, we obtain using (8.3) that
0 < e < trace(X; — Yj) + (p(y) — 2) X5 - 05 — (p(y;) — 2)Yjn; - 1
< (X = Y))ny -0 + (p(zy) — 2) X505 - 05 — (p(yy) — 2)Yj5 - 05

= X,(4/p(ay) — 1) - (y/pla) 1)
= Y5(/plus) = 145) - (o) — 1)
< Cjlxj — 5l ‘\/p(wj) — 1 \/p(y;) -1 2

[p(;) — p(y;)I”
(Vp(z;) — 1+ /ply;) — 1)
where 7); = n;/|n;|. The right hand side tends to zero as j — oo because

p(z) is assumed to be Lipschitz continuous, j |z; — yj]4 — 0, and p(z) > 1.
This contradiction completes the proof. O

<Cj | —y;|?

Remark 8.2. Unlike its counterpart for the divergence form p(z)-Laplacian
(3.1), Proposition 8.1 does not need the assumption that either u or v is
locally Lipschitz. However, if that is the case, then it is enough to assume
that p(x) is just Holder continuous with exponent o > 1/2. Indeed, we have
I ot
i~ Vil

ulys) — oly5) < ulay) — v(y;) — % |

9

and assuming that u is Lipschitz, this gives

J 4
112 — il < ulzg) —ulyy) < Cla -y,
and hence, after dividing by |z; — y;|' ¢, we obtain j |z; — y;]>T¢ = 0asj —

oo for any € > 0. The last displayed inequality in the proof of Proposition
8.1 gives

0 <& <Cjlay—yil* plas) — p(y)* < Cilay — g PF,

and as 2(1 + «) > 3, we get a contradiction.
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Remark 8.3. Suppose that the following holds for an upper semicontinuous
function u: whenever zg € Q and ¢ € C?(f) are such that u(zo) = ¢(z0),
u(x) < @(x) for x # xg, and Dp(xg) # 0, we have

—Aﬁm)go(xg) <0.

Then u is a viscosity subsolution of —Aé\ém)v(:c) = 0. In other words, the test-
functions with vanishing gradient at the point of touching can be completely
ignored.

To see this, we argue by contradiction, and suppose that a function u
satisfying the condition above is not a subsolution. Then there is z¢ € {2 and
@ € C%(Q) touching u from above at zq such that Do (z0) = 0, D?p(xq) # 0,
and

—Ap(xg) — (p(w0) — 2)Amin(D*@(0)) >, if p(zo) < 2,
—Ap(zg) — (p(r0) — 2)Amax(D?p(z0)) > €, if p(x) > 2

for some ¢ > 0. In particular, ¢ is a viscosity supersolution of —A;\éx)v(x) =

¢ in some small ball B(zg,0) and u < ¢ on 0B(zg,d). We can now run the
proof of Proposition 8.1 with v replaced by ¢ and €2 by B(z,d), and con-
tradict the assumption that u— ¢ has an interior maximum at zg. Therefore
such a test-function cannot exist, and u is a subsolution as claimed.
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