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Abstract. We characterize solutions to the homogeneous parabolic p-Laplace equation ut =
|∇u|2−p ∆pu = (p − 2)∆∞u + ∆u in terms of an asymptotic mean value property. The results
are connected with the analysis of tug-of-war games with noise in which the number of rounds is
bounded. The value functions for these game approximate a solution to the PDE above when the
parameter that controls the size of the possible steps goes to zero.

1. Introduction. Mean value properties for solutions to elliptic and parabolic
partial differential equations are useful tools for the study of their qualitative prop-
erties. The classical mean value property for harmonic functions states that u solves
∆u = 0 if and only if it satisfies

u(x) =
1

|Bε(x)|

∫
Bε(x)

u(y) dy =

∫
Bε(x)

u(y) dy.

In fact, as remarked in [MPR], we can relax this condition by requiring that it
holds asymptotically

u(x) =

∫
Bε(x)

u(y) dy + o(ε2),

as ε → 0. This result follows easily for classical C2 solutions by using the Taylor
expansion and for continuous functions by using the theory of viscosity solutions. In
addition, a weak asymptotic mean value formula holds for elliptic problems in some
nonlinear cases as well. In [MPR] the authors characterized p-harmonic functions by
means of asymptotic mean value properties that hold in a weak sense, that we call
viscosity sense (see Definition 2.3 below). In fact, the asymptotic expansion

u(x) =
α

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
+ β

∫
Bε(x)

u(y) dy + o(ε2), as ε→ 0,
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holds for all x in a domain Ω in the viscosity sense if and only if

∆pu(x) = div(|∇u|p−2∇u)(x) = 0,

in Ω in the viscosity sense, where α and β are given by

α =
p− 2

p+ n
and β =

2 + n

p+ n
. (1.1)

Our main objective in this paper is to extend this analysis to parabolic problems
and to study parabolic tug-of-war games with noise.

To begin with, let us consider the heat equation. We observe that a function u
solves

ut(x, t) = ∆u(x, t)

if and only if

u(x, t) =

∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds+ o(ε2), as ε→ 0.

In the case p ̸= 2 our results are easier to state if we rescale the time variable so
that we consider viscosity solutions u to the equation,

(n+ p)ut(x, t) = |∇u|2−p
∆pu(x, t). (1.2)

These are characterized by the asymptotic mean value formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds+ o(ε2), as ε→ 0,

that should hold in the viscosity sense. Here, as before, α and β are given by (1.1).

These mean value formulas are related to the Dynamic Programming Principle
(DPP) satisfied by the value functions of parabolic tug-of-war games with noise. The
DPP is precisely the mean value formula without the correction term o(ε2). We call
functions that satisfy the DPP (p, ε)-parabolic. For elliptic counterparts see [LG],
[LGA], and [MPR2]. It turns out that (p, ε)-parabolic equations have interesting
properties making them interesting on their own, but in addition, they approximate
solutions to the corresponding parabolic equation.

Le Gruyer and Archer [LGA, LG] used a mean value approach to solve the infinity
Laplace equation and related problems. Oberman [O] implemented various conver-
gent difference schemes for infinity harmonic functions using mean values. Kohn and
Serfaty [KS] studied a deterministic game theoretic approach to general parabolic
equations. They consider a large class of fully nonlinear parabolic equations includ-
ing the mean curvature flow. Barron, Evans, and Jensen [BEJ] considered various
generalizations of L∞-variational problems. In particular, they obtained a version of
our results in the case p = ∞, see Theorem 4.13 below. Finally, (1.2) has desirable
properties in image processing, see Does [KD].
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2. An asymptotic mean value characterization. Recall that for 1 < p <∞
we have

|∇u|2−p
∆pu = (p− 2)∆∞u+∆u, (2.1)

where

∆pu = div(|∇u|p−2∇u)

denotes the p-Laplacian and

∆∞u = |∇u|−2 ⟨D2u∇u,∇u⟩ = |∇u|−2
n∑

i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

the 1-homogeneous infinity Laplacian. Observe that in equation (1.2) we get

ut = ∆∞u

when p→ ∞, and

(n+ 2)ut = ∆u

when p = 2.

Let T > 0, and Ω ⊂ Rn be an open set, and let ΩT = Ω× (0, T ) be a space-time
cylinder with the parabolic boundary

∂pΩT = {∂Ω× [0, T ]} ∪ {Ω× {0}}.

We denote the mean value integral with the usual notation∫
B

f(y) dy =
1

|B|

∫
B

f(y) dy.

The parabolic equation (1.2) is singular when the gradient vanishes. We recall the
definition of viscosity solution based on semicontinuous extensions of the operator, and
refer the reader to Chen-Giga-Goto [CGG], Evans-Spruck [ES], and Giga’s monograph
[G]. Below we denote by λmax((p − 2)D2ϕ(x, t)), and λmin((p − 2)D2ϕ(x, t)) the
largest, and the smallest of the eigenvalues to the symmetric matrix (p−2)D2ϕ(x, t) ∈
Rn×n for a smooth test function ϕ. We write λmax((p− 2)D2ϕ(x, t)) instead of (p−
2)λmax(D

2ϕ(x, t)) to give a unified treatment for the cases p ≥ 2 and 1 < p < 2.

Definition 2.1. A function u : ΩT → R is a viscosity solution to (1.2) if u is
continuous and whenever (x0, t0) ∈ ΩT and ϕ ∈ C2(ΩT ) is such that

i) u(x0, t0) = ϕ(x0, t0),
ii) u(x, t) > ϕ(x, t) for (x, t) ∈ ΩT , (x, t) ̸= (x0, t0),

then we have at the point (x0, t0){
(n+ p)ϕt ≥ (p− 2)∆∞ϕ+∆ϕ, if ∇ϕ(x0, t0) ̸= 0,

(n+ p)ϕt ≥ λmin((p− 2)D2ϕ) + ∆ϕ, if ∇ϕ(x0, t0) = 0.
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Moreover, we require that when touching u with a test function from above all the
inequalities are reversed and λmin((p− 2)D2ϕ) is replaced by λmax((p− 2)D2ϕ).

It will become useful to observe that we can further reduce the number of test
functions in the definition of a viscosity solution. Indeed, if the gradient of a test
function vanishes we may assume that D2ϕ = 0, and thus λmax = λmin = 0. Nothing
is required if ∇ϕ = 0 and D2ϕ ̸= 0. The proof follows the ideas in [ES], see also [CGG]
and Lemma 3.2. in [JK] for p = ∞. For the convenience of the reader we provide the
details.

Lemma 2.2. A function u : ΩT → R is a viscosity solution to (1.2) if u is
continuous and whenever (x0, t0) ∈ ΩT and ϕ ∈ C2(ΩT ) is such that

i) u(x0, t0) = ϕ(x0, t0),
ii) u(x, t) > ϕ(x, t) for (x, t) ∈ ΩT , (x, t) ̸= (x0, t0),

then at the point (x0, t0) we have{
(n+ p)ϕt ≥ (p− 2)∆∞ϕ+∆ϕ, if ∇ϕ(x0, t0) ̸= 0,

ϕt(x0, t0) ≥ 0, if ∇ϕ(x0, t0) = 0, andD2ϕ(x0, t0) = 0.

Moreover, we require that when testing from above all the inequalities are reversed.

Proof. The proof is by contradiction: We assume that u satisfies the conditions
in the statement but still fails to be a viscosity solution in the sense of Definition 2.1.
If this is the case, we must have ϕ ∈ C2(ΩT ) and (x0, t0) ∈ ΩT such that

i) u(x0, t0) = ϕ(x0, t0),
ii) u(x, t) > ϕ(x, t) for (x, t) ∈ ΩT , (x, t) ̸= (x0, t0),

for which ∇ϕ(x0, t0) = 0, D2ϕ(x0, t0) ̸= 0 and

(n+ p)ϕt(x0, t0) < λmin((p− 2)D2ϕ(x0, t0)) + ∆ϕ(x0, t0), (2.2)

or the analogous inequality when testing from above (in this case the argument is
symmetric and we omit it). Let

wj(x, t, y, s) = u(x, t)−
(
ϕ(y, s)− j

4
|x− y|4 − j

2
|t− s|2

)
and denote by (xj , tj , yj , sj) the minimum point of wj in ΩT ×ΩT . Since (x0, t0) is a
local minimum for u− ϕ, we may assume that

(xj , tj , yj , sj) → (x0, t0, x0, t0), as j → ∞

and (xj , tj) , (yj , sj) ∈ ΩT for all large j, similarly to [JK].

We consider two cases: either xj = yj infinitely often or xj ̸= yj for all j large
enough. First, let xj = yj , and denote

φ(y, s) =
j

4
|xj − y|4 + j

2
(tj − s)2.

Then

ϕ(y, s)− φ(y, s),
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has a local maximum at (yj , sj). By (2.2) and continuity of

(x, t) 7→ λmin((p− 2)D2ϕ(x, t)) + ∆ϕ(x, t),

we have

(n+ p)ϕt(yj , sj) < λmin((p− 2)D2ϕ(yj , sj)) + ∆ϕ(yj , sj)

for j large enough. As ϕt(yj , sj) = φt(yj , sj) and D
2ϕ(yj , sj) ≤ D2φ(yj , sj), we have

by the previous inequality

0 < −(n+ p)φt(yj , sj) + λmin((p− 2)D2φ(yj , sj)) + ∆φ(yj , sj)

= −(n+ p)j(tj − sj),
(2.3)

where we also used the fact that yj = xj and thus D2φ(yj , sj) = 0.

Next denote

ψ(x, t) = − j
4
|x− yj |4 −

j

2
(t− sj)

2.

Similarly,

u(x, t)− ψ(x, t)

has a local minimum at (xj , tj), and thus since D2ψ(xj , tj) = 0, our assumptions
imply

0 ≤ (p+ n)ψt(xj , tj) = (p+ n)j(tj − sj), (2.4)

for j large enough. Summing up (2.3) and (2.4), we get

0 < −(n+ p)j(tj − sj) + (p+ n)j(tj − sj) = 0,

a contradiction.

Next we consider the case yj ̸= xj . For the following notation, we refer to [CIL],
[OS], and [JLM]. We also use the parabolic theorem of sums for wj which implies
that there exists symmetric matrices Xj , Yj such that Xj −Yj is positive semidefinite
and (

j(tj − sj), j |xj − yj |2 (xj − yj), Yj

)
∈ P2,+

ϕ(yj , sj)(
j(tj − sj), j |xj − yj |2 (xj − yj), Xj

)
∈ P2,−

u(xj , tj).

Using (2.2) and the assumptions on u, we get

0 = (n+ p)j(tj − sj)− (n+ p)j(tj − sj)

< (p− 2)⟨Yj
(xj − yj)

|xj − yj |
,
(xj − yj)

|xj − yj |
⟩+ tr(Yj)

− (p− 2)⟨Xj
(xj − yj)

|xj − yj |
,
(xj − yj)

|xj − yj |
⟩ − tr(Xj)

= (p− 2)⟨(Yj −Xj)
(xj − yj)

|xj − yj |
,
(xj − yj)

|xj − yj |
⟩+ tr(Yj −Xj)

≤ 0,
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because Yj −Xj is negative semidefinite. If 1 < p < 2, the last inequality follows from
the calculation

(p− 2)⟨(Yj −Xj)
(xj − yj)

|xj − yj |
,
(xj − yj)

|xj − yj |
⟩+ tr(Yj −Xj)

≤ (p− 2)λmin +
n∑

i=1

λi

= (p− 1)λmin +
∑

λi ̸=λmin

λi

≤ 0,

where λi, λmin, and λmax denote the eigenvalues of Yj−Xj . This provides the desired
contradiction.

Similarly to in the elliptic case in [MPR], the asymptotic mean value formulas
hold in a viscosity sense. We test the mean value formulas for u with a test function
touching u from above or below.

Definition 2.3. A continuous function u satisfies the asymptotic mean value
formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds+ o(ε2), as ε→ 0,

(2.5)

in the viscosity sense at (x, t) ∈ ΩT if for every ϕ as in Lemma 2.2, we have

ϕ(x, t) ≥ α

2

∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

ϕ(y, s) dy ds+ o(ε2), as ε→ 0,

(2.6)

and analogously when testing from above. Observe that the asymptotic mean value
formula is free of gradients, and, in particular, that the case ∇ϕ(x, t) = 0, D2ϕ(x, t) =

0 is included. Next we characterize viscosity solutions to (n+ p)ut = |∇u|2−p
∆pu.

Theorem 2.4. Let 1 < p ≤ ∞ and let u be a continuous function in ΩT . The
asymptotic mean value formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds+ o(ε2), as ε→ 0,

holds for every (x, t) ∈ ΩT in the viscosity sense if and only if u is a viscosity solution
to

(n+ p)ut(x, t) = |∇u|2−p
∆pu(x, t).
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Above

α =
p− 2

p+ n
, β =

2 + n

p+ n
.

Observe that α ≥ 0, β ≥ 0, α + β = 1, and that if p = 2, then α = 0, and β = 1
and if p = ∞, then α = 1 and β = 0. Thus, as a special case of the above theorem, we
obtain an asymptotic mean value formula for the parabolic infinity Laplacian. This
equation was recently studied in [JK] and [J].

Theorem 2.5. Let u be a continuous function in ΩT . The asymptotic mean
value formula

u(x, t) =
1

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds+ o(ε2), as ε→ 0,

holds for every (x, t) ∈ ΩT in the viscosity sense if and only if u is a viscosity solution
to

ut(x, t) = ∆∞u(x, t).

3. Proof of Theorem 2.4 . We divide the proof in three parts: First, we
consider the cases p = 2 and p = ∞ separately, and then combine the results to
obtain Theorem 2.4 for any 1 < p ≤ +∞.

The heat equation: Let us first consider the smooth case.

Proposition 3.1. Let u be a smooth function in ΩT . The asymptotic mean value
formula

u(x, t) =

∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds+ o(ε2), as ε→ 0,

holds for all (x, t) ∈ ΩT if and only if

ut(x, t) = ∆u(x, t)

in ΩT .

Proof. Let (x, t) ∈ ΩT and let u be a smooth function. We use the Taylor
expansion

u(y, s) = u(x, t) +∇u(x, t) · (y − x) +
1

2
⟨D2u(x, t)(y − x), (y − x)⟩

+ ut(x, t)(s− t) + o(|y − x|2 + |s− t|)

= u(x, t) +
n∑

i=1

∂u

∂xi
(y − x)i

+
1

2

n∑
i,j=1

∂2u

∂xi∂xj
(y − x)i(y − x)j

+ ut(x, t)(s− t) + o(|y − x|2 + |s− t|).

(3.1)
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Averaging both sides, we get∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +

∫
Bε(x)

∇u(x, t) · (y − x) dy

+
1

2

∫
Bε(x)

⟨D2u(x, t)(y − x), (y − x)⟩ dy

+ ut(x, t)

∫ t

t−ε2/(n+2)

(s− t) ds+ o(ε2).

(3.2)

Because of symmetry, the first integral on the right hand side vanishes and the second
can be simplified as in [MPR] to get

1

2

∫
Bε(x)

⟨D2u(x, t)(y − x), (y − x)⟩ dy =
ε2

2(n+ 2)
∆u(x, t).

Finally, ∫ t

t−ε2/(n+2)

(s− t) ds = − ε2

2(n+ 2)
,

and thus (3.2) implies∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +
ε2

2(n+ 2)
(∆u(x, t)− ut(x, t)) + o(ε2).

(3.3)

This holds for any smooth function.

If u is a solution to the heat equation, then (3.3) immediately implies that u
satisfies the asymptotic mean value property. According to classical results, a solution
to the heat equation is smooth and thus smoothness assumption is not restrictive here.

Next we assume that a smooth u satisfies the asymptotic mean value formula and
show that then u is a solution to the heat equation. According to the assumption and
(3.3), we have

u(x, t) =

∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds+ o(ε2)

= u(x, t) +
ε2

2(n+ 2)
(∆u(x, t)− ut(x, t)) + o(ε2).

Dividing by ε2 and passing to the limit ε→ 0 implies

0 = ∆u(x, t)− ut(x, t).

This finishes the proof.
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In the space-time cylinders Bε(x)× (t−ε2, t), the asymptotic mean value formula
characterizes solutions to the rescaled heat equation

(n+ 2)ut(x, t) = ∆u(x, t).

In this case, (3.3) takes the form∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +
ε2

2(n+ 2)
(∆u(x, t)− (n+ 2)ut(x, t)) + o(ε2).

(3.4)

Alternatively, the same argument shows that solutions to the heat equation are
also characterized by asymptotic mean value formula

u(x, t) =

∫
Bε(x)

u

(
y, t− ε2

2(n+ 2)

)
dy + o(ε2), as ε→ 0.

The parabolic infinity Laplacian: Next we turn our attention to the homoge-
neous parabolic infinity Laplacian. We show that the asymptotic mean value formula

u(x, t) =
1

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds+ o(ε2), as ε→ 0,

characterizes the viscosity solutions to

ut = ∆∞u.

The proof employs the Taylor expansion (3.1) and uses the fact that the min-
imum and maximum of the test function ϕ over the ball Bε(x) at a fixed time is
approximately obtained at the points

x− ε
∇ϕ
|∇ϕ|

and x+ ε
∇ϕ
|∇ϕ|

.

The integration over a time interval takes care of the term that involves time deriva-
tives.

Proof of Theorem 2.5 To begin with, choose a point (x, t) ∈ ΩT , ε > 0, s ∈
(t− ε2, t) and any smooth ϕ. Denote by xε,s1 a point in which ϕ attains its minimum
over a ball Bε(x) at time s, that is,

ϕ(xε,s1 , s) = min
y∈Bε(x)

ϕ(y, s).

Evaluating the Taylor expansion (3.1) for ϕ at y = xε,s1 , we get

ϕ(xε,s1 , s) = ϕ(x, t) +∇ϕ(x, t) · (xε,s1 − x)

+
1

2
⟨D2ϕ(x, t)(xε,s1 − x), (xε,s1 − x)⟩

+ϕt(x, t)(s− t) + o(ε2 + |s− t|),
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as ε → 0. Evaluating the Taylor expansion at y = x̃ε,s1 , where x̃ε,s1 is the symmetric
point of xε,s1 with respect to x, given by

x̃ε,s1 = 2x− xε,s1 ,

we obtain

ϕ(x̃ε,s1 , s) = ϕ(x, t)−∇ϕ(x, t) · (xε,s1 − x)

+
1

2
⟨D2ϕ(x, t)(xε,s1 − x), (xε,s1 − x)⟩

+ϕt(x, t)(s− t) + o(ε2 + |s− t|).

Adding the expressions, we get

ϕ(x̃ε,s1 , s) + ϕ(xε,s1 , s)− 2ϕ(x, t) = ⟨D2ϕ(x, t)(xε,s1 − x), (xε,s1 − x)⟩
+ 2ϕt(x, t)(s− t) + o(ε2 + |s− t|).

As xε,s1 is the point where the minimum of ϕ(·, s) on Bε(x) is attained, it follows that

ϕ(x̃ε,s1 , s) + ϕ(xε,s1 , s)− 2ϕ(x, t) ≤ max
y∈Bε(x)

ϕ(y, s) + min
y∈Bε(x)

ϕ(y, s)− 2ϕ(x, t),

and thus

max
y∈Bε(x)

ϕ(y, s) + min
y∈Bε(x)

ϕ(y, s)− 2ϕ(x, t)

≥ ⟨D2ϕ(x, t)(xε,s1 − x), (xε,s1 − x)⟩+ 2ϕt(x, t)(s− t) + o(ε2 + |s− t|).

Integration over the time interval implies

1

2

∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds− ϕ(x, t)

≥ ε2

2

(∫ t

t−ε2

⟨
D2ϕ(x, t)

xε,s1 − x

ε
,
xε,s1 − x

ε

⟩
ds− ϕt(x, t)

)
+ o(ε2).

(3.5)

This inequality holds for any smooth function. By considering a point where ϕ attains
its maximum, we could derive a reverse inequality.

Because ϕ is smooth, if ∇ϕ(x, t) ̸= 0, so is ∇ϕ(x, s) for t − ε2 ≤ s ≤ t and for
small enough ε > 0 and thus xε,s1 ∈ ∂Bε(x) for small ε. We deduce

lim
ε→0

xε,s1 − x

ε
= − ∇ϕ

|∇ϕ|
(x, t).

Moreover, we get the limit

lim
ε→0

∫ t

t−ε2

⟨
D2ϕ(x, t)

xε,s1 − x

ε
,
xε,s1 − x

ε

⟩
ds

=

⟨
D2ϕ(x, t)

∇ϕ
|∇ϕ|

(x, t),
∇ϕ
|∇ϕ|

(x, t)

⟩
= ∆∞ϕ(x, t).

(3.6)
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Next we assume that u satisfies the asymptotic mean value formula in the viscosity
sense and show that then u satisfies the definition of a viscosity solution whenever
∇ϕ ̸= 0. In particular, we have

0 ≥ −ϕ(x, t) + 1

2

∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds+ o(ε2),

for any smooth ϕ touching u at (x, t) ∈ ΩT from below. By the previous inequality,
the left hand side of (3.5) is bounded above by o(ε2). It follows from this fact dividing
(3.5) by ε2, passing to a limit, and using (3.6) that

0 ≥ ∆∞ϕ(x, t)− ϕt(x, t).

To prove a reverse inequality, we first derive a reverse inequality to (3.5) by considering
the maximum point of ϕ, and then choose a function ϕ that touches u from above.

To prove the reverse implication, assume that u is a viscosity solution. Let
ϕ, ∇ϕ ̸= 0, be a smooth test function touching u from above at (x, t) ∈ ΩT . We
have

∆∞ϕ(x, t)− ϕt(x, t) ≥ 0. (3.7)

It suffices to prove

lim inf
ε→0

1

ε2

(
−ϕ(x, t) + 1

2

∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds

)
≥ 0.

This again follows from (3.5). Indeed, divide (3.5) by ε2, use (3.6), and deduce from
(3.7) that the limit on the right hand side is bounded from below by zero. The
argument for the reverse inequality is analogous.

Finally, let ∇ϕ(x, t) = 0, and suppose that ϕ touches u at (x, t) from below.
According to Lemma 2.2, we may also assume that D2ϕ(x, t) = 0, and thus the
Taylor expansion implies

ϕ(y, s)− ϕ(x, t) = ϕt(x, t)(s− t) + o(ε2)

in the space-time cylinder. Thus supposing that the asymptotic mean value formula
holds at (x, t), we deduce

0 ≥ 1

2

∫ t

t−ε2

{
max

y∈Bε(x)

(
ϕ(y, s)− ϕ(x, t)

)
+ min

y∈Bε(x)

(
ϕ(y, s)− ϕ(x, t)

)}
ds

+ o(ε2)

=

∫ t

t−ε2
ϕt(x, t)(s− t) ds+ o(ε2)

= −ε
2

2
ϕt(x, t) + o(ε2).

Dividing by ε2, and passing to a limit, we get 0 ≤ ϕt(x, t). Lemma 2.2 and an
analogous calculation when testing from above shows that u is a viscosity solution.



12 J. J. MANFREDI, M. PARVIAINEN, AND J. D. ROSSI

Suppose then that u is a viscosity solution and ϕ is a test function with ∇ϕ(x, t) =
0, D2ϕ(x, t) = 0 that touches u at (x, t) from below. Then a similar calculation as
above implies ∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds− 2ϕ(x, t)

= −ε2ϕt(x, t) + o(ε2).

By Lemma 2.2, ϕt(x, t) ≥ 0. Thus, dividing the above equality by ε2 and passing to the
limit shows that the asymptotic expansion holds.

A similar proof also shows that u is a viscosity solution to

ut(x, t) = ∆∞u(x, t)

if and only if

u(x, t) =
1

2

{
max

y∈Bε(x)
u

(
y, t− ε2

2

)
+ min

y∈Bε(x)
u

(
y, t− ε2

2

)}
+ o(ε2) as ε→ 0

in the viscosity sense.

The p-Laplacian: Next we combine the asymptotic mean value formulas from the
previous sections. The main point is that, formally, adding the equations

(n+ 2)ut = ∆, u

and

(p− 2)ut = (p− 2)∆∞u

we obtain

(n+ p)ut = ∆u+ (p− 2)∆∞u;

that is,

(n+ p)ut = |∇u|2−p
∆pu.

Proof of Theorem 2.4 Assume first that p ≥ 2 so that α ≥ 0. Multiplying (3.4)
by β and (3.5) by α, and adding, we obtain

α

2

∫ t

t−ε2

{
max

y∈Bε(x)
ϕ(y, s) + min

y∈Bε(x)
ϕ(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

ϕ(y, s) dy ds− ϕ(x, t)

≥ αε2

2

(∫ t

t−ε2

⟨
D2ϕ(x, t)

xε,s1 − x

ε
,
xε,s1 − x

ε

⟩
ds− ϕt(x, t)

)
+

βε2

2(n+ 2)
(∆ϕ(x, t)− (n+ 2)ϕt(x, t)) + o(ε2)

=
βε2

2(n+ 2)

(
(p− 2)

∫ t

t−ε2

⟨
D2ϕ(x, t)

xε,s1 − x

ε
,
xε,s1 − x

ε

⟩
ds

+∆ϕ(x, t)− (n+ p)ϕt(x, t)

)
+ o(ε2).

(3.8)
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Notice that this again holds for any smooth function, and (3.6) still holds whenever
∇ϕ ̸= 0. The rest of the proof follows closely the proof of Theorem 2.5. Further, by
considering the maximum point instead of the minimum point xε,s1 , we can derive a
reverse inequality to (3.8).

If p < 2, it follows that α < 0 and the inequality (3.8) is reversed. On the other
hand, so is the reverse inequality that can be obtained by considering the maximum
point instead of the minimum point xε,s1 . Thus we still have the both inequalities, and
we can repeat the same argument.

An analogous proof also shows that u is a solution to

(n+ p)ut(x, t) = |∇u|2−p
∆pu(x, t)

in the viscosity sense if and only if

u(x, t) =
α

2

{
max

y∈Bε(x)
u
(
y, t− ε2

2

)
+ min

y∈Bε(x)
u
(
y, t− ε2

2

)}

+ β

∫
Bε(x)

u
(
y, t− ε2

2

)
dy + o(ε2), as ε→ 0.

(3.9)

We will take this formulation as a starting point when studying the tug-of-war games
with limited number of rounds in the next section.

4. (p, ε)-parabolic functions and Tug-of-war games. Motivated by the asymp-
totic mean value theorems, we next study the functions satisfying the mean value
property (3.9) without the correction term o(ε2) for p ≥ 2. We call these functions
(p, ε)-parabolic. It turns out that (p, ε)-parabolic functions have interesting properties
to be studied in their own right, but in addition they approximate solutions to (1.2),
and are value functions of a tug-war-game with noise when the number of rounds is
limited.

Recall that ΩT ⊂ Rn+1 is an open set. To prescribe boundary values, we denote
the boundary strip of width ε by

Γε =
(
Sε × (−ε

2

2
, T ]
)
∪
(
Ω× (−ε

2

2
, 0]
)
,

where

Sε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.

Below F : Γε → R denotes a bounded Borel function.

Definition 4.1. The function uε is (p, ε)-parabolic, 2 ≤ p ≤ ∞, in ΩT with
boundary values F if

uε(x, t) =
α

2

{
sup

y∈Bε(x)

uε

(
y, t− ε2

2

)
+ inf

y∈Bε(x)
uε

(
y, t− ε2

2

)}

+ β

∫
Bε(x)

uε

(
y, t− ε2

2

)
dy for every (x, t) ∈ ΩT

uε(x, t) = F (x, t), for every (x, t) ∈ Γε,
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where

α =
p− 2

p+ n
, β =

n+ 2

p+ n
.

The reason for using the boundary strip Γε instead of simply using the parabolic

boundary ∂pΩT is the fact that Bε(x)× {t− ε2

2 } is not necessarily contained in ΩT .

Next we study the tug-of-war game with noise studied in [MPR2], and in a dif-
ferent form in Peres-Sheffield [PS]. See also Peres-Schramm-Sheffield-Wilson [PSSW].
It is a zero-sum-game between two players, Player I and Player II. In this paper,
there are two key differences: the game has a preset maximum number of rounds and
boundary values may change with time.

To be more precise, at the beginning we fix the maximum number of rounds to
be N and place a token at a point x0 ∈ Ω. The players toss a biased coin with
probabilities α and β, α+β = 1. If they get heads (probability α), they play a tug-of-
war game, that is, a fair coin is tossed and the winner of the toss decides a new game
position x1 ∈ Bε(x0). On the other hand, if they get tails (probability β), the game
state moves according to the uniform probability density to a random point in the
ball Bε(x0). They continue playing the game until either the token hits the boundary
strip Sε or the number of rounds reaches N . We denote by τN ∈ {0, 1, . . . , N} the
hitting time of Sε or N , whichever comes first, and by xτN ∈ Ω ∪ Sε the end point
of the game. When no confusion arises, we simply write τ . At the end of the game
Player I earns F(xτN , τN ) while Player II earns −F(xτN , τN ). Here

F : (Sε × {0, . . . , N}) ∪ (Ω× {N}) → R

is a given payoff function.

Denote by H = Ω ∪ Sε. A run of the game is a sequence

ω = (ω0, ω1, . . . , ωN ) ∈ HN+1.

We define random variables

xk(ω) = ωk, xk : HN+1 → Rn, k = 0, 1, . . . , N,

and

τN (ω) = min{N, inf{k : xk(ω) ∈ Sε, k = 0, 1, . . . , N}}.

A strategy SI for Player I is a function which gives the next game position

SI(x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the coin toss. Similarly, Player II plays according to a strategy SII.

The fixed starting point x0, the number of rounds N , the domain Ω and the
strategies SI and SII determine a unique probability measure Px0,N

SI ,SII
in HN+1. This

measure is built by using the initial distribution δx0(A), and the family of transition
probabilities

πSI,SII(x0(ω), . . . , xk(ω), A) = πSI,SII(ω0, . . . , ωk, A)

= β
|A ∩Bε(ωk)|
|Bε(ωk)|

+
α

2
δSI(ω0,...,ωk)(A) +

α

2
δSII(ω0,...,ωk)(A).
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For more details, we refer to [MPR2, MPR3, PSSW].

The expected payoff, when starting from x0 with the maximum number of rounds
N , and using the strategies SI, SII, is

Ex0,N
SI,SII

[F(xτN , τN )] =

∫
HN+1

F(xτN (ω), τN (ω)) dPx0,N
SI,SII

(ω).

The value of the game for Player I when starting at x0 with the maximum number
of rounds N is given by

uε,NI (x0, 0) = sup
SI

inf
SII

Ex0,N
SI,SII

[F(xτN , τN )]

while the value of the game for Player II is given by

uε,NII (x0, 0) = inf
SII

sup
SI

Ex0,N
SI,SII

[F(xτN , τN )].

More generally, we define the value of the game when starting at x and playing for
h = N − k rounds to be

uε,NI (x, k) = sup
SI

inf
SII

Ex,h
SI,SII

[F(xτh , k + τh)]

while the value of the game for Player II is given by

uε,NII (x, k) = inf
SII

sup
SI

Ex,h
SI,SII

[F(xτh , k + τh)].

Here τh ∈ {0, 1, . . . , h} is the hitting time of the boundary (Sε × {0, . . . , N}) ∪
(Ω× {N}). In order to accommodate for time dependent boundary values, we need

to keep track of the number k of rounds played. The values uε,NI (x, k) and uε,NII (x, k)
are the expected outcomes the each player can guarantee when the game starts at x
with maximum number of rounds N − k.

The next lemma states the Dynamic Programming Principle (DPP) for the tug-
of-war game with a maximum number of rounds. For a detailed proof in the elliptic
case see [MPR3]. The parabolic case turns out to be easier since backtracking can be
directly implemented. See Chapter 3 in [MS2] and [MS].

Lemma 4.2 (DPP). The value function for Player I satisfies

uε,NI (x, k) =
α

2

{
sup
Bε(x)

uε,NI (y, k + 1) + inf
Bε(x)

uε,NI (y, k + 1)

}

+ β

∫
Bε(x)

uε,NI (y, k + 1) dy, if x ∈ Ω and k < N,

uε,NI (x, k) = F(x, k), if x ∈ Sε or k = N.

The value function for Player II, uε,NII , satisfies the same equation. The expectation is
obtained by summing up the expectations of three possible outcomes for the next step
with the corresponding probabilities, Player I chooses the next position (probability
α/2), Player II chooses (probability α/2) and the next position is random (probability
β). This is the heuristic background for the DPP.
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Next we describe the change of time scale that relates values of the tug-of-war
games with noise and (p, ε)-parabolic functions. The definition of (p, ε)-parabolic
function uε, Definition 4.1, refers to a forward-in-time parabolic equation. The values

uε(·, t) at time t are determined by the values uε(·, t− ε2

2 ). In contrast, in Lemma 4.2
above, the values at step k are determined by the values at step k + 1.

For 0 < t < T let N(t) be the integer defined by

2t

ε2
≤ N(t) <

2t

ε2
+ 1.

We use the shorthand notation N(t) = ⌈2t/ε2⌉. Set t0 = t and tk+1 = tk − ε2/2 for
k = 0, 1, . . . , N(t)− 1; that is,

tk = ε2
N(t)− k

2
+ tN(t).

Observe that tN(t) ∈ (− ε2

2 , 0]. When no confusion arises, we simply write N for
N(t).

Given F : Γε → R a boundary value function, define a payoff function Ft :
{Sε × {0, . . . , N}} ∪ {Ω× {N}} → R by

Ft(xτ , τ) = F (xτ , ε
2(N − τ)/2 + tN ) = F (xτ , tτ ). (4.1)

It might be instructive to think of a parabolic cylinder Ω×(0, t) when t and ε are given
determining N and tN . The game begins at k = 0 corresponding to t0 = t in the time
scale. When we play one round k → k + 1, the clock steps ε2/2 backwards, tk+1 =
tk − ε2/2, and we play until we get outside the cylinder when k = τ corresponding to
tτ in the time scale.

Next we define

uεI (x, t) = u
ε,N(t)
I (x, 0). (4.2)

This equation defines values of uεI (x, t) for every instant t ∈ (0, T ). For these
functions, the DPP takes the form

uεI (x, t) =
α

2

{
sup

y∈Bε(x)

uεI

(
y, t− ε2

2

)
+ inf

y∈Bε(x)
uεI

(
y, t− ε2

2

)}

+ β

∫
Bε(x)

uεI

(
y, t− ε2

2

)
dy for every (x, t) ∈ ΩT

uεI (x, t) = F (x, t), for every (x, t) ∈ Γε,

which agrees with Definition 4.1.

Comparison and convergence: The (p, ε)-parabolic functions satisfy comparison
principle and are unique. The proofs are based on martingale arguments similar to
those in [MPR2] recalling (4.2) and the fact that the relevant stopping time is now
bounded.
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We start with a comparison principle for the value functions. The connection of
boundary values in different formulations is given in (4.1) and to simplify the notation
we will use F in both formulations.

Theorem 4.3. If vε is a (p, ε)-parabolic function in ΩT with boundary values Fvε

in Γε such that Fvε ≥ Fuε
I
, then vε ≥ uεI .

Proof. Player I follows any strategy and Player II follows a strategy S0
II such that

at xk−1 ∈ Ω he chooses to step to a point that almost minimizes vε(·, tk), that is, to
a point xk ∈ Bε(xk−1) such that

vε(xk, tk) ≤ inf
y∈Bε(xk−1)

vε(y, tk) + η2−k

for some fixed η > 0.

Choose (x0, t0) ∈ ΩT , and set N = ⌈2t0/ε2⌉. It follows that

Ex0,N
SI,S0

II
[vε(xk, tk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

y∈Bε(xk−1)
vε(y, tk) + η2−k + sup

y∈Bε(xk−1)

vε(y, tk)

}

+ β

∫
Bε(xk−1)

vε(y, tk) dy + η2−k

≤ vε(xk−1, tk−1) + η2−(k−1),

where we have estimated the strategy of Player I by sup and used the fact that vε is
(p, ε)-parabolic. Thus

Mk = vε(xk, tk) + η2−k

is a supermartingale. Since Fvε ≥ Fuε
I
at Γε, we deduce

uεI (x0, t0) = sup
SI

inf
SII

Ex0,N
SI,SII

[Fuε
I
(xτ , tτ )] ≤ sup

SI

Ex0,N
SI,S0

II
[Fvε(xτ , tτ ) + η2−τ ]

= sup
SI

Ex0,N
SI,S0

II
[vε(xτ , tτ ) + η2−τ ]

≤ sup
SI

Ex0,N
SI,S0

II
[M0] = vε(x0, t0) + η,

where the fact that τ is a bounded stopping time allowed us to use the optional stop-
ping theorem for Mk. Since η was arbitrary this proves the claim.

Similarly, we can prove that uεII is the largest (p, ε)-parabolic function: Player
II follows any strategy and Player I always chooses to step to the point where vε is
almost maximized. This implies that vε(xk)− η2−k is a submartingale.

Next we show that the game has a value. This together with the previous compar-
ison principle proves the uniqueness of (p, ε)-parabolic functions with given boundary
values.

Theorem 4.4. With a given payoff function, the game has a value; that is, we
have the equality

uεI = uεII.
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Proof. It always holds that uεI ≤ uεII so it remains to show uεII ≤ uεI . To see this we
use the same argument as in the previous theorem: Player II follows a strategy S0

II

such that at xk−1 ∈ Ω, he always chooses to step to a point that almost minimizes
uεI , that is, to a point xk such that

uεI (xk, tk) ≤ inf
y∈Bε(xk−1)

uεI (y, tk) + η2−k,

for a fixed η > 0. We start from the point (x0, t0) so that N = ⌈2t0/ε2⌉. It follows
that from the choice of strategies and the dynamic programming principle for uεI that

Ex0,N
SI,S0

II
[uεI (xk, tk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

y∈Bε(xk−1)
uεI (y, tk) + η2−k + sup

y∈Bε(xk−1)

uεI (y, tk)

}

+ β

∫
Bε(xk−1)

uεI (y, tk) dy + η2−k

≤ uεI (xk−1, tk−1) + η2−(k−1).

Thus

Mk = uεI (xk, tk) + η2−k

is a supermartingale. According to the optional stopping theorem

uεII(x0, t0) = inf
SII

sup
SI

Ex0,N
SI,SII

[F (xτ , tτ )] ≤ sup
SI

Ex0,N
SI,S0

II
[F (xτ , tτ ) + η2−τ ]

= sup
SI

Ex0,N
SI,S0

II
[uεI (xτ , tτ ) + η2−τ ]

≤ sup
SI

Ex0,N
SI,S0

II
[uεI (x0, t0) + η] = uεI (x0, t0) + η.

Theorems 4.3 and 4.4 imply uniqueness for (p, ε)-parabolic functions.

Theorem 4.5. There exists a unique (p, ε)-parabolic function with given boundary
values F , and it coincides with the value of the game by virtue of (4.2).

Proof. Due to the dynamic programming principle, the values of the games are
(p, ε)-parabolic functions. This proves the existence part of the theorem. Theo-
rems 4.3 and 4.4 together with the remark after Theorem 4.3 imply the uniqueness.

This theorem together with Theorem 4.3 gives the comparison principle for (p, ε)-
parabolic functions.

Theorem 4.6. If vε and uε are (p, ε)-parabolic functions with boundary values
Fvε ≥ Fuε , then vε ≥ uε in ΩT .

Next, we show that (p, ε)-parabolic functions approximate solutions to

(n+ p)ut(x, t) = |∇u|2−p
∆pu(x, t).

To prove the convergence, we use the Arzela-Ascoli type compactness lemma. Note
that (p, ε)-parabolic functions are, in general, discontinuous. Nevertheless, their oscil-
lation is controlled at scale ε. Therefore, the Arzela-Ascoli lemma has to be modified
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accordingly. For the proof of the lemma below, the reader can consult for example
[MPR2].

Lemma 4.7. Let {uε : ΩT → R, ε > 0} be a set of functions such that

1. there exists C > 0 so that |uε(x, t)| < C for every ε > 0 and every (x, t) ∈ ΩT ,
2. given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any

(x, t), (y, s) ∈ Ω with |x− y|+ |t− s| < r0 it holds

|uε(x, t)− uε(y, s)| < η.

Then, there exists a uniformly continuous function u : ΩT → R and a subsequence
still denoted by {uε} such that

uε → u uniformly in ΩT ,

as ε→ 0.

First we recall the estimate for the stopping time of a random walk from [MPR2].
In this lemma, there is no bound for the maximum number of rounds.

Lemma 4.8. Let us consider an annular domain BR(z) \ Bδ(z) and a random
walk such that when at xk−1, the next point xk is chosen according to a uniform
probability distribution at Bε(xk−1) ∩BR(z). Let

τ∗ = inf{k : xk ∈ Bδ(z)}.

Then

Ex0(τ∗) ≤ C(R/δ) dist(∂Bδ(z), x0) + o(1)

ε2
,

for x0 ∈ BR(z) \Bδ(z). Above o(1) → 0 as ε→ 0.

Next we derive an estimate for the asymptotic uniform continuity of a family {uε}
of (p, ε)-parabolic functions with fixed boundary values.

We assume that Ω satisfies an exterior sphere condition: For each y ∈ ∂Ω, there
exists Bδ(z) ⊂ Rn \ Ω with δ > 0 such that y ∈ ∂Bδ(z). Below δ is always chosen
small enough according to this condition.

We also assume that F satisfies

|F (x, tx)− F (y, ty)| ≤ L
(
|x− y|+ |tx − ty|1/2

)
(4.3)

in Γε. First, we consider the case where (y, ty) is a point at the lateral boundary strip.

Lemma 4.9. Let F and Ω be as above. The (p, ε)-parabolic function uε with the
boundary data F satisfies

|uε(x, tx)− uε(y, ty)|

≤ Cmin
{
|x− y|1/2 + o(1), t1/2x + ε

}
+ L |tx − ty|1/2 + 2Lδ

(4.4)

for every (x, tx) ∈ Ω, and y ∈ Sε. The constant C depends on δ, n, L and the diameter
of Ω. In the above inequality o(1) is taken relative to ε.
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Proof. Suppose for the moment that tx = ty, denote t0 = tx = ty, and set x0 = x
as well as N = ⌈2tx/ε2⌉. By the exterior sphere condition, there exists Bδ(z) ⊂ Rn\Ω
such that y ∈ ∂Bδ(z). Player I chooses a strategy of pulling towards z, denoted by
Sz
I . Then the calculation

Ex0,N
Sz
I ,SII

[|xk − z| |x0, . . . , xk−1]

≤ α

2
{|xk−1 − z|+ ε+ |xk−1 − z| − ε}+ β

∫
Bε(xk−1)

|x− z| dx

≤ |xk−1 − z|+ Cε2

(4.5)

implies that

Mk = |xk − z| − Cε2k

is a supermartingale for some C independent of ε. The first inequality follows from
the choice of the strategy, and the second from the estimate∫

Bε(xk−1)

|x− z| dx ≤ |xk−1 − z|+ Cε2.

The optional stopping theorem and Jensen’s inequality then gives

Ex0,N
Sz
I ,SII

[|xτ − z|+ |tτ − t0|1/2] = Ex0,N
Sz
I ,SII

[
|xτ − z|+ ε

(τ
2

)1/2]
≤ |x0 − z|+ Cε

(
Ex0,N
Sz
I ,SII

[τ ]
)1/2

.

(4.6)

In formula (4.5), the expected distance of the pure tug-of-war is bounded by
|xk−1 − z| whereas the expected distance of the pure random walk is slightly larger.
Therefore, we can bound from above the stopping time of our process by a stopping
time of the random walk in the setting of Lemma 4.8 by choosing R > 0 such that
Ω ⊂ BR(z). Thus, we obtain

Ex0,N
Sz
I ,SII

[τ ] ≤ min
{
Ex0,N
Sz
I ,SII

[τ∗], N
}

≤ min
{
C(R/δ)(dist(∂Bδ(z), x0) + o(1))/ε2, N

}
.

Since y ∈ ∂Bδ(z), we have

dist(∂Bδ(z), x0) ≤ |y − x0| ,

and together with (4.6) this gives

Ex0,N
Sz
I ,SII

[|xτ − z|+ |tτ − t0|1/2] ≤min
{
C(R/δ)(|x0 − y|+ o(1)), Cε2N

}1/2
+ |x0 − z| .

Thus, we end up with

F (z, t0)− L
(
min

{
C(R/δ)(|x0 − y|+ o(1)), Cε2N

}1/2
+ |x0 − z|

)
≤ Ex0,N

Sz
I ,SII

[F (xτ , tτ )]

≤ F (z, t0) + L
(
min

{
C(R/δ)(|x0 − y|+ o(1)), Cε2N

}1/2
+ |x0 − z|

)
,
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which implies

sup
SI

inf
SII

Ex0,N
SI,SII

[F (xτ , tτ )]

≥ inf
SII

Ex0,N
Sz
I ,SII

[F (xτ , tτ )]

≥ F (z, t0)− L
(
min

{
C(R/δ)(|x0 − y|+ o(1)), Cε2N

}1/2
+ |x0 − z|

)
≥ F (y, t0)− 2Lδ − Lmin

{
C(R/δ)(|x0 − y|+ o(1)), Cε2N

}1/2
.

The upper bound can be obtained by choosing for Player II a strategy where he points
to z, and thus (4.4) follows.

Finally, if tx ̸= ty, then we utilize the above estimate and obtain

|uε(x, tx)− uε(y, ty)| ≤ |uε(x, tx)− uε(y, tx)|+ |uε(y, tx)− uε(y, ty)|

≤ 2Lδ +min
{
C(R/δ)(|x− y|+ o(1)), Cε2N

}1/2
+ L |tx − ty|1/2 ,

and the proof is completed by recalling that N = ⌈2tx/ε2⌉.

Next we consider the case when the boundary point (y, ty) lies at the initial
boundary strip.

Lemma 4.10. Let F and Ω be as in Lemma 4.9. The (p, ε)-parabolic function uε
with the boundary data F satisfies

|uε(x, tx)− uε(y, ty)| ≤ C
(
|x− y|+ t1/2x + ε

)
, (4.7)

and for every (x, tx) ∈ ΩT and (y, ty) ∈ Ω × (−ε2/2, 0]. Proof. Set x0 = x, and
N = ⌈2tx/ε2⌉. Player I pulls to y. Then

Mk = |xk − y|2 − Ckε2

is a supermartingale. Indeed,

Ex0,N
Sy
I ,SII

[|xk − y|2 |x0, . . . , xk−1]

≤ α

2

{
(|xk−1 − y|+ ε)2 + (|xk−1 − y| − ε)2

}
+ β

∫
Bε(xk−1)

|x− y|2 dx

≤ α
{
|xk−1 − y|2 + ε2

}
+ β

(
|xk−1 − y|2 + Cε2

)
≤ |xk−1 − y|2 + Cε2.

According to optional stopping theorem,

Ex0,N
Sy
I ,SII

[|xτ − y|2] ≤ |x0 − y|2 + Cε2Ex0,N
Sy
I ,SII

[τ ],

and since the stopping time is bounded by ⌈2tx/ε2⌉, this implies

Ex0,N
Sy
I ,SII

[|xτ − y|2] ≤ |x0 − y|2 + C(tx + ε2).

Finally, Jensen’s inequality gives

Ex0,N
Sy
I ,SII

[|xτ − y| ] ≤
(
|x0 − y|2 + C(tx + ε2)

)1/2
≤ |x0 − y|+ C(t1/2x + ε).
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The rest of the argument is similar to the one used in the previous proof. In particular,
we obtain the upper bound by choosing for Player II a strategy where he points to y.
We end up with

|uε(x, tx)− uε(y, ty)| ≤ C
(
|x− y|+ t1/2x + ε

)
.

Next we will show that (p, ε)-parabolic functions are asymptotically uniformly
continuous.

Lemma 4.11. Let F and Ω be as in Lemma 4.9. Let {uε} be a family of (p, ε)-
parabolic functions. Then this family satisfies the conditions in Lemma 4.7.

Proof. It follows from the definition of (p, ε)-parabolic function that

|uε| ≤ sup
Γε

F

and we can thus concentrate on the second condition of Lemma 4.7. Observe that
the case x, y ∈ Γε readily follows from the uniform continuity of F , and thus we can
concentrate on the cases x ∈ Ω, y ∈ Sε, and x, y ∈ Ω.

Choose any η > 0. By (4.4) and (4.7), there exists ε0 > 0, δ > 0, and r0 > 0 so
that

|uε(x, tx)− uε(y, ty)| < η

for all ε < ε0 and for any (x, tx) ∈ ΩT , (y, ty) ∈ Γε such that |x− y|1/2+|tx − ty|1/2 ≤
r0.

Next we consider a slightly smaller domain

Ω̃T = {(z, t) ∈ ΩT : d((z, t), ∂pΩT ) > r0/3}

with

d((z, t), ∂pΩT ) = inf{|z − y|1/2 + |t− s|1/2 : (y, s) ∈ ∂pΩ},

and the boundary strip

Γ̃ = {(z, t) ∈ ΩT : d((z, t), ∂pΩT ) ≤ r0/3}.

Suppose then that x, y ∈ ΩT with |x− y|1/2 + |tx − ty|1/2 < r0/3. First, if

x, y ∈ Γ̃, then we can estimate

|uε(x, tx)− uε(y, ty)| ≤ 3η

for ε < ε0 by comparing the values at x and y to the nearby boundary values and
using the previous step. Finally, a translation argument finishes the proof. Let
(x, tx), (y, ty) ∈ Ω̃T . Without loss of generality we may assume that tx > ty. Define

F̃ (z, tz) = uε(z − x+ y, tz + ty − tx) + 3η for (z, tz) ∈ Γ̃.

We have

F̃ (z, tz) ≥ uε(z, tz) in Γ̃
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by the reasoning above. Solve the (p, ε)-parabolic function ũε in Ω̃T with the bound-
ary values F̃ in Γ̃. By the comparison principle Theorem 4.6, and the uniqueness
Theorem 4.5, we deduce

uε(x, tx) ≤ ũε(x, tx) = uε(x− x+ y, tx − tx + ty) + 3η = uε(y, ty) + 3η in Ω̃T .

The lower bound follows by a similar argument.

Corollary 4.12. Let F satisfy the continuity condition (4.3) and Ω satisfy
the exterior sphere condition. Let {uε} be a family of (p, ε)-parabolic functions with
boundary values F . Then there exists a uniformly continuous u and a subsequence
still denoted by {uε} such that

uε → u uniformly in Ω

as ε→ 0.

Theorem 4.13. Let F satisfy the continuity condition (4.3) and Ω satisfy the
exterior sphere condition. Then, the uniform limit

u = lim
ε→0

uε

of (p, ε)-parabolic functions obtained in Corollary 4.12 is a viscosity solution to the
equation

(n+ p)ut(x, t) = |∇u|2−p
∆pu(x, t)

with boundary values F .

Proof. First, clearly u = F on ∂Ω, and we can focus attention on showing that u
is a viscosity solution. Similarly as in (3.8), we can derive for any ϕ ∈ C2 an estimate

α

2

{
max

y∈Bε(x)
ϕ
(
y, t− ε2

2

)
+ min

y∈Bε(x)
ϕ
(
y, t− ε2

2

)}

+ β

∫
Bε(x)

ϕ
(
y, t− ε2

2

)
dy − ϕ(x, t)

≥ βε2

2(n+ 2)

(
(p− 2)

⟨
D2ϕ(x, t)

x
ε,t−ε2/2
1 − x

ε
,
x
ε,t−ε2/2
1 − x

ε

⟩

+∆ϕ(x, t)− (n+ p)ϕt(x, t)

)
+ o(ε2),

(4.8)

where

ϕ
(
x
ε,t−ε2/2
1 , t− ε2

2

)
= min

y∈Bε(x)
ϕ
(
y, t− ε2

2

)
.

Suppose then that ϕ touches u at (x, t) from below. By the uniform convergence,
there exists sequence {(xε, tε)} converging to (x, t) such that uε−ϕ has an approximate
minimum at (xε, tε), that is, for ηε > 0, there exists (xε, tε) such that

uε(y, s)− ϕ(y, s) ≥ uε(xε, tε)− ϕ(xε, tε)− ηε,
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in the neighborhood of (xε, tε). Further, set ϕ̃ = ϕ+ uε(xε, tε)− ϕ(xε, tε), so that

uε(xε, tε) = ϕ̃(xε, tε) and uε(y, s) ≥ ϕ̃(y, s)− ηε.

Thus, by recalling the fact that uε is (p, ε)-parabolic, we obtain

ηε ≥− ϕ̃(xε, tε) + β

∫
Bε(xε)

ϕ̃
(
y, tε −

ε2

2

)
dy

+
α

2

{
sup

y∈Bε(xε)

ϕ̃
(
y, tε −

ε2

2

)
+ inf

y∈Bε(xε)
ϕ̃
(
y, tε −

ε2

2

)}
.

(4.9)

According to (4.8), choosing ηε = o(ε2), and observing ∇ϕ = ∇ϕ̃, D2ϕ̃ = D2ϕ, we
have

0 ≥ βε2

2(n+ 2)

(
(p− 2)

⟨
D2ϕ(xε, tε)

x
ε,t−ε2/2
1 − xε

ε
,
x
ε,t−ε2/2
1 − xε

ε

⟩

+∆ϕ(xε, tε)− (n+ p)ϕt(xε, tε)

)
+ o(ε2).

Suppose that ∇ϕ(x, t) ̸= 0. Dividing by ε2 and letting ε→ 0, we get

0 ≥ β

2(n+ 2)

(
(p− 2)∆∞ϕ(x) + ∆ϕ(x)− (n+ p)ϕt(x, t)

)
.

To verify the other half of the definition of a viscosity solution, we derive a reverse
inequality to (4.8) by considering the maximum point of the test function and choose
a function ϕ which touches u from above. The rest of the argument is analogous.

Now we consider the case ∇ϕ(x, t) = 0. By Lemma 2.2, we can also assume that
D2ϕ(x, t) = 0 and it suffices to show that

ϕt(x, t) ≥ 0.

In this case, (4.8) takes the form

α

2

{
max

y∈Bε(x)
ϕ
(
y, t− ε2

2

)
+ min

y∈Bε(x)
ϕ
(
y, t− ε2

2

)}

+ β

∫
Bε(x)

ϕ
(
y, t− ε2

2

)
dy − ϕ(x, t)

≥ −βε
2(n+ p)

2(n+ 2)
ϕt(x, t) + o(ε2).

Since (4.9) still holds, we can repeat the argument above.

Finally, we conclude that also the original sequence converges to a unique viscosity
solution. To this end, observe that by above any sequence {uε} contains a subsequence
that converges uniformly to some viscosity solution u. By [CGG] (see also [ES] and
[GGIS]), viscosity solutions to (1.2) are uniquely determined by their boundary values.
Hence we conclude that the whole original sequence converges.

Observe that the above theorem also gives a proof of the existence of viscosity
solutions to (1.2) using probabilistic arguments.
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