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Abstract. We characterize p-harmonic functions in terms of an asymptotic
mean value property. A p-harmonic function u is a viscosity solution to ∆pu =

div(|∇u|p−2∇u) = 0 with 1 < p ≤ ∞ in a domain Ω if and only if the expansion

u(x) =
α

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
+

β

|Bε(x)|

∫
Bε(x)

u dy + o(ε2)

holds as ε → 0 for x ∈ Ω holds in a weak sense, which we call viscosity
sense. Here the coefficients α, β are determined by α + β = 1 and α/β =

(p− 2)/(N + 2).

To the memory of our friend and colleague Fuensanta Andreu

1. Introduction and statement of the main result

A well known fact that one can find in any elementary PDE textbook states that
u is harmonic in a domain Ω ⊂ RN (that is u satisfies ∆u = 0 in Ω) if and only if
it satisfies the mean value property

u(x) =
1

|Bε(x)|

∫
Bε(x)

u(y) dy,

whenever Bε(x) ⊂ Ω. In fact, we can relax this condition by requiring that it holds
asymptotically

u(x) =
1

|Bε(x)|

∫
Bε(x)

u(y) dy + o(ε2),

as ε → 0. This follows easily for C2 functions by using the Taylor expansion and
for continuous functions by using the theory of viscosity solutions. Interestingly, a
weak asymptotic mean value formula holds in some nonlinear cases as well. Our
goal in this paper is to characterize p-harmonic functions, 1 < p ≤ ∞, by means of
this type of asymptotic mean value properties.

We begin by stating what we mean by weak asymptotic expansions and why is
it reasonable to say that our asymptotic expansions hold in “a viscosity sense”. As
is the case in the theory of viscosity solutions, we test the expansions of a function
u against test functions ϕ that touch u from below or above at a particular point.
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Select α and β determined by the conditions α+β = 1 and α/β = (p−2)/(N+2).
That is, we have

(1.1) α =
p− 2

p+N
, and β =

2 +N

p+N
.

Observe that if p = 2 above, then α = 0 and β = 1, and if p = ∞, then α = 1 and
β = 0.

We follow the usual convention to denote the mean value of a function∫
B

f(y) dy =
1

|B|

∫
B

f(y) dy.

Definition 1. A continuous function u satisfies

(1.2) u(x) =
α

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
+ β

∫
Bε(x)

u(y) dy + o(ε2), as ε → 0,

in the viscosity sense if

(1) for every ϕ ∈ C2 such that u− ϕ has a strict minimum at the point x ∈ Ω
with u(x) = ϕ(x) and ∇ϕ(x) ̸= 0 , we have

0 ≥ −ϕ(x) +
α

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

}
+ β

∫
Bε(x)

ϕ(y) dy + o(ε2).

(2) for every ϕ ∈ C2 such that u− ϕ has a strict maximum at the point x ∈ Ω
with u(x) = ϕ(x) and ∇ϕ(x) ̸= 0 , we have

0 ≤ −ϕ(x) +
α

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

}
+ β

∫
Bε(x)

ϕ(y) dy + o(ε2).

Observe that a C2-function u satisfies (1.2) in the classical sense if and only if
it satisfies it in the viscosity sense. However, the viscosity sense is actually weaker
than the classical sense for non C2-functions as the following example, cf. [10],
shows

Example: Set p = ∞ and consider Aronsson’s function

u(x, y) = |x|4/3 − |y|4/3

near the point (x, y) = (1, 0). Aronsson’s function is ∞-harmonic in the viscosity
sense but it is not of class C2, see Aronsson [1, 2]. It will follow from Theorem 2
below that u satisfies

u(x) =
1

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
+ o(ε2) as ε → 0,

in the viscosity sense of Definition 1. However, let us verify that the expansion does
not hold in the classical sense.

Clearly, we have

max
Bε(1,0)

u = u(1 + ε, 0) = (1 + ε)4/3.
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To find the minimum, we set x = ε cos(θ), y = ε sin(θ) and solve the equation

d

dθ
u(1 + ε cos(θ), ε sin(θ)) = −4

3
(1 + ε cos(θ))1/3ε sin(θ)− 4

3
(ε sin(θ))1/3ε cos(θ)

= 0.

By symmetry, we can focus our attention on the solution

θε = arccos

(
ε−

√
4 + ε2

2

)
.

Hence, we obtain

min
Bε(1,0)

u = u(1 + ε cos(θε), ε sin(θε))

=

(
1 +

1

2
ε
(
ε−

√
4 + ε2

))4/3

−

(
ε

√
1− 1

4

(
ε−

√
4 + ε2

)2)4/3

.

We are ready to compute

lim
ε→0+

1
2

{
max

Bε(0,1)
u+ min

Bε(0,1)
u

}
− u(1, 0)

ε2
=

1

18
.

But if an asymptotic expansion held in the classical sense, this limit would have to
be zero.

The following theorem states our main result and provides a characterization to
the p-harmonic functions.

Theorem 2. Let 1 < p ≤ ∞ and let u be a continuous function in a domain
Ω ⊂ RN . The asymptotic expansion

u(x) =
α

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
+ β

∫
Bε(x)

u(y) dy + o(ε2), as ε → 0,

holds for all x ∈ Ω in the viscosity sense if and only if

∆pu(x) = 0

in the viscosity sense. Here α and β are determined by (1.1).

We use the notation div(|∇u|p−2∇u) = ∆pu for the regular p-Laplacian and
∆∞u = |∇u|−2 ⟨D2u∇u,∇u⟩ for the 1-homogeneous infinity Laplacian. The infin-
ity Laplacian appears naturally when one considers limits as p → ∞ of p−harmonic
functions in the viscosity sense and has applications to best Lipschitz extensions,
image processing and mass transport problems, see [2], [3], [4], [7], [8], [9].

We observe that the notions of a viscosity solution and a Sobolev weak solu-
tion for the p-Laplace equation agree for 1 < p < ∞, see Juutinen-Lindqvist-
Manfredi [11]. Therefore, Theorem 2 characterizes weak solutions when 1 < p < ∞.

Finally, we note that Wang [14] has also used Taylor series to give sufficient
conditions for p-subharmonicity in terms of asymptotic mean values of (u(x) −
u(0))p.
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2. Proof of Theorem 2

To gain some intuition on why such asymptotic mean value formula might be
true, let us formally expand the p-Laplacian as follows

(2.1) ∆pu = (p− 2)|∇u|p−4 ⟨D2u∇u,∇u⟩+ |∇u|p−2∆u.

This formal expansion was used by Peres and Sheffield in [13] (see also Peres et. al.
[12]) to find p−harmonic functions as limits of values of Tug-of-War games.

Suppose that u is a smooth function with ∇u ̸= 0. We see from (2.1), that u is
a solution to ∆pu = 0 if and only if

(2.2) (p− 2)∆∞u+∆u = 0.

It follows from the classical Taylor expansion that

(2.3) u(x)−−
∫
Bε(x)

u dy = −ε2∆u(x)
1

2N
−
∫
B(0,1)

|z|2 dz + o(ε2)

and

u(x)− 1

2

{
max
Bε(x)

u+ min
Bε(x)

u

}

≈ u(x)− 1

2

{
u

(
x+ ε

∇u(x)

|∇u(x)|

)
+ u

(
x− ε

∇u(x)

|∇u(x)|

)}
= −ε2

2
∆∞u(x) + o(ε2).

(2.4)

The volume of the unit ball in RN will be denoted by ωN and the N−1 dimensional
area of the unit sphere will be denoted by σN−1. Observe that since σN−1/ωN = N
we have

1

N
−
∫
B(0,1)

|z|2 dz =
1

N + 2
.

Multiply (2.3) and (2.4) by suitable constants and add up the formulas so that
we have the operator from (2.2) on the right hand side. This process gives us the
choices of the constants α and β in (1.1) needed to obtain the asymptotic expansion
of Theorem 2.

The main idea of the proof of Theorem 2 is just to work in the viscosity setting
and use the expansions (2.3) and (2.4). The derivation of (2.4) also needs some
care. We start by recalling the viscosity characterization of p-harmonic functions
for p < ∞, see [11].

Definition 3. For 1 < p < ∞ consider the equation −div
(
|∇u|p−2∇u

)
= 0.

(1) A lower semi-continuous function u is a viscosity supersolution if for every
ϕ ∈ C2 such that u − ϕ has a strict minimum at the point x ∈ Ω with
∇ϕ(x) ̸= 0 we have

−(p− 2)∆∞ϕ(x)−∆ϕ(x) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every ϕ ∈ C2

such that u − ϕ has a strict maximum at the point x ∈ Ω with ∇ϕ(x) ̸= 0
we have

−(p− 2)∆∞ϕ(x)−∆ϕ(x) ≤ 0.
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(3) Finally, u is a viscosity solution if it is both a supersolution and a subsolu-
tion.

For the case p = ∞ we must restrict the class of test functions as in [12]. Let
S(x) denote the class of C2 functions ϕ such that either ∇ϕ(x) ̸= 0 or ∇ϕ(x) = 0
and the limit

lim
y→x

2(ϕ(y)− ϕ(x))

|y − x|2
= ∆∞ϕ(x)

exists.

Definition 4. Consider the equation −∆∞u = 0.

(1) A lower semi-continuous function u is a viscosity supersolution if for every
ϕ ∈ S(x) such that u− ϕ has a strict minimum at the point x ∈ Ω we have

−∆∞ϕ(x) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every ϕ ∈ S(x)
such that u− ϕ has a strict maximum at the point x ∈ Ω we have

−∆∞ϕ(x) ≤ 0.

(3) Finally, u is a viscosity solution if it is both a supersolution and a subsolu-
tion.

Proof of Theorem 2. We first consider asymptotic expansions for smooth functions
that involve the infinity Laplacian (p = ∞) and the regular Laplacian (p = 2).

Choose a point x ∈ Ω and a C2-function ϕ defined in a neighborhood of x. Let
xε
1 and xε

2 be the point at which ϕ attains its minimum and maximum in Bε(x)
respectively; that is,

ϕ(xε
1) = min

y∈Bε(x)
ϕ(y) and ϕ(xε

2) = max
y∈Bε(x)

ϕ(y).

Next, we use some ideas from [5]. Consider the Taylor expansion of the second
order of ϕ

ϕ(y) = ϕ(x) +∇ϕ(x) · (y − x) +
1

2
⟨D2ϕ(x)(y − x), (y − x)⟩+ o(|y − x|2)

as |y − x| → 0. Evaluating this Taylor expansion of ϕ at the point x with y = xε
1

and y = 2x− xε
1 = x̃ε

1 , we get

ϕ(xε
1) = ϕ(x) +∇ϕ(x) · (xε

1 − x) +
1

2
⟨D2ϕ(x)(xε

1 − x), (xε
1 − x)⟩+ o(ε2)

and

ϕ(x̃ε
1) = ϕ(x)−∇ϕ(x) · (xε

1 − x) +
1

2
⟨D2ϕ(x)(xε

1 − x), (xε
1 − x)⟩+ o(ε2)

as ε → 0. Adding the expressions, we obtain

ϕ(x̃ε
1) + ϕ(xε

1)− 2ϕ(x) = ⟨D2ϕ(x)(xε
1 − x), (xε

1 − x)⟩+ o(ε2).

Since xε
1 is the point where the minimum of ϕ is attained, it follows that

ϕ(x̃ε
1) + ϕ(xε

1)− 2ϕ(x) ≤ max
y∈Bε(x)

ϕ(y) + min
y∈Bε(x)

ϕ(y)− 2ϕ(x),
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and thus

1

2

{
max

y∈Bε(x)
ϕ(y) + min

y∈Bε(x)
ϕ(y)

}
− ϕ(x)

≥ 1

2
⟨D2ϕ(x)(xε

1 − x), (xε
1 − x)⟩+ o(ε2).

(2.5)

Repeating the same process at the point xε
2 we get instead

1

2

{
max

y∈Bε(x)
ϕ(y) + min

y∈Bε(x)
ϕ(y)

}
− ϕ(x)

≤ 1

2
⟨D2ϕ(x)(xε

2 − x), (xε
2 − x)⟩+ o(ε2).

(2.6)

Next we derive a counterpart for the expansion with the usual Laplacian (p = 2).
Averaging both sides of the classical Taylor expansion of ϕ at x we get∫

Bε(x)

ϕ(y) dy = ϕ(x) +
N∑

i,j=1

∂2ϕ

∂x2
i

(x)

∫
Bε(0)

1

2
zizj dz + o(ε2).

The values of the integrals in the sum above are zero when i ̸= j. Using symme-
try, we compute∫

Bε(0)

z2i dz =
1

N

∫
Bε(0)

|z|2 dz

=
1

NωNεN

∫ ε

0

∫
∂Bρ

ρ2 dS dρ =
σN−1ε

2

N(N + 2)ωN
=

ε2

(N + 2)
,

with the notation introduced after (2.4). We end up with

(2.7)

∫
Bε(x)

ϕ(y) dy − ϕ(x) =
ε2

2(N + 2)
∆ϕ(x) + o(ε2).

Assume for the moment that p ≥ 2 so that α ≥ 0. Multiply (2.5) by α and (2.7)
by β and add. We arrive at the expansion valid for any smooth function ϕ:

α

2

{
max

y∈Bε(x)
ϕ(y) + min

y∈Bε(x)
ϕ(y)

}
+ β

∫
Bε(x)

ϕ(y) dy − ϕ(x)

≥ βε2

2(N + 2)

(
(p− 2)

⟨
D2ϕ(x)

(
xε
1 − x

ε

)
,

(
xε
1 − x

ε

)⟩
+∆ϕ(x)

)
+ o(ε2).

(2.8)

We remark that xε
1 ∈ ∂Bε(x) for ε > 0 small enough whenever ∇ϕ(x) ̸= 0. In

fact, suppose, on the contrary, that there exists a subsequence x
εj
1 ∈ Bεj (x) of

minimum points of ϕ. Then, ∇ϕ(x
εj
1 ) = 0 and, since x

εj
1 → x as εj → 0, we have

by continuity that ∇ϕ(x) = 0. A simple argument based on Lagrange multipliers
then shows that

(2.9) lim
ε→0

xε
1 − x

ε
= − ∇ϕ

|∇ϕ|
(x).
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We are ready to prove that if the asymptotic mean value formula holds for u,
then u is a viscosity solution. Suppose that function u satisfies the asymptotic
expansion in the viscosity sense according to Definition 1. Consider a smooth ϕ
such that u− ϕ has a strict minimum at x and ϕ ∈ S(x) if p = ∞. We obtain

0 ≥ −ϕ(x) +
α

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

}
+ β

∫
Bε(x)

ϕ(y) dy + o(ε2),

and thus, by (2.8),

0 ≥ βε2

2(N + 2)

(
(p− 2)

⟨
D2ϕ(x)

(
xε
1 − x

ε

)
,

(
xε
1 − x

ε

)⟩
+∆ϕ(x)

)
+ o(ε2).

If ∇ϕ(x) ̸= 0 we take limits as ε → 0. Taking into consideration (2.9) we get

0 ≥ β

2(N + 2)
((p− 2)∆∞ϕ(x) + ∆ϕ(x)) .

Suppose now that p = ∞ and that the limit

lim
y→x

ϕ(y)− ϕ(x)

|y − x|2
= L

exists. We need to deduce that L ≤ 0 from

0 ≥ 1

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

}
− ϕ(x).

Let us argue by contradiction. Suppose that L > 0 and choose η > 0 small enough
so that L− η > 0. Use the limit condition to obtain the inequalities

(L− η)|x− y|2 ≤ ϕ(x)− ϕ(y) ≤ (L+ η)|x− y|2,

for small |x− y|. Therefore, we get

0 ≥ 1

2
max
Bε(x)

(ϕ− ϕ(x)) +
1

2
min
Bε(x)

(ϕ− ϕ(x))

≥ 1

2
max
Bε(x)

(ϕ− ϕ(x))

≥ (
L− η

2
)ε2,

which is a contradiction. Thus, we have proved that L ≥ 0.

To prove that u is a viscosity subsolution, we first derive a reverse inequality to
(2.8) by considering the maximum point of the test function, that is, using (2.6)
and (2.7), and then choose a function ϕ that touches u from above. We omit the
details.

To prove the converse implication, assume that u is a viscosity solution. In
particular u is a subsolution. Let ϕ be a smooth test function such that u−ϕ has a
strict local maximum at x ∈ Ω. If p = ∞, we also assume ϕ ∈ S(x). If ∇ϕ(x) ̸= 0,
we get

(2.10) −(p− 2)∆∞ϕ(x)−∆ϕ(x) ≤ 0.
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The statement to be proven is

lim inf
ε→0+

1

ε2

(
−ϕ(x) +

α

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

}
+ β −

∫
Bε(x)

ϕ(y) dy

)
≥ 0.

This again follows from (2.8). Indeed, divide (2.8) by ε2, use (2.9), and deduce
from (2.10) that the limit on the right hand side is bounded from below by zero.

For the case p = ∞ with ∇ϕ(x) = 0 we assume the existence of the limit

lim
y→x

ϕ(y)− ϕ(x)

|y − x|2
= L ≥ 0

and observe that

lim inf
ε→0+

1

ε2

(
−ϕ(x) +

1

2

{
max
Bε(x)

ϕ+ min
Bε(x)

ϕ

})
≥ 0.

The argument for the case of supersolutions is analogous.

Finally, we need to address the case 1 < p < 2. Since α ≤ 0 we use (2.6) instead
of (2.5) to get a version of (2.8) with xε

2 in place of xε
1. The argument then continues

in the same way as before. �
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