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Next we introduce dyadic cubes, which are generated using powers
of 2.

Definition 4.17 (Dyadic cubes). A dyadic interval on R is

[m2−k, (m+ 1)2−k)

where m, k ∈ Z. A dyadic cube in Rn is∏
[mj2

−k, (mj + 1)2−k)

where m1,m2, . . . ,mn, k ∈ Z.

Observe that corners lie at 2−kZn and side length is 2−k. Dyadic
cubes have an important property that they are either disjoint or one
is contained into another.

Notations

Dk = ”a collection of dyadic cubes with side length 2−k. ”

A collection of all the dyadic cubes is denoted by

D =
∪
k∈Z

Dk.

Theorem 4.18 (Local Calderón-Zygmund decomposition). Let Q0 ⊂
Rn be a dyadic cube, and f ∈ L1(Q0). Then if

λ ≥
∫
Q0

|f(x)| dx

there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Q0 \ ∪∞
j=1Qj.

Remark 4.19. Naturally, if |f(x)| ≤ λ, then Fλ = ∅. Notice also
the assumption that Q0 is dyadic could be dropped, and that if the
condition λ ≥

∫
Q0

|f(x)| dx does not hold, then we can choose a larger

cube to begin with so that this condition is satisfied.
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Proof of Theorem 4.18. Clearly, Q0 ̸∈ Fλ because of our assumption.
We split Q0 into 2n dyadic cubes with side length l(Q0)/2. Then we
choose to Fλ, the cubes for which

λ <

∫
Q

|f(x)| dx.

Observe that (i) holds because we use dyadic cubes, and because of the
estimate ∫

Q

|f(x)| dx ≤ m(Q0)

m(Q)

∫
Q0

|f(x)| dx

≤ 2n
∫
Q0

|f(x)| dx ≤ 2nλ,

(4.20)

also the upper bound in (ii) holds. For the cubes that were not chosen
i.e. for which ∫

|f(x)| dx ≤ λ,

we continue the process. Then the estimate (ii) holds for all the cubes
that were chosen at some round. On the other hand, according to
Lebesgue’s density theorem

|f(x)| = lim
k→∞

∫
Q(k)

|f(y)| dy
Q(k) was not chosen

≤ λ

for a.e. x ∈ Rn \ ∪Q∈Fλ
Q. �

Next we prove a global version of the Calderón-Zygmund decompo-
sition. The idea in the proof is similar to the local version, but as we
work in the whole of Rn, there is no initial cube Q0.

Theorem 4.21 (Global Calderón-Zygmund decomposition). Let f ∈
L1(Rn) and λ > 0. Then there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Rn \ ∪∞
j=1Qj.
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Proof. We study a subcollection

Fλ ⊂ D

of dyadic cubes, which are the largest possible cubes such that∫
Q

|f(x)| dx > λ (4.22)

holds. In other words, Q ∈ Fλ if Q ∈ Dk for some k, if (4.22) holds
and for all the larger dyadic cubes Q̃, Q ⊂ Q̃, it holds that∫

Q̃

|f(y)| dy ≤ λ.

The largest cube exists, if (4.22) holds for Q, because∫
Q̃

|f(x)| dx ≤ ||f ||1
m(Q̃)

→ 0

as m(Q̃) → ∞ because f ∈ L1(Rn). As the cubes in Fλ are maximal,
they are disjoint, because if this were not the case the smaller cube
would be contained to larger one as they are dyadic and thus we could
replace it by the larger one. A similar calculation as in (4.20) shows that
also the upper bound in (ii) holds. The proof is completed similarly
as in the local version: (iii) is a consequence of Lebesgue’s density
theorem Theorem 3.17. �
Example 4.23. Calderón-Zygmund decomposition for

f : R → [0,∞], f(x) = |x|−1/2

with λ = 1.

Example 4.24. By using the Calderón-Zygmund decomposition, we
can split any f ∈ L1(Rn) into a good and a bad part as (further details
during the lecture)

f = g + b

as

g =

{
f(x), x ∈ Rn \ ∪∞

j=1Qj,∫
Qj

f(y) dy, x ∈ Qj ∈ Fλ

and

b(x) =
∞∑
j=1

bj(x),

bj(x) = (f(x)−
∫
Qj

f(y) dy)χQj
(x).

Observe that g ≤ 2nλ and
∫
Qj

b(y) dy = 0. Split f : R → [0,∞], f(x) =

|x|−1/2 in this way with λ = 1.
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Lemma 4.25. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

Proof. The Calderón-Zygmund decomposition gives bounds for the av-
erages, so our task is passing from the averages to the maximal function.
To this end, let

x ∈ Rn \ ∪∞
j=13Qj

and Q ⊂ Rn is a cube (not necessarily dyadic) s.t. x ∈ Q. If we choose,
k so that

2−k−1 ≤ l(Q) < 2−k,

then there exists at the most 2n dyadic cubes R1, . . . Rl ∈ Dk such that

Rm ∩Q ̸= ∅, m = 1, . . . , l.

Because Rm and Q intersect, Q ⊂ 3Rm. On the other hand Rm is not
contained to any Qj ∈ Fλ, because otherwise we would have x ∈ Q ⊂
3Qj which contradicts our assumption x ∈ Rn \∪∞

j=13Qj. As Rm is not
in Fλ, it follows by definition that∫

Rm

|f(y)| dy ≤ λ

for m = 1, . . . , l. Thus∫
Q

|f(y)| dy =
1

m(Q)

l∑
m=1

∫
Rm∩Q

|f(y)| dy

≤
l∑

m=1

m(Rm)

m(Q)

1

m(Rm)

∫
Rm

|f(y)| dy

≤ l2nλ ≤ 4nλ.

Moreover,

Mf(x) = sup
Q∋x

∫
Q

|f(y)| dy ≤ 4nλ

for every x ∈ Rn \ ∪∞
j=13Qj. Thus

Rn \ ∪∞
j=13Qj ⊂ {x ∈ Rn : Mf(x) ≤ 4nλ}. �
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Corollary 4.26. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then


