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Observe/recall that uncountable union of zero measurable sets is
not necessarily zero measurable, cf. m(Uzeco1){z}) = 1. Therefore the
restriction on the countable set of cubes was necessary above.

Example 4.9. w(z) = |z] %, 0 < a < n, z € R", belongs to A;.
Indeed, let x € R"\{0}, x € Q. Then by choosing a radiusr = 1(Q)\/n,

we see that
Q C B(z,r).

We calculate
1

C
WQ)/stw(y) dy <

(z,7) /B(z,r) wly)dy

S~

Thus by taking a supremum over ) such that x € @), we see that
Muw(x) < Cw(z),
so that by Lemma 4.8, w € Ay.

Next we derive a necessary condition for weak (p, p) estimate to
hold.
Lemma 4.4 gives us the estimate

1@ (g 1@ dn) < [ (e an

We choose f(z) = w'™(z), where 1/p/ +1/p = 1ie. p/ = p/(p—1).
Recalling that ;(Q) = [, w(x) dz, we get

Aw@ﬁugéwlkﬁﬂ@m@pgcéw“¢W@w@mx
:Oéw@memm

A short calculation (1 —p)p+1=(1—-p/(p—1))p+1=(p—1-—
p)/(p—1)p+1=—p/(p—1)+1=1-7p) shows that

1-pp+1=1-p
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so that if we divide by the integral on the right hand side the above
inequality, we get

@ /Q w(z) dx(@ /Q W7 (2) dx)p_l <c (4.10)

@ e gy [ @) <

This is called the Muckenhoupt A,-condition.
Observe that above, we implicitly use w'™? € L} _(R"). If this is
not the case, we can consider

f=w+e)™,

derive the above estimate, and let finally ¢ — 0. After this argument,
as w > 0 a.e., (4.10) implies that w'~* € L. _(R").
Let us collect the above definitions.

Definition 4.11 (Muckenhoupt 1972). Let w € L{ (R"), w > 0 a.e.

loc

Then w satisfies A;-condition if there exists C' > 0 s.t.

/ w(x)dr < Cessinf w(y).
Q

or

yeQ

for all cubes @) C R™. For 1 < p < oo, w satisfies A,-condition if there
exists C' > 0 s.t.

1 1 ’ p—1
— wxdx—/wl_pxdx <C
@ Jy " gy [, o)
for all cubes Q C R™.
Remark 4.12. (i) 1—p/ =1/(1-p) <0, w? € L. (R")
(ii) Let p = 2. Then
1

1 1
m/@w(x)dxm(Q)/Qw@)deC

(i)
m(Q) :/wl/pwl/pdx
Q
Hbger (/ wP(/P) dx>1/p</ w? =1/p) dx>1/p/
Q Q

1/ , 1/p'

= (/wd:v) p(/wl_p dx) p.

Q Q

Dividing by m(Q) = m(Q)"*m(Q)"?" and then taking power p
on both sides we get

@/de%@/cgwlp’ dI)p_l > 1 (4.13)
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so that

(@ /Q W a)' " < @ /Q w(z) dr.

This was (a consequence of) Holder’s inequality. On the other
hand, by looking at the A, condition, we see that the inequality
is reversed. Thus A, condition is a reverse Holder’s inequality.

Theorem 4.14. A, C A;,, 1 <p<q.
Proof. Case 1 < p < co. We recall that ¢ —1=1/(q —1).

(o ()7 00)"

. p—1
" () () e s
m(Q) Q W

=o( ()" ) @

w e Ay 1 -1
< <W/dez>

which proves the claim in this case.
Case p=1.

(g [, (2" ) < om

1 wE Ay C
_ L vg O
essinfow T fowdz

Theorem 4.15. Let 1 < p < oo, and w € L} (R"), w < 0 a.e. Then
w € A, if and only if

1 p C »
<W/Q|f(x)|dx> sm/Qlf(rc)l dp.
for every f € L}, (R") and Q C R".

loc

Proof. Case 1 < p < o0.
7" was already proven before (4.10).

”=" First we use Holder’s inequality

g7 J s = s [ ()

< @(/Qﬁ(x)!”w(x) dx)l/p</Q (ng))p//pdxy/p,
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for 1/p" + 1/p = 1. By taking the power p on both sides, using the
definition of p, arranging terms, using p/p’ = p—1, —=p'/p = 1/(1 —p),
and A, condition, we get

@) (g [N ) < o ([ 1rwr e ac)

./Qw(x) dx(/Qw(x)l/(l—p) dq;>p_1

J/

w € Apv
< "om(Qyp

<c [@r e
Q
Case p=1.
7«<" was already proven before (4.7).

"= Let w € A; i.e.

1 .
W/Qw(x) de < Ceiseglfw(x)-

Then
1 1
W@y [, 1N ar < oo [ 7@ @)

v /Q (@) essint w() de
< (C d
< /Q (@) w(z) da

<c /Q £(@)] dy. 0

We aim at proving that the weighted weak/strong type estimate and
A, condition are equivalent. To establish this, we next study Calderén-
Zygmund decomposition. It is an important tool both in harmonic
analysis and in the theory of PDEs.

4.1. Calderén-Zygmund decomposition. Next we introduce dyadic
cubes, which are generated using powers of 2.

Definition 4.16 (Dyadic cubes). In this section we integrate with
respect to the measure m only, and thus we recall the notation fQ =

1
w@ Jo
A dyadic interval on R is

[m27* (m+1)27%)



