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Observe/recall that uncountable union of zero measurable sets is
not necessarily zero measurable, cf. m(∪x∈(0,1){x}) = 1. Therefore the
restriction on the countable set of cubes was necessary above.

Example 4.9. w(x) = |x|−α , 0 ≤ α < n, x ∈ Rn, belongs to A1.
Indeed, let x ∈ Rn\{0}, x ∈ Q. Then by choosing a radius r = l(Q)

√
n,

we see that

Q ⊂ B(x, r).

We calculate
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|x| ,y = z |x| , dy = |x|n dz

=
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∫
B( x
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r
|x| )

||x| z|−α |x|n dz

=
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r
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∫
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|x| ,
r
|x| )

|z|−α dz

≤ Cw(x)Mw
( x
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)
︸ ︷︷ ︸

<∞

.

Thus by taking a supremum over Q such that x ∈ Q, we see that

Mw(x) ≤ Cw(x),

so that by Lemma 4.8, w ∈ A1.

Next we derive a necessary condition for weak (p, p) estimate to
hold.
Lemma 4.4 gives us the estimate

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

∫
Q

|f(x)|p dµ.

We choose f(x) = w1−p′(x), where 1/p′ + 1/p = 1 i.e. p′ = p/(p − 1).
Recalling that µ(Q) =

∫
Q
w(x) dx, we get∫

Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p

≤ C

∫
Q

w(1−p′)p(x)w(x) dx

= C

∫
Q

w(x)(1−p′)p+1 dx.

A short calculation ((1 − p′)p + 1 = (1 − p/(p − 1))p + 1 = ((p − 1 −
p)/(p− 1))p+ 1 = −p/(p− 1) + 1 = 1− p′) shows that

(1− p′)p+ 1 = 1− p′
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so that if we divide by the integral on the right hand side the above
inequality, we get

1

m(Q)

∫
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w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C, (4.10)

or
1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1/(1−p)(x) dx
)p−1

≤ C.

This is called the Muckenhoupt Ap-condition.
Observe that above, we implicitly use w1−p′ ∈ L1

loc(R
n). If this is

not the case, we can consider

f = (w + ε)1−p′ ,

derive the above estimate, and let finally ε → 0. After this argument,
as w > 0 a.e., (4.10) implies that w1−p′ ∈ L1

loc(R
n).

Let us collect the above definitions.

Definition 4.11 (Muckenhoupt 1972). Let w ∈ L1
loc(R

n), w > 0 a.e.
Then w satisfies A1-condition if there exists C > 0 s.t.∫

Q

w(x) dx ≤ C ess inf
y∈Q

w(y).

for all cubes Q ⊂ Rn. For 1 < p < ∞, w satisfies Ap-condition if there
exists C > 0 s.t.

1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C

for all cubes Q ⊂ Rn.

Remark 4.12. (i) 1− p′ = 1/(1− p) < 0, w1−p′ ∈ L1
loc(R

n)
(ii) Let p = 2. Then
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∫
Q
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1
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∫
Q

1

w(x)
dx ≤ C

(iii)

m(Q) =

∫
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w1/pw−1/p dx

Hölder

≤
(∫
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wp(1/p) dx
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=
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Q
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)1/p′

.

Dividing by m(Q) = m(Q)1/pm(Q)1/p
′
and then taking power p

on both sides we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
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w1−p′ dx
)p−1

≥ 1 (4.13)
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so that ( 1

m(Q)

∫
Q

w1−p′ dx
)1−p

≤ 1

m(Q)

∫
Q

w(x) dx.

This was (a consequence of) Hölder’s inequality. On the other
hand, by looking at the Ap condition, we see that the inequality
is reversed. Thus Ap condition is a reverse Hölder’s inequality.

Theorem 4.14. Ap ⊂ Aq, 1 ≤ p < q.

Proof. Case 1 < p < ∞. We recall that q′ − 1 = 1/(q − 1).( 1
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) 1
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Q

( 1

w

) 1
q−1

q−1
p−1

dx
)(q−1) p−1

q−1
m(Q)(q−1)(1− p−1

q−1
)
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(∫
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m(Q)1−p

w ∈ Ap

≤
( 1

m(Q)

∫
Q

w dx
)−1

which proves the claim in this case.
Case p = 1.( 1

m(Q)

∫
Q

( 1

w

)1/(q−1)
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)q−1

≤ ess sup
Q

1

w

=
1

ess infQw

w ∈ A1

≤ C∫
Q
w dx

. �

Theorem 4.15. Let 1 ≤ p < ∞, and w ∈ L1
loc(R

n), w < 0 a.e. Then
w ∈ Ap if and only if( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ.

for every f ∈ L1
loc(R

n) and Q ⊂ Rn.

Proof. Case 1 < p < ∞.

”⇐” was already proven before (4.10).

”⇒” First we use Hölder’s inequality
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for 1/p′ + 1/p = 1. By taking the power p on both sides, using the
definition of µ, arranging terms, using p/p′ = p− 1, −p′/p = 1/(1− p),
and Ap condition, we get

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p
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m(Q)p

(∫
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)

·
∫
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w(x) dx
(∫

Q
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︸ ︷︷ ︸
w ∈ Ap

≤ Cm(Q)p

≤ C

∫
Q

|f(x)|p dµ.

Case p = 1.

”⇐” was already proven before (4.7).

”⇒” Let w ∈ A1 i.e.

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
x∈Q

w(x).

Then

µ(Q)
1
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∫
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We aim at proving that the weighted weak/strong type estimate and
Ap condition are equivalent. To establish this, we next study Calderón-
Zygmund decomposition. It is an important tool both in harmonic
analysis and in the theory of PDEs.30.9.2010

4.1. Calderón-Zygmund decomposition. Next we introduce dyadic
cubes, which are generated using powers of 2.

Definition 4.16 (Dyadic cubes). In this section we integrate with
respect to the measure m only, and thus we recall the notation

∫
Q
=

1
m(Q)

∫
Q
.

A dyadic interval on R is

[m2−k, (m+ 1)2−k)


