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To establish this, we calculate

o — 2" < (lz =yl + |y — 2I)*

convexity

< 2z =yl +ly — =)
< 2((at)® + |y — 2[*).
Thus
|z — 2P + 12 < (202 + D2+ 2|y — 2|
< max(2,202 + 1)(Jy — 2> + t?)
so that
|z — 2|” + 12

<(ly— 2> +1%).
max(2,2a2+1)_(|y A+t

We apply this and deduce
t
(ly = = + &)+

By —z) = C(n)

t
(Jo — z|2 + 2)(n+1)/2

< C(n) max(2,2a* 4 1)"+D/2

= C(n,a)P(z — 2).

Utilizing this result we attack the original question and estimate

uly 0| < | 1FG) Py 2)ds

< Cla,n) /R @) A - =) ds
— Cla.n)(|f] * P)(2)
< C(a,n) S;gg(lﬂ * Py)(x)

Theorem 3.10

< Cla,n)Mf(x).
This concludes the proof giving

sup  u(y,t)| < cMf(x).
(z,t)ela ()

Corollary 3.21. If f € LP(R"), 1 < p < o0, then
(f = P)(y) — f(z)
nontangentially for almost every x € R™.

Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate.
O
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Remark 3.22. By considering a discontinuous f € LP, we see that

(f = P,)(yn) does not converge to f(x) for every sequence (yy,t,) —

(x,0). The cone is not the whole of the half space i.e. & must be finite!
Nevertheless, if f € C(R") N L>(R"), it follows that

u(y,t) = (f * B)(y) = f(z)

when (y,t) — (2,0) in R7™ without further restrictions. This is a
consequence of Remark 3.9.

4. MUCKENHOUPT WEIGHTS

A weight is a function w € LL _(R™), such that w > 0 a.e. We have
already seen that strong (p,p) property for a Hardy-Littlewood maxi-
mal function is an important tool in many applications. Next we study
the question in the weighted case:

Let 1 < p < co. Which weights w € L] _(R") satisfy

/H(Mf(x))pw(a:) dz < C’/n |f(2)]P w(x)dz? (4.1)

for every f € Li (R™). As before

— d
M f(x) = s /|f )| dy

is a Hardy-Littlewood maximal function.
This estimate implies the weak (p, p) estimate. Indeed,

M
/ w(z) dz 5/ ( f(x)>pw(x) dz
{zeR": M f(x)>A\} {zeR™: M f(x)>A\} A

< — [ (Mf(x))’w(x)dz (4.2)

If we define a measure

then the weighted strong (p,p) estimate (4.1) can be written as

| us@yansc [ 5@r a (1.3

First, we derive some consequences for the weighted weak (p, p) esti-
mate. Thus we also obtain some necessary conditions for the question:
Which weights w € L (R") satisfy weak (p, p) type estimate?
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Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds
for some p, 1 < p < oo. Then

1 P C »
(g L1 ) < [ st an
for all cubes Q@ C R™ and f € L} (R™).

loc

Proof. Fix a cube. If [,|f(z)] dz = 0 or [, |f(z)| du(z) = oo then
the result immediately follows. Thus we may assume

1
W/Q|f(x)|dx>)\>0

which implies according to the definition of the maximal function that
Mf(z)>A>0
for every € ). In other words,

QCc{xeR": Mf(x)> A}

so that
w@) < p{z e R" : Mf(z) > A})
(42) O
< o [ @
R'n.

If we replace f by fx¢q then this gives

C
H@ <5 [ 5@
Q
and by recalling the definition of A we get the claim. U

Remark 4.5. By analyzing the previous result, we see some of the
properties of weights we are studying. Let us choose f = xg, £ C Q) a
measurable set, in the previous lemma. Then the lemma gives
m(E)\»
uQ(—) < Cu(E). 4.6

@ (o (B) (16)

This implies
(i) Either w =0 a.e. or w > 0 a.e. in @

Indeed, otherwise it would hold for
E={zxe@ : wx) =0}
that
m(E),m(Q\ E) >0
(if 7w = 0 a.e. in Q" is false, then m(Q \ E) > 0 and similarly
for the other case) and further by m(Q \ E) > 0 it follows that

1(Q) > 0.
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Then the right hand side would be zero (clearly u(E) = [, w(z) dz =
/, (w=0} W dz = 0) whereas the left hand side would be positive. A

contradiction.
(ii) By choosing @ = Q(z,2l) and F = Q(x,1), we see that

p(Q(x,2)) < Cp(Q(x,1),

because m(Q(z,1))/m(Q(z,2l)) = 2". Measures with this prop-
erty are called doubling measures.
(iii) Either w = oo a.e. or w € L _(R™).

loc

If there would be a set
E C @ such that w(z) < co and m(E) > 0,

by (4.6) it follows that u(Q) = fQ

w e LYQ)

and by choosing larger cubes, we get w € LL _(R™). Thus the
result follows.

Observe that w € L{ _(R™) was one of our assumptions when
defining weights, but it would be possible to take the weak type
estimate as a starting point and then derive this as a result as

shown above.

w(x) dx is finite, and thus

Next we derive a necessary condition for weak (1, 1) estimate to
hold.
Case p = 1: We shall use notation

ess glfw(x) =sup{m € R : w(z) >m ae. z€Q}
re

and define a set
E.={z€Q : w(x)< essiélfw(y) + ¢}
ye

for some € > 0. By definition of essinf, we have m(E.) > 0.
Now by (4.6),

pQ) _ . n(E)

m(Q) —  m(E:)
defofp C .
= (B /EE w(x)dr < C’(esyselc?fw(y) +e).

By passing to a zero with ¢, and recalling that u(Q) = fQ w(z)dz, we
get Muckenhoupt A;-condition
1

W/Qw(x) dz < Cesyseglfw(y). (4.7)

If this condition holds we denote w € Aj;.
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Lemma 4.8. A weight w satisfies Muckenhoupt Ai-condition if and
only if
Muw(z) < Cw(x)

for almost every x € R".

On the other hand from the Lebesgue density theorem, we get w(x) <
Muw(zx) for almost every € R" so that

w(z) < Mw(x) < Cw(x).

Proof. 7<" Suppose that Mw(z) < Cw(x) for almost every x € R".
Then
o
—— [ w(y)dy < Cw(z) a.e. z € Q,
m(Q) Jo
and thus

1 .
W/Qw(y) dy < C’esxseglfw(a:).

”=" Suppose that w € A; so that % fQ w(y)dy < Cessinf,cqw(z).
We shall show that

m({z € R" : Mw(z) > Cw(x)}) =0.

Choose a point z € {x € R" : Mw(z) > Cw(z)} so that Mw(z) >
Cw(z). Then there exists a cube () 5 x such that

1
m/@w(y} dy > Cw(x).

Without loss of generality we may choose this cube so that the corners
lie in the rational points. Thus
1 Ay
Cw(r) < —= [ w(y)dy < C'essinfw
)< iy Jo ) v 2 Cossintuty)
so that

< essinf i
w(z) < essinfw(y)

For this cube, we denote by

Eq={z€Q : w(z) <essinfu(y)})

which is of measure zero. Now we repeat the process for each = € {z €
R" : Mw(xz) > Cw(z)} and as we restricted ourselves to a countable
family of cubes with corners at rational points, we have

m(| JEq) =0

because countable union of zero measurable sets has a measure zero.

g



