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To establish this, we calculate

|x− z|2 ≤ (|x− y|+ |y − z|)2

convexity

≤ 2(|x− y|2 + |y − z|2)
≤ 2((αt)2 + |y − z|2).

Thus

|x− z|2 + t2 ≤ (2α2 + 1)t2 + 2 |y − z|2

≤ max(2, 2α2 + 1)(|y − z|2 + t2)

so that

|x− z|2 + t2

max(2, 2α2 + 1)
≤ (|y − z|2 + t2).

We apply this and deduce

Pt(y − z) = C(n)
t

(|y − z|2 + t2)(n+1)/2

≤ C(n)max(2, 2α2 + 1)(n+1)/2 t

(|x− z|2 + t2)(n+1)/2

= C(n, α)Pt(x− z).

Utilizing this result we attack the original question and estimate

|u(y, t)| ≤
∫
Rn

|f(z)|Pt(y − z) dz

≤ C(α, n)

∫
Rn

|f(z)|Pt(x− z) dz

= C(α, n)(|f | ∗ Pt)(x)

≤ C(α, n) sup
t>0

(|f | ∗ Pt)(x)

Theorem 3.10

≤ C(α, n)Mf(x).

This concludes the proof giving

sup
(x,t)∈Γα(x)

|u(y, t)| ≤ cMf(x).

�

Corollary 3.21. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

(f ∗ Pt)(y) → f(x)

nontangentially for almost every x ∈ Rn.

Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate.
�
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Remark 3.22. By considering a discontinuous f ∈ Lp, we see that
(f ∗ Ptn)(yn) does not converge to f(x) for every sequence (yn, tn) →
(x, 0). The cone is not the whole of the half space i.e. α must be finite!

Nevertheless, if f ∈ C(Rn) ∩ L∞(Rn), it follows that

u(y, t) = (f ∗ Pt)(y) → f(x)

when (y, t) → (x, 0) in Rn+1
+ without further restrictions. This is a

consequence of Remark 3.9.

4. Muckenhoupt weights

A weight is a function w ∈ L1
loc(R

n), such that w ≥ 0 a.e. We have
already seen that strong (p, p) property for a Hardy-Littlewood maxi-
mal function is an important tool in many applications. Next we study
the question in the weighted case:

Let 1 < p < ∞. Which weights w ∈ L1
loc(R

n) satisfy∫
Rn

(Mf(x))pw(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx? (4.1)

for every f ∈ L1
loc(R

n). As before

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy

is a Hardy-Littlewood maximal function.
This estimate implies the weak (p, p) estimate. Indeed,∫
{x∈Rn :Mf(x)>λ}

w(x) dx ≤
∫
{x∈Rn :Mf(x)>λ}

(Mf(x)

λ

)p

w(x) dx

≤ 1

λp

∫
Rn

(Mf(x))pw(x) dx

(4.1)

≤ C

λp

∫
Rn

|f(x)|pw(x) dx.

(4.2)

If we define a measure

µ(E) :=

∫
E

w(x) dx

then the weighted strong (p, p) estimate (4.1) can be written as∫
Rn

(Mf(x))p dµ ≤ C

∫
Rn

|f(x)|p dµ (4.3)

First, we derive some consequences for the weighted weak (p, p) esti-
mate. Thus we also obtain some necessary conditions for the question:
Which weights w ∈ L1

loc(R
n) satisfy weak (p, p) type estimate?
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Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds
for some p, 1 ≤ p < ∞. Then( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ

for all cubes Q ⊂ Rn and f ∈ L1
loc(R

n).

Proof. Fix a cube. If
∫
Q
|f(x)| dx = 0 or

∫
Q
|f(x)| dµ(x) = ∞ then

the result immediately follows. Thus we may assume

1

m(Q)

∫
Q

|f(x)| dx > λ > 0

which implies according to the definition of the maximal function that

Mf(x) > λ > 0

for every x ∈ Q. In other words,

Q ⊂ {x ∈ Rn : Mf(x) > λ}

so that

µ(Q) ≤ µ({x ∈ Rn : Mf(x) > λ})
(4.2)

≤ C

λp

∫
Rn

|f(x)|p dµ.

If we replace f by fχQ then this gives

µ(Q) ≤ C

λp

∫
Q

|f(x)|p dµ,

and by recalling the definition of λ we get the claim. �
Remark 4.5. By analyzing the previous result, we see some of the
properties of weights we are studying. Let us choose f = χE, E ⊂ Q a
measurable set, in the previous lemma. Then the lemma gives

µ(Q)
(m(E)

m(Q)

)p

≤ Cµ(E). (4.6)

This implies

(i) Either w = 0 a.e. or w > 0 a.e. in Q

Indeed, otherwise it would hold for

E = {x ∈ Q : w(x) = 0}
that

m(E),m(Q \ E) > 0

(if ”w = 0 a.e. in Q” is false, then m(Q \ E) > 0 and similarly
for the other case) and further by m(Q \ E) > 0 it follows that

µ(Q) > 0.
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Then the right hand side would be zero (clearly µ(E) =
∫
E
w(x) dx =∫

{w=0}w dx = 0) whereas the left hand side would be positive. A

contradiction.
(ii) By choosing Q = Q(x, 2l) and E = Q(x, l), we see that

µ(Q(x, 2l)) ≤ Cµ(Q(x, l)),

because m(Q(x, l))/m(Q(x, 2l)) = 2n. Measures with this prop-
erty are called doubling measures.

(iii) Either w = ∞ a.e. or w ∈ L1
loc(R

n).

If there would be a set

E ⊂ Q such that w(x) < ∞ and m(E) > 0,

by (4.6) it follows that µ(Q) =
∫
Q
w(x) dx is finite, and thus

w ∈ L1(Q)

and by choosing larger cubes, we get w ∈ L1
loc(R

n). Thus the
result follows.
Observe that w ∈ L1

loc(R
n) was one of our assumptions when

defining weights, but it would be possible to take the weak type
estimate as a starting point and then derive this as a result as
shown above.

Next we derive a necessary condition for weak (1, 1) estimate to
hold.
Case p = 1: We shall use notation

ess inf
x∈Q

w(x) := sup{m ∈ R : w(x) ≥ m a.e. x ∈ Q}

and define a set

Eε = {x ∈ Q : w(x) < ess inf
y∈Q

w(y) + ε}

for some ε > 0. By definition of ess inf, we have m(Eε) > 0.
Now by (4.6),

µ(Q)

m(Q)
≤ C

µ(Eε)

m(Eε)

def of µ
=

C

m(Eε)

∫
Eε

w(x) dx ≤ C(ess inf
y∈Q

w(y) + ε).

By passing to a zero with ε, and recalling that µ(Q) =
∫
Q
w(x) dx, we

get Muckenhoupt A1-condition

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
y∈Q

w(y). (4.7)

If this condition holds we denote w ∈ A1.
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Lemma 4.8. A weight w satisfies Muckenhoupt A1-condition if and
only if

Mw(x) ≤ Cw(x)

for almost every x ∈ Rn.

On the other hand from the Lebesgue density theorem, we get w(x) ≤
Mw(x) for almost every x ∈ Rn so that

w(x) ≤ Mw(x) ≤ Cw(x).

Proof. ”⇐” Suppose that Mw(x) ≤ Cw(x) for almost every x ∈ Rn.
Then

1

m(Q)

∫
Q

w(y) dy ≤ Cw(x) a.e. x ∈ Q,

and thus

1

m(Q)

∫
Q

w(y) dy ≤ C ess inf
x∈Q

w(x).

”⇒” Suppose that w ∈ A1 so that
1

m(Q)

∫
Q
w(y) dy ≤ C ess infx∈Qw(x).28.9.2010

We shall show that

m({x ∈ Rn : Mw(x) > Cw(x)}) = 0.

Choose a point x ∈ {x ∈ Rn : Mw(x) > Cw(x)} so that Mw(x) >
Cw(x). Then there exists a cube Q ∋ x such that

1

m(Q)

∫
Q

w(y) dy > Cw(x).

Without loss of generality we may choose this cube so that the corners
lie in the rational points. Thus

Cw(x) <
1

m(Q)

∫
Q

w(y) dy
A1

≤ C ess inf
y∈Q

w(y)

so that

w(x) < ess inf
y∈Q

w(y).

For this cube, we denote by

EQ = {x ∈ Q : w(x) < ess inf
y∈Q

w(y)})

which is of measure zero. Now we repeat the process for each x ∈ {x ∈
Rn : Mw(x) > Cw(x)} and as we restricted ourselves to a countable
family of cubes with corners at rational points, we have

m(
∪

EQ) = 0

because countable union of zero measurable sets has a measure zero.
�


