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Proof. The sketch of the proof: By a density of continuous functions
in P, we can choose g € Co(R") so that [|f — g|, is small. By adding
and subtracting g, we can estimate

|(f * ¢2)(2) = af(2)] < |¢= * (f = 9)(x) = a(f = g)(2)]
+ (g% ¢=)(x) = ag(z)] .
Since g € Cp(R"), the second term tends to zero as ¢ — 0. Thus

we can focus attention on the first term on the right hand side. By
Theorem 3.10, we can estimate

[(f * ¢e)(@) — af (2)| < | * (f — 9)(x) — a(f — g)(@)]
< M(f = g)(@) +al(f — g)(x)].

(3.13)

Finally, we can show by using the weak type estimates that the quan-
tities on the right hand side get small almost everywhere.

Details: Case 1 < p < oo:
As sketched above the weak type estimates play a key role. Theorem
Hardy-Littlewood I (Theorem 2.12) implies

m({e € R" : Mf(2) > A)) < < |I/]], (3.14)

> Q

for A > 0, and Hardy-Littlewood II (Theorem

[\]

.19) imply

Chebyshev

C H-L II
m{z e R Mf(@) > 2D £ SIMAEL S ClAI. (315)

As g is continuous at x € R" it follows that for every n > 0 there
exists 6 > 0 such that

lg(x —y) — g(x)] <n whenever |y| <.

Thus

n

< 77/ o-(y) dy +2|g]l.. / ¢=(x)dy .
B(0,5) R\ B(0,6)
——— —

(g * 6:)(z) — ag(z)| < / 9z — y) — 9(@)] ée(y) dy

(.

-
<ll¢lly —0 as e—0 by Lemma 3.6

Since 1 was arbitrary, it follows that
lim | (g + 6.)(x) — ag(z)| = 0
e—0

for all z € R".
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This in mind we can estimate

liri_a sup [(f * @) (z) — af(x)]
<limsup |((f — g) * ¢=)(z) — a(f — g)(=)]

e—0
+ limsup |(g * ¢)(x) — ag(x)|
e ) (3.16)

=0

< sup |((f = g) * @) (@) + a|(f — g)(z)|

e>0
Theorem 3.10

< CM(f-g)(x)+al(f—g)).

Next we define

A= {r e R" : lmsup|(] * 6.)(x) — af (2)] > 1}

e—0

By the previous estimate,

1 1
AiC{r e R" : OM(f —g)(x) > Z}U{x eR" : alf(z) —g(zx)| > Z}’
fori=1,2,.... Let n > 0, and let g € Cy(R") be such that (density)
1f = gll, <n-

This and the previous inclusion imply

m(A) <m({z € R" : CM(f — g)(x) > 1) +m({z € R" : a|f(z) — g(x)] >

2i
(3.14),(3.15) ) ‘ ,
< C|f —gll, + C"I|f = gll,
<GP f =gl < City?
for every 1, i =1,2,.... Thus

and
m(U2,4;) <) m(A;) =0.
i=1
This gives us
m({z € R" : limsup |(f * ¢c)(z) — af(x)| > 0}) =0
e—0
which proofs the claim
1i_r)r[1)|(f * ¢ )(x) —af(x)] =0 ae zeR"™

Case p = oco: Now f € L>°(R™). We show that

m(fxo:)(r) = af(z)

li
e—0

1
=2
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for almost every x € B(0,7),7 > 0. Let

B ) f(x), xeB(0,r+1)
i (x) = fXB(o,r+1)(9C) = {0’ otherwise,
and fo = f — f1. Now f; € L'(R") and by the previous case
lim(fy « 6:)(x) = afy(a)

for almost every x € R"™. By utilizing this, we obtain for almost every
x € B(0,r) that

lim(f  6.)(x) = ln(fy % 6:)(x) + lim(fo * 6.) ()
= af(x) + lim(fo * 6.)(x).

and it remains to show that lim._,o(f2 * ¢.)(z) = 0 for almost all x €
B(0,r). To this end, let z € B(0,r) so that fo(x—y) = 0fory € B(0,1)
and calculate

|(f2 % de) ()] =

[ o= o

[ he-ve) dy\
R\ B(0,1)

- Hle!oo/ 6-(y) dy — 0
R”\B(O,l)

as ¢ — 0. O

By choosing
¢(x) = xB(0,)(x)/m(B(0,1)),

so that
9e(x) = XB(0,e)/(€"m(B(0,1))) = XB(0,5)/m(B(0,€)),

we immediately obtain

Theorem 3.17 (Lebesgue density theorem). If f € L} (R"), then
lim fly)dy = f(z)
r—0 B(CL’,R)

for almost every x € R".

Example 3.18. Let

C(n)
= P =

where the constant is chosen so that

/nP(x)dle.
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Next we define

1 =z t
Pt(ﬁ) = —P(—) = C(n)(|x|2 n t2)(n+1)/27 t>0

and

u(a,t) = (f * P)(x) = / Pz — y)f(y) dy.

This s called the Poisson integral for f. It has the following properties
(i) Au:%+%+...+%:0 and
(1) limy_ou(z,t) = f(x) for almost every x € R™ by Theorem 3.12.
Let
R = {(z1,29,...,t) e R"™ 1 £ >0}

denote the upper half space. As stated above u is harmonic in RT“I S0
that u(z,t) = [g. Pz —y)f(y) dy solves

Au(z,t) =0, (x,t) € R}
U(LU,O):f(Z'), 7x€aR¢+1:Rn,

where the boundary condition is obtained in the sense
li =
i u(,t) = f(2)

almost everywhere on R™. As (z,t) — (x,0) along a perpendicular
axis, we call this radial convergence.

Question Does the Poisson integral converge better than radially?

Definition 3.19. Let z € R" and a > 0. Then
(i) We define a cone
La(@) = {(3:1) € RE™ : |o —y| < at}.

(ii) Function u(x,t) converges nontangentially, if u(y,t) — f(x) and
(y,t) — (2,0) so that (y,?) remains inside the cone I', ().

Theorem 3.20. Let f € LP(R"), 1 < p < o0, andu(z,t) = (f*P;)(x).
Then for every a > 0, there exists C = C(n,«) such that

ui(z):=  swp  fu(y,t) < CMf()
(y,t)ela(z)

for every x € R™.

u* is called a nontangential maximal function. 23.9.2010
Proof. First we show that

Py —z2) < C(a,n)P(x —z) forevery (y,t) € I'n(x), z € R"™



