3. Approximation by convolution

Definition 3.1 (Convolution). Suppose that $f, g : \mathbf{R}^n \to [-\infty, \infty]$ are Lebesgue-measurable functions. The convolution

$$(f * g)(x) = \int_{\mathbf{R}^n} f(y)g(x - y) \, \mathrm{d}y$$

is defined if $y \mapsto f(y)g(x-y)$ is integrable for almost every $x \in \mathbf{R}^n$.

Observe that: $f, g \in L^1(\mathbf{R}^n)$ does not imply $fg \in L^1(\mathbf{R}^n)$ which can be seen by considering for example $f = g = \frac{\chi_{(0,1)}(x)}{\sqrt{x}}$.

Theorem 3.2 (Minkowski's/Young's inequality). If $f \in L^p(\mathbf{R}^n)$, $1 \le p \le \infty$ and $g \in L^1(\mathbf{R}^n)$, then (f * g)(x) exists for almost all $x \in \mathbf{R}^n$ and

$$||f * g||_p \le ||f||_p ||g||_1$$
.

Proof. Case p = 1: Because

$$|(f * g)(x)| \le \int_{\mathbf{R}^n} |f(y)| |g(x - y)| \, dy$$

we have

$$\begin{split} \int_{\mathbf{R}^n} |(f*g)(x)| \, \mathrm{d}x &\leq \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} |f(y)| \, |g(x-y)| \, \, \mathrm{d}y \, \mathrm{d}x \\ &\stackrel{\text{Fubini}}{=} \int_{\mathbf{R}^n} |f(y)| \, \Big(\int_{\mathbf{R}^n} |g(x-y)| \, \, \mathrm{d}x \Big) \, \mathrm{d}y \\ &= \int_{\mathbf{R}^n} |f(y)| \, \, \mathrm{d}y \int_{\mathbf{R}^n} |g(x)| \, \, \mathrm{d}x \\ &= ||f||_1 \, ||g||_1 \, . \end{split}$$

Case $p = \infty$:

$$|(f * g)(x)| \le \int_{\mathbf{R}^n} |f(y)| |g(x - y)| dy$$

$$\le \underset{y \in \mathbf{R}^n}{\operatorname{ess sup}} |f(x)| \int_{\mathbf{R}^n} |g(x - y)| dy$$

$$= ||f||_{\infty} ||g||_{1}.$$

Case 1 : Set

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Then

$$\begin{split} |(f*g)(x)| &\leq \int_{\mathbf{R}^n} |f(y)| \, |g(x-y)| \, \mathrm{d}y \\ &= \int_{\mathbf{R}^n} |f(y)| \, |g(x-y)|^{1/p} \, |g(x-y)|^{1/p'} \, \mathrm{d}y \\ &\overset{\mathrm{H\"older}}{\leq} \Big(\int_{\mathbf{R}^n} |f(y)|^p \, |g(x-y)| \, \mathrm{d}y \Big)^{1/p} \Big(\int_{\mathbf{R}^n} |g(x-y)| \, \mathrm{d}y \Big)^{1/p'} \\ &= \Big(\int_{\mathbf{R}^n} |f(y)|^p \, |g(x-y)| \, \mathrm{d}y \Big)^{1/p} \, ||g||_1^{1/p'} \, . \end{split}$$

Thus

$$\int_{\mathbf{R}^{n}} |(f * g)(x)|^{p} dx \leq ||g||_{1}^{p/p'} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} |f(y)|^{p} |g(x - y)| dy dx$$

$$\stackrel{\text{Fubini}}{=} ||g||_{1}^{p/p'} \int_{\mathbf{R}^{n}} |f(y)|^{p} \int_{\mathbf{R}^{n}} |g(x - y)| dx dy$$

$$= ||g||_{1}^{p/p'} ||g||_{1} ||f||_{p}^{p} = ||g||_{1}^{p} ||f||_{p}^{p},$$

because

$$\frac{p}{p'} + 1 = p(\frac{1}{p'} + \frac{1}{p}) = p.$$

We state the following simple properties of convolution without a proof.

Lemma 3.3 (Basic properties of convolution). Let $f, g, h \in L^1(\mathbf{R}^n)$.

- (i) f * g = g * f.
- (ii) f * (g * h) = (f * g) * h. $(iii) (\alpha f + \beta g) * h = \alpha (f * h) + \beta (g * h), \ \alpha, \beta \in \mathbf{R}^n.$

For $\phi \in L^1(\mathbf{R}^n)$, $\varepsilon > 0$, we denote

$$\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \phi(\frac{x}{\varepsilon}), \ x \in \mathbf{R}^n.$$
 (3.4)

(i) Let $\phi(x) = \frac{\chi_{B(0,1)}(x)}{m(B(0,1))}$. Then Example 3.5.

$$\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \frac{\chi_{B(0,1)}(\frac{x}{\varepsilon})}{m(B(0,1))} = \frac{\chi_{B(0,\varepsilon)(x)}}{m(B(0,\varepsilon))}.$$

Then for $f \in L^1(\mathbf{R}^n)$, a mollification

$$(f * \phi_{\varepsilon})(x) = \int_{\mathbf{R}^n} f(y)\phi_{\varepsilon}(x - y) \, dy$$
$$= \int_{B(x,\varepsilon)} f(y) \, dy.$$

turns out to be useful. Observe also that $||\phi_{\varepsilon}||_1 = 1$ for any $\varepsilon > 0$ so that

$$||f * \phi_{\varepsilon}||_1 \le ||f||_1 ||\phi_{\varepsilon}||_1 = ||f||_1.$$

(ii)

$$\varphi = \begin{cases} \exp\left(\frac{1}{|x|^2 - 1}\right), & x \in B(0, 1) \\ 0, & else. \end{cases}$$

It holds that $\varphi \in C_0^{\infty}(\mathbf{R}^n)$ and thus also $\varphi \in L^1(\mathbf{R}^n)$. Let

$$\phi = \frac{\varphi}{||\varphi||_1}.$$

Then $\phi_{\varepsilon} \in C_0^{\infty}(\mathbf{R}^n)$, $\operatorname{spt}(\phi_{\varepsilon}) \subset \overline{B}(0, \varepsilon)$, and

$$\int_{\mathbf{R}^n} \phi_{\varepsilon}(x) \, \mathrm{d}x = \frac{1}{\varepsilon^n} \int_{\mathbf{R}^n} \phi(x/\varepsilon) \, \mathrm{d}x$$

$$y = \frac{x}{\varepsilon}, \, \frac{\mathrm{d}x = \varepsilon^n \, \mathrm{d}y}{\varepsilon} \, \frac{1}{\varepsilon^n} \int_{\mathbf{R}^n} \phi(y) \varepsilon^n \, \mathrm{d}y$$

$$= \int_{\mathbf{R}^n} \phi(y) \, \mathrm{d}y$$

$$= \int_{\mathbf{R}^n} \frac{\varphi(y)}{||\varphi||_1} \, \mathrm{d}y = \frac{||\varphi||_1}{||\varphi||_1} = 1,$$

for all $\varepsilon > 0$. The function ϕ_{ε} is called a standard mollifier in this case. As before, if $f \in L^1(\mathbf{R}^n)$, then

$$||f * \phi_{\varepsilon}||_1 \le ||f||_1.$$

Lemma 3.6. Let $\phi \in L^1(\mathbf{R}^n)$ and recall that $\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n}\phi(\frac{x}{\varepsilon})$. Then

$$\int_{\mathbf{R}^n} \phi_{\varepsilon}(x) \, \mathrm{d}x = \int_{\mathbf{R}^n} \phi(x) \, \mathrm{d}x$$

for every $\varepsilon > 0$.

(ii)

$$\lim_{\varepsilon \to 0} \int_{\mathbf{R}^n \backslash B(0,r)} |\phi_{\varepsilon}(x)| \, \mathrm{d}x = 0$$

for every r > 0.

Proof. (i) Change of variables, see above.

(ii) We calculate

$$\int_{\mathbf{R}^{n}\backslash B(0,r)} |\phi_{\varepsilon}(x)| \, \mathrm{d}x = \frac{1}{\varepsilon^{n}} \int_{\mathbf{R}^{n}\backslash B(0,r)} |\phi(x/\varepsilon)| \, \mathrm{d}x$$

$$y = \frac{x}{\varepsilon}, \, \frac{\mathrm{d}x = \varepsilon^{n} \, \mathrm{d}y}{=} \int_{\mathbf{R}^{n}\backslash B(0,r/\varepsilon)} \phi(y) \, \mathrm{d}y$$

$$= \int_{\mathbf{R}^{n}} \phi(y) \chi_{\mathbf{R}^{n}\backslash B(0,r/\varepsilon)} \, \mathrm{d}y \to 0$$

as $\varepsilon \to 0$ by Lebesgue's dominated convergence theorem.

Theorem 3.7. Let $\phi \in L^1(\mathbf{R}^n)$,

$$a = \int_{\mathbf{R}^n} \phi(x) \, \mathrm{d}x$$

and $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$. Then

$$||\phi_{\varepsilon} * f - af||_p \to 0$$

as $\varepsilon \to 0$.

Notice that the statement is invalid if $p = \infty$.

Proof. We will work out the details below, but the idea in the proof is that by using the definition of the convolution together with Hölder's inequality and Fubini's theorem, we obtain

$$\int_{\mathbf{R}^{n}} \left| (f * \phi_{\varepsilon})(x) - af(x) \right|^{p} dx$$

$$\leq \left| |\phi| \right|_{1}^{p/p'} \int_{\mathbf{R}^{n}} |\phi_{\varepsilon}(y)| \left(\int_{\mathbf{R}^{n}} |f(x-y) - f(x)|^{p} dx \right) dy$$

$$= \left| |\phi| \right|_{1}^{p/p'} \int_{B(0,r)} |\phi_{\varepsilon}(y)| \left(\int_{\mathbf{R}^{n}} |f(x-y) - f(x)|^{p} dx \right) dy$$

$$+ \left| |\phi| \right|_{1}^{p/p'} \int_{\mathbf{R}^{n} \setminus B(0,r)} |\phi_{\varepsilon}(y)| \left(\int_{\mathbf{R}^{n}} |f(x-y) - f(x)|^{p} dx \right) dy$$

$$= I_{1} + I_{2}, \tag{3.8}$$

where 1/p+1/p'=1. The first term on the right hand side, I_1 , is small when r is small because intuitively then f(x-y) only differs little from f(x). On the other hand, the second integral, I_2 , is small for small enough $\varepsilon > 0$ for any r because ϕ_{ε} gets more and more concentrated. 16.9.2010 Next we work out the details. By the previous lemma

$$af(x) = f(x) \int_{\mathbf{R}^n} \phi(y) \, \mathrm{d}y = \int_{\mathbf{R}^n} f(x) \phi_{\varepsilon}(y) \, \mathrm{d}y.$$