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that is ||f ||1 = ∞ and thus f /∈ L1(Rn). On the other hand for
every λ > 0

m({x ∈ Rn : |f(x)| > λ}) = m(B(0, λ−1/n)) =
Ωn

λ

where Ωn is a measure of a unit ball. Hence f ∈ weak L1(Rn).

Theorem 2.12 (Hardy-Littlewood I). If f ∈ L1(Rn), then Mf is in
weak L1(Rn) and

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1

for every 0 < λ < ∞.

In other words, the maximal functions maps L1 to weak L1.
The proof of this theorem uses the Vitali covering theorem.

Theorem 2.13 (Vitali covering). Let F be a family of cubes Q s.t.

diam(
∪
Q∈F

Q) < ∞.

Then there exist a countable number of disjoint cubes Qi ∈ F , i =
1, 2, . . . s.t. ∪

Q∈F

Q ⊂
∞∪
i=1

5Qi

Here 5Qi is a cube with the same center as Qi whose side length is
multiplied by 5.

Proof. The idea is to choose cubes inductively at round i by first throw-
ing away the ones intersecting the cubes Q1, . . . , Qi−1 chosen at the
earlier rounds and then choosing the largest of the remaining cubes
not yet chosen. Because the largest cube was chosen at every round,
it follows that ∪i−1

j=15Qj will cover the cubes thrown away. However,
implementing this intuitive idea requires some care because there can
be infinitely many cubes in the family F . In particular, it may not be
possible to choose largest one, but we choose almost the largest one.

To work out the details, suppose that Q1, . . . , Qi−1 ∈ F are chosen.
Define

li = sup{l(Q) : Q ∈ F and Q ∩
i−1∪
j=1

Qj = ∅}. (2.14)

Observe first that li < ∞, due to diam(
∪

Q∈F Q) < ∞. If there is no a
cube Q ∈ F such that

Q ∩
i−1∪
j=1

Qj = ∅,
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then the process will end and we have found the cubes Q1, . . . , Qi−1.
Otherwise we choose Qi ∈ F such that

l(Qi) >
1

2
li and Qi ∩

i−1∪
j=1

Qj = ∅.

This is also how we choose the first cube. Observe further that this is
possible since 0 < li < ∞. We have chosen the cubes so that they are
disjoint and it suffices to show the covering property.

Choose an arbitrary Q ∈ F . Then it follows that this Q intersects
at least one of the chosen cubes Q1, Q2, . . ., because otherwise

Q ∩Qi = ∅ for every i = 1, 2, . . .

and thus the sup in (2.14) must be at least l(Q) so that

li ≥ l(Q) for every i = 1, 2, . . . .

It follows that

l(Qi) >
1

2
li ≥

1

2
l(Q) > 0

for every i = 1, 2, . . ., so that

m(
∞∪
i

Qi) =
∞∑
i=1

m(Qi) = ∞,

where we also used the fact that the cubes are disjoint. This contradicts
the fact that m(

∪∞
i Qi) < ∞ since

∪∞
i Qi is a bounded set according

to assumption diam(
∪

Q∈F Q) < ∞. Thus we have shown that Q in-
tersects a cube in Qi, i = 1, 2, . . .. Then there exists a smallest index i
so that

Q ∩Qi ̸= ∅.

implying

Q ∩
i−1∪
j=1

Qj = ∅.

Furthermore, according to the procedure

l(Q) ≤ li < 2l(Qi)

and thus Q ⊂ 5Qi and moreover∪
Q∈F

Q ⊂
∞∪
i=1

5Qi. �
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Proof of Theorem 2.12. Remember the notation

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0

so that x ∈ Eλ implies that there exits a cube Qx ∋ x such that∫
Qx

|f(y)| dy > λ (2.15)

If Qx would cover Eλ, then the result would follow by the estimate

m(Eλ) ≤ m(Q) ≤
∫
Rn

|f(y)|
λ

dy.

However, this is not usually the case so we have to cover Eλ with cubes.
But then the overlap of cubes needs to be controlled, and here we utilize
the Vitali covering theorem.

In application of the Vitali covering theorem, there is also a technical
difficulty that Eλ may not be bounded. This problem is treated by
looking at the

Eλ ∩B(0, k).

Let F be a collection of cubes with the property (2.15), and x ∈ Eλ ∩
B(0, k). Now for every Q ∈ F it holds that

l(Q)n = m(Q) <
1

λ

∫
Q

|f(y)| dy ≤ ||f ||1
λ

,

so that

l(Q) ≤
( ||f ||1

λ

)1/n

< ∞.

Thus diam(
∪

Q∈F Q) < ∞ and the Vitali covering theorem implies∪
Q∈F

Q ⊂
∞∪
i=1

5Qi.

Combining the facts, we have

m(Eλ ∩B(0, k)) ≤ m(
∞∪

Q∈F

Q) ≤
∞∑
i=1

m(5Qi) = 5n
∞∑
i=1

m(Qi)

(2.15)

≤ 5n

λ

∞∑
i=1

∫
Qi

|f(y)| dy

cubes are disjoint
=

5n

λ

∫
∪∞
i=1Qi

|f(y)| dy ≤ 5n

λ
||f ||1 .

Then we pass to the original Eλ

m(Eλ) = lim
k→∞

m(Eλ ∩B(0, k)) ≤ 5n

λ
||f ||1 . �
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Remark 2.16. Observe that f ∈ L1(Rn) implies that Mf(x) < ∞
a.e. x ∈ Rn because

m({x ∈ Rn : Mf(x) = ∞} ≤ m({x ∈ Rn : Mf(x) > λ})

≤ 5n

λ
||f ||1 → 0

as λ → ∞.

Definition 2.17. (i)

f ∈ L1(Rn) + Lp(Rn), 1 ≤ p ≤ ∞
if

f = g + h, g ∈ L1(Rn), h ∈ Lp(Rn)

(ii)

T : L1(Rn) + Lp(Rn) → measurable functions

is subadditive, if

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)| a.e. x ∈ Rn

(iii) T is of strong type (p, p), 1 ≤ p ≤ ∞, if there exists a constant C
independent of functions f ∈ Lp(Rn) s.t.

||Tf ||p ≤ C ||f ||p .

for every f ∈ Lp(Rn)
(iv) T is of weak type (p, p), 1 ≤ p < ∞, if there exists a constant C

independent of functions f ∈ Lp(Rn) s.t.

m({x ∈ Rn : Tf(x) > λ}) ≤ C

λp
||f ||pp

for every f ∈ Lp(Rn).

Remark 2.18. (i) Observe that the maximal operator is subaddi-
tive, of weak type (1,1) that is

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1 ,

of strong type (∞,∞)

||Mf ||∞ ≤ C ||f ||∞ ,

and nonlinear.
(ii) Strong (p, p) implies weak (p, p):

m({x ∈ Rn : Tf(x) > λ})
Chebysev

≤ 1

λp

∫
Rn

|Tf |p dx

strong (p, p)

≤ C

λp

∫
Rn

|f |p dx.
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Theorem 2.19 (Hardy-Littlewood II). If f ∈ Lp(Rn), 1 < p ≤ ∞,
then Mf ∈ Lp(Rn) and there exists C = C(n, p) (meaning C depends
on n, p) such that

||Mf ||p ≤ C ||f ||p .

This is not true, when p = 1, cf. Example 2.3. The proof is based
on the interpolation (Marcinkiewich interpolation theorem, proven be-
low) between weak (1, 1) and strong (∞,∞). In the proof of the
Marcinkiewich interpolation theorem, we use the following auxiliary
lemma. 9.9.2010

Lemma 2.20. Let 1 ≤ p ≤ q ≤ ∞. Then

Lp(Rn) ⊂ L1(Rn) + Lq(Rn).

Proof. Let f ∈ Lp(Rn), λ > 0. We split f into two part as f = f1 + f2
by setting

f1(x) = fχ{x∈Rn : |f(x)|≤λ}(x) =

{
f(x), |f(x)| ≤ λ

0, |f(x)| > λ,

f2(x) = fχ{x∈Rn : |f(x)|>λ}(x) =

{
f(x), |f(x)| > λ

0, |f(x)| ≤ λ.

We will show that f1 ∈ Lq and f2 ∈ L1∫
Rn

|f1(x)|q dx =

∫
Rn

|f1(x)|q−p |f1(x)|p dx

|f1|≤λ

≤ λq−p

∫
Rn

|f1(x)|p dx

|f1|≤|f |
≤ λq−p ||f ||pp < ∞,∫

Rn

|f2(x)| dx =

∫
Rn

|f2|1−p |f2|p dx

|f2|>λ or f2=0

≤ λ1−p

∫
Rn

|f2|p dx

|f2|≤|f |
≤ λ1−p ||f ||pp < ∞. �

Theorem 2.21 (Marcinkiewicz interpolation theorem). Let 1 < q ≤
∞,

T : L1(Rn) + Lq(Rn) → measurable functions

is subadditive, and

(i) T is of weak type (1, 1)
(ii) T is of weak type (q, q), if q < ∞, and

T is of strong type (q, q), if q = ∞.


