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Lemma 5.13. If f, g ∈ S(R), then

f̂ ∗ g = f̂ ĝ

Proof. The proof is based on Fubini’s theorem. To this end, observe
that by the proof of Young’s inequality for convolution, Theorem 3.2,
we have∫
R

∫
R

∣∣f(y)g(x− y) e−2πixξ
∣∣ dy dx =

∫
R

|f(y)|
∫
R

|g(x− y)| dx dy < ∞.

Now we can calculate

f̂ ∗ g =

∫
R

∫
R

f(y)g(x− y) dy e−2πixξ dx

Fubini
=

∫
R

f(y)

∫
R

g(x− y)e−2πixξ dx dy

x−y=z, dx=dz
=

∫
R

f(y)

∫
R

g(z)e−2πi(z+y)ξ dz dy

=

∫
R

f(y)e−2πiyξ dy

∫
R

g(z)e−2πizξ dz = f̂ ĝ. �

Next we prove Plancherel’s theorem. The theorem plays a central
role, when extending the definition of the Fourier transform to the
L2-functions. It will also be needed in connection to singular integrals.

Theorem 5.14 (Plancherel). If f ∈ S(R), then

||f ||2 = ||f̂ ||2. (5.15)

Proof. Set g = f̂ . Then ĝ = f . To see this, we first calculate

g = f̂ =

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)e2πixξ dx

=

∫
R

f(x)e−2πix(−ξ) dx = f̂(−ξ)

and thus by Corollary 5.12

ĝ(x) = F (f̂(−ξ))(x) = f(x).

Utilizing this and Lemma 5.9, we have

||f ||2 =
∫
R

f(x)f(x) dx =

∫
R

f(x)ĝ(x) dx

Lemma 5.9
=

∫
R

f̂(x)g(x) dx =

∫
R

f̂(x)f̂(x) dx = ||f̂ ||2. �
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5.2. On L1. As stated above for f ∈ L1(R), the Fourier transform

f̂(ξ) =
∫
R
f(x)e−2πixξ dx is well defined but it might well be that

f̂ /∈ L1(R).

Question: Then how do we obtain f from f̂ in this case as
∫
R
f̂(ξ)e2πixξ dξ

might not be well defined?
The answer is that we can make sure that the inversion formula

makes sense by multiplying by a bumb function which makes sure that
the integrand gets small enough values far away, and then pass to a
limit.

Theorem 5.16. Let ϕ ∈ L1(R), be bounded and continuous with ϕ̂ ∈
L1(R), ||ϕ̂||1 = 1 . Then

lim
ε→0

∣∣∣∣∣∣∣∣∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ − f(x)

∣∣∣∣∣∣∣∣
1

= 0.

A suitable ϕ in the theorem above is for example ϕ(x) = e−πx2
, see

Example 5.7.

Proof. First, we show that∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ = (f ∗ ϕ̂ε)(x).

To this end, recall that ϕ̂(−εx) = ϕ̂ε(−ξ) and ̂f(x)e2πihx = f̂(ξ − h)
by Lemma 5.6. Observe that these results hold also for L1 functions.
Since ϕ is bounded also the proof of Lemma 5.9 holds. Thus∫

R

f̂(ξ)e2πixξϕ(−εξ) dξ =

∫
R

∫
R

f(y)e−2πiyξ dy e2πixξϕ(−εξ) dξ

Lemma 5.9
=

∫
R

f(y)

∫
R

(
e2πixξϕ(−εξ)

)
e−2πiyξ dξ dy

=

∫
R

f(y)F
(
e2πixξϕ(−εξ)

)
(y) dy

Lemma 5.6:(vi),(viii)
=

∫
R

f(y) ϕ̂ε(x− y) dy

= (f ∗ ϕ̂ε)(x).

(5.17)

When dealing with convolutions, we showed in Theorem 3.7 that

(f ∗ ϕ̂ε)(x) → f(x) in L1(R). �

If f̂ ∈ L1(R), then the inversion formula f(x) =
∫
R
f̂(ξ)e2πixξ dξ

works as such. This can be seen by adding a condition ϕ(0) = 1
for the bumb function and passing to limit in (5.17) using Lebesgue’s
dominated convergence on the left.
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5.3. On L2.

Theorem 5.18. Let f ∈ L2(Rn), and ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0.

Then there exists a limit which we denote by f̂ such that

lim
j→∞

||ϕ̂j − f̂ ||2 = 0.

The function f̂ is called a Fourier transform of f ∈ L2(R).

Proof. First of all, there exists a sequence ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0

because S(R) is dense in L2(R): We have already seen that C0(R)
is dense in L2(R). On the other hand, if f ∈ C0(R) then C∞

0 (R) ∋
f ∗ ϕε → f in L2(R), where ϕε is a standard mollifier, and we see that
C∞

0 (R) is dense in L2(R), which is contained in S(R).
Then by Plancherel’s theorem

||ϕ̂j − ϕ̂k||2 = ||ϕj − ϕk||2 → 0

as j, k → ∞ and thus ϕ̂j, j = 1, 2, . . . is a Cauchy sequence. Since

L2(R) is complete, ϕ̂j converges to a limit, which we denote by f̂ .
Next we show that the limit is independent of the approximating

sequence. Let φj be another sequence such that

φj → f in L2(R)

and let g ∈ L2(R) be the limit

φ̂j → g in L2(R).

Then

0
ϕj , φj → f

= lim
j→0

||φj − ϕj||2
Plancherel

= lim
j→0

||φ̂j − ϕ̂j||2 = ||g − f̂ ||2. �

Similarly we obtain a unique inverse Fourier transform of any L2-
function.

We state separately a result from the previous proof.

Corollary 5.19 (Plancerel in L2). If f ∈ L2(R), then

||f ||2 = ||f̂ ||2.

Proof.

||f ||2 = lim
j→∞

||ϕj||2 = lim
j→∞

||ϕ̂j||2 = ||f̂ ||2.

�
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We also obtain formulas for calculating the Fourier transform and
the inverse Fourier transform for L2-functions. Observe that in the
corollary below, χB(0,R)f ∈ L1(R)∩L2(R) by Hölder’s inequality since∫

B
|f | dx ≤

( ∫
B
|f |2 dx

)1/2
.

Corollary 5.20. If f ∈ L2(R), then

f̂(ξ) = lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

and

f(x) = lim
R→∞

∫
{|ξ|<R}

f̂(ξ)e2πixξ dξ.

Proof. Recall that if f ∈ L2(R), then χB(0,R)f → f in L2(R) by
Lebesgue’s monotone/dominated convergence theorem. Let us denote

lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx = lim
R→∞

F (fχB(0,R)).

The convergence F (fχB(0,R)) → f̂ follows from the Plancherel’s theo-
rem, because the right hand side of∣∣∣∣∣∣F (fχB(0,R))− f̂

∣∣∣∣∣∣
2
=

∣∣∣∣fχB(0,R) − f
∣∣∣∣

2

can be made as small as we please by choosing R large enough. The
proof of the inversion formula is similar. �

5.4. On Lp, 1 < p < 2. Fourier transform is a linear operator and
thus for f ∈ Lp(R), 1 < p < 2, we have

f = f1 + f2 = fχ{|f |>λ} + fχ{|f |≤λ} ∈ L1 + L2.

we have f̂ = f̂1 + f̂2 ∈ L∞ + L2 and

f̂(ξ) = lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

can also be utilized here. However by a special case of the Riesz-Thorin
interpolation theorem we obtain even better. We omit the proof.

Theorem 5.21 (Riesz-Thorin interpolation). Let T be a linear opera-
tor

T : L1(R) + L2(R) → L∞(R) + L2(R)

such that

||Tf1||∞ ≤ C1 ||f1||1
for every f1 ∈ L1(R), and

||Tf2||2 ≤ C2 ||f2||2 ,
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for every f2 ∈ L2(R). Then

||Tf ||p′ ≤ C
1−2/p′

1 C
2/p′

2 ||f ||p ,
where 1/p+ 1/p′ = 1.

Corollary 5.22 (Hausdorff-Young inequality). If f ∈ Lp(R), 1 ≤ p ≤
2, then f̂ ∈ Lp′(R) and

||f̂ ||p′ ≤ ||f ||p .

Proof. By Lemma 5.6, we have
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

∞
≤ ||f ||1 and by Plancherel’s

theorem
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

2
= ||f ||2. Thus we can use Riesz-Thorin interpolation.

�
Observe however that obtaining f from f̂ by using

f̂(ξ) = lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

is a nontrivial problem. For example in the case p = 1 the Fourier
transform of χB(0,R) is not in L1 as shown in Example 5.3, it does not
satisfy the assumptions of Theorem 5.16, and thus our results do not
imply the convergence. In higher dimensions there is no, in general,
the convergence in Lp, p ̸= 2, as R → ∞.14.10.2010


