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Example 5.3 (Warning). The Fourier transform is well defined for
f ∈ L1(R) because ∣∣f(x)e−2πixξ

∣∣ = |f(x)|

which is integrable. However, nothing guarantees that f̂(ξ) would be
in L1(R). Indeed let f : R → R, f(x) = χ{−1/2,1/2}(x), which is in
L1(R). Then for ξ ̸= 0,

f̂(ξ) =

∫
R

f(x)e−2πixξ dx

=

∫ 1/2

−1/2

e−2πixξ dx

=

∫ 1/2

−1/2

cos(2πxξ) dx− i

∫ 1/2

−1/2

sin(2πxξ) dx︸ ︷︷ ︸
=0

=
/1/2

−1/2

sin(2πxξ)

2πξ

=
2 sin(πξ)

2πξ
=

sin(πξ)

πξ
,

but sin(πξ)
πξ

is not integrable (the integral of the positive part = ∞ and

the integral over the negative part = −∞ over any interval (a,∞]).
Later, we would like to write

F−1f̂(ξ) =

∫
R

f̂(x)e2πixξ dx

for the inverse Fourier transform, which however makes no sense as
such for the function that is not integrable.

The problem described in the example above does not appear for
the functions that are smooth and decay rapidly at the infinity, the so
called Schwartz class. Later we use the functions on the Schwartz class
to define Fourier transform in L2 and further in Lp.

Definition 5.4. A function f is in the Schwartz class S(R) if

(i) f ∈ C∞(R)
(ii)

sup
x∈R

|x|k
∣∣∣∣dlf(x)dxl

∣∣∣∣ < ∞, for every k, l ≥ 0.

In other words, every derivative decays at least as fast as any
power of |x|.
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Example 5.5. The standard mollifier (as well as all of C∞
0 (R))

φ =

{
exp

(
1

|x|2−1

)
, x ∈ (−1, 1)

0, else.

is in S(R). Also for the Gaussian

f(x) = e−x2 ∈ S(R).

Indeed,

df(x)

dx
= −2xe−x2

= −2xf(x)

and so forth so that all the derivatives will be of the form

polynomial · f(x)

and

|x|k |polynomial · f(x)| ≤ |polynomial| |f(x)| .

Thus as e−x2
decays faster than any polynomial, we see that e−x2 ∈

S(R).

Lemma 5.6. Suppose that f ∈ S(R). Then

(i) ̂(αf + βg) = αf̂ + βĝ.

(ii)
(̂
df
dx

)
(ξ) = 2πiξf̂(ξ).

(iii) df̂
dξ
(ξ) = ̂(−2πixf)(ξ),

(iv) f̂ is continuous,

(v) ||f̂ ||∞ ≤ ||f ||1,
(vi) f̂(εx) = 1

ε
f̂( ξ

ε
) = f̂ε(ξ), ε > 0,

(vii) ̂f(x+ h) = f̂(ξ)e2πihξ,

(viii) ̂f(x)e2πihx = f̂(ξ − h),

Proof. (i) Integral is linear.
(ii)

̂( df

dx

)
(ξ) =

∫
R

(
df

dx

)
e−2πixξ dx

integrate by parts
= −

∫
R

f(x)
d

dx
e−2πixξ dx

= 2πiξ

∫
R

f(x)e−2πixξ dx = 2πiξf̂(ξ).
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(iii)

df̂

dξ
(ξ) =

d

dξ

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)
d

dξ
e−2πixξ dx

= −
∫
R

f(x)2πixe−2πixξ dx

= ̂(−2πixf)(ξ).

The interchange of the derivative and integral is ok as f ∈ S(R):
in the detailed proof one can write down the difference quotient
and estimate it by definition of S(R).

(iv)

lim
h→0

f̂(ξ + h) = lim
h→0

∫
R

f(x)e−2πix(ξ+h) dx

DOM, |f(x)e−2πix(xi+h)|≤|f(x)|
=

∫
R

f(x) lim
h→0

e−2πix(ξ+h) dx = f̂(ξ).

(v) ∣∣∣∣∫
R

f(x)e−2πixξ dx

∣∣∣∣ ≤ ∫
R

|f(x)|
∣∣e−2πixξ

∣∣︸ ︷︷ ︸
=1

dx.

(vi)

f̂(εx) =

∫
R

f(εx)e−2πixξ dx

y=εx,dy=εdx
=

1

ε

∫
R

f(y)e(−2πiyξ)/ε dy =
1

ε
f̂(

ξ

ε
).

(vii)

̂f(x+ h) =

∫
R

f(x+ h)e−2πixξ dx

y=x+h, dy=dx
=

∫
R

f(y)e−2πi(y−h)ξ dy = f̂(ξ)e2πihξ.

(viii)

̂f(x)e2πihx =

∫
R

f(x)e2πihxe−2πixξ dx

=

∫
R

f(x)e−2πix(ξ−h) dx = f̂(ξ − h).

�
Example 5.7. If

f(x) = e−πx2
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then its Fourier transform is

f̂(ξ) = e−πξ2

By using complex integration around a rectangle and recalling that e−πz2

is analytic function, we could calculate
∫
R
e−πx2

e−2πixξ dx directly by
using complex integration. We however follow a strategy that does not
require complex integration and observe that f(x) = e−πx2

solves the
differential equation {

f ′ + 2πxf = 0

f(0) = 1.

By taking Fourier transform of f ′ + 2πxf = 0 and using Lemma 5.6,
we obtain

0 = F (f ′ + 2πxf) = f̂ ′ + 2̂πxf = 2πiξf̂ − f̂ ′

i
= i(2πξf̂ + f̂ ′).

And

f̂(0) =

∫
R

e−πx2

dx = 1

because (∫
R

e−πx2

dx
)2

=

∫
R

∫
R

e−πx2

e−πx2

dx dy

=

∫ ∞

0

∫
∂B(0,r)

e−πr2 dr dS

=

∫ ∞

0

2πre−πr2 dr

= −
/∞

0
e−πr2 = 1.

Thus f̂ satisfies the same differential equation and the uniqueness of
such a solution implies the claim.

Theorem 5.8. If f ∈ S(R), then

(i) f̂ ∈ S(R) (similar result does not hold in L1),
(ii)

F−1(f) :=

∫
R

f(ξ)e2πixξ dξ ∈ S(R)

whenever f ∈ S(R).
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Proof. (i) Recall that by Lemma 5.6, f̂ is continuous and for any pair
of integers k, l

F

(
1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
F

((
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)kF

(
(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)k

( d

dξ

)l

f̂(ξ)

= ξk
( d

dξ

)l

f̂(ξ).

Therefore

|ξ|k
∣∣∣∣( d

dξ

)l

f̂(ξ)

∣∣∣∣ = ∣∣∣∣ξk( d

dξ

)l

f̂(ξ)

∣∣∣∣
=

∣∣∣∣∣F
(

1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)∣∣∣∣∣
Lemma 5.6

≤

∣∣∣∣∣
∣∣∣∣∣ 1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

∣∣∣∣∣
∣∣∣∣∣
1

< ∞

so that f̂ ∈ S(R).
(ii) This follows from the previous by a change of variable.

�
Lemma 5.9. If f, g ∈ S(R), then∫

R

f̂(x)g(x) dx =

∫
R

f(x)ĝ(x) dx

Proof. ∫
R

f̂(y)g(y) dy =

∫
R

∫
R

f(x)e−2πixy dx g(y) dy

Fubini
=

∫
R

f(x)

∫
R

e−2πixyg(y) dy dx

=

∫
R

f(x)ĝ(x) dx. �

Next one of the main results of the section: inversion formula for the
rapidly decreasing functions:

Theorem 5.10 (Fourier inversion). If f ∈ S(R), then

f(x) =

∫
R

f̂(y)e2πixξ dξ,

or with the other notation f(x) = F−1(F (f)) = F−1(f̂).
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Proof. First we show that

f(0) =

∫
R

f̂(y) dy. (5.11)

To see this let ϕ ∈ S(R) and define h(y) = f(−y). Then ϕ̂ ∈ S(R)
and by the convergence result Theorem 3.12 (and the remark after the
theorem)

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

(h ∗ ϕ̂ε)(0) = h(0) = f(0).

On the other hand, by Lemma 5.6 and the previous lemma

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

∫
R

ĥ(−y)ϕ(εy) dy

h(−y)=f(y)
= lim

ε→0

∫
R

f̂(y)ϕ(εy) dy.

Let ϕ(x) = e−πx2
, then

lim
ε→0

ϕ(εx) = 1,
∣∣∣f̂(y)ϕ(εy)∣∣∣ ≤ ∣∣∣f̂(ξ)∣∣∣ .

It follows that

lim
ε→0

∫
R

f̂(y)ϕ(εy) dy
DOM
=

∫
R

f̂(y) lim
ε→0

ϕ(εy)︸ ︷︷ ︸
=1

dy

proving (5.11). Then defining g(x) := f(x+h) and using from Lemma 5.6

the fact that ĝ(y) = ̂f(x+ h) = f̂(y)e2πhy and observing g(0) = f(h),
the equation (5.11) implies

f(h) =

∫
R

f̂(y)e2πihy dy,

which proves the claim. �
12.10.2010

Corollary 5.12. Let f ∈ S(R). Then by taking consecutive Fourier
transforms, we obtain

f(x)
F→ f̂(ξ)

F→ f(−x)
F→ f̂(−ξ)

F→ f(x).

In particular, F−1(f̂) = F (F (F (f̂))).

Proof. The second arrow:∫
R

f̂(ξ)e−2πixξ dξ
ξ=−ζ
=

∫
R

f̂(−ζ)e2πixζ dζ

=

∫
R

∫
R

f(y)e−2πiy(−ζ) dy e2πixζ dζ

y=−z
=

∫
R

∫
R

f(−z)e−2πizζ dz e2πixζ dζ = f(−x).

The other arrows are easier. �


