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Fundamental problem of applied probability

Ef(X(t)) = ?

What if X is complex?
» Asymptotics
» Simulation

» Bounds




Stochastic bounds

Let Xy and X; be (irreducible, positive recurrent) Markov
processes with stationary distributions p1 and po.

Problem
Can we show that py <y po without explicitly knowing 11 or pp?

Recall that p; is stochastically less than pp, denoted g <g po, if
f fdu < f f duy for all positive increasing f.



Sufficient condition

Theorem (Whitt 1986; Massey 1987)

A sufficient condition for 1 <g pp is that the transition rate
kernels of X1 and Xy satisfy for all x < y:

> Qi(x,B) < @y, B) for all upper sets B such that x,y ¢ B
> Q(x,B) > Quy, B) for all lower sets B such that x,y ¢ B

The above condition is not sharp in general. Can we do any better?
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Coupling

A coupling of random elements X and Y is a bivariate random
element (X, Y') such that:

» X has the same distribution as X

» Y has the same distribution as Y

A coupling of probability measures i on S; and v on S, is
a probability measure A on S1 x S having marginals p and v.

Remark
(X,Y) is a coupling of X and Y if and only if
P((X,Y) € ) is a coupling of P(X € ) and P(Y € ).



Stochastic relations

Any meaningful distributional relation should have a
coupling counterpart (Hermann Thorisson).



Stochastic relations

Any meaningful distributional relation should have a
coupling counterpart (Hermann Thorisson).

S Denote
» x ~y, if (x,y) ER

> X ~g Y, if there exists a coupling
(X,Y) of X and Y such that

~ A

X ~Y almost surely.

> 1, ~g U, if there exists a coupling A
of v and v such that A(R) = 1.

S

Rst = {(1, V) : o ~gt v} is the stochastic relation generated by R.

» For Dirac measures, dx ~g; 0, if and only if x ~ y.



Functional characterization

Theorem (Strassen 1965; L. 2008+)
The following are equivalent:
(i) prosev
(i) w(B) < v(B™) for all compact B C 5;

(iii) [s, fdu < [s £ dv for all upper semicontinuous compactly
supported f : 51 — R,

B~ = leeB{X2 €S :ix~ X2}

(G f7(x)= sup f(x1).

X1:X1~X




Functional characterization

Theorem (Strassen 1965; L. 2008+)
The following are equivalent:
(i) st v
(i) w(B) < v(B™) for all compact B C 5;
(iii) [s, fdu < [s £ dv for all upper semicontinuous compactly
supported f : 51 — R,

Remark
If R is an order (reflexive and transitive) relation on S, then

conditions (ii) and (iii) are equivalent to
(ii") w(B) < v(B) for all measurable upper sets B,
(iii") [sfdu < [of dv for all increasing measurable f : S — Ry

(Strassen 1965; Kamae, Krengel, O'Brien 1977)



Examples

» Stochastic equality. Let =¢ be the stochastic relation
generated by the equality =. Then X =g Y if and only if X
and Y have the same distribution.

» Stochastic e-distance. Define x ~ y by |[x — y| <e. Two real
random variables satisfy X =~ Y if and only if for all x the
corresponding c.d.f.’s satisfy Fy(x —€) < Fx(x) < Fy(x + ¢).

» Stochastic induced order. Define x <"2 y by f(x) < g(y).
Then p </ v if and only if u(F~2((a, 0))) <
v(g7((cr, ))) for all real numbers « (Doisy 2000).
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Monotonicity vs. relation-preservation

Order relations ~» monotone functions f:
x<y = f(x) <f(y)

General relations ~~ relation-preserving pairs of functions (f, g):
x~y = f(x)~aly)

Stochastic relations ~» stochastically relation-preserving pairs of
probability kernels (random functions) (F, G):

x~y = F(x,)) ~s Gy, )



Preservation of stochastic relations

A pair of probability kernels (P1, Pp) stochastically preserves a
relation R, if

x1~xp = Pi(x1,-) ~st Pax2,-)
or equivalently,

p1 ~st 2 = H1P1 ~g o Po.



Preservation of stochastic relations

A pair of probability kernels (P1, Pp) stochastically preserves a
relation R, if

x1~xp = Pi(x1,-) ~st Pax2,-)
or equivalently,

p1 ~st 2 = H1P1 ~g o Po.

Theorem (Zhang 1998; L. 2008+)

A pair (P1, P;) stochastically preserves R if and only if there exists
a probability kernel P on S1 X Sy such that:

(i) P(x,-) couples Pi(x1,-) and Py(x2,-) for all x = (x1,x2).
(i) xe R = P(x,R)=1.



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R, if
x~y = X(x,t) ~g Y(y,t) forall t,
or equivalently,

prg v = X(p,t) ~g Y(v, t) forall t.



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R, if
x~y = X(x,t) ~g Y(y,t) forall t,
or equivalently,

prg v = X(p,t) ~g Y(v, t) forall t.

Remark
A Markov process is stochastically monotone, if

x<y = X(x,t)<g X(y,t) forall t.



Relation-preserving Markov processes

Let X7 and X5 be discrete-time Markov processes with transition
probability kernels P; and P5.

Theorem (L. 2008+)
The following are equivalent:
(i) X1 and Xy stochastically preserve the relation R.
(i) P1(x1,B) < Pa(x2, B™) for all x; ~ xo and compact B C S;.

(iii) There exists a Markovian coupling of X1 and X, for which R
is invariant.



Relation-preserving Markov processes
Let X7 and X5 be discrete-time Markov processes with transition
probability kernels P; and P5.
Theorem (L. 2008+)
The following are equivalent:
(i) X1 and Xy stochastically preserve the relation R.
(i) P1(x1,B) < Pa(x2, B™) for all x; ~ xo and compact B C S;.

(iii) There exists a Markovian coupling of X1 and X, for which R
is invariant.

Remarks
» If R is an order, (ii) can be replaced by
(ii") Pi(x1, B) < Py(x2, B) for all x; < x» and upper sets B
(Kamae, Krengel, O'Brien 1977).

» An analogous result holds for nonexplosive Markov jump
processes, generalizing the result of Whitt and Massey.
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Stochastic subrelations

Recall our starting point:

Problem

Can we show that the stationary distributions 111 and o of
Markov processes X1 and X, satisfy u1 <st p2 without explicitly
knowing 1 or po?
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Stochastic subrelations

Recall our starting point:

Problem

Can we show that the stationary distributions 111 and o of
Markov processes X1 and X, satisfy u1 <st p2 without explicitly
knowing 1 or po?

» The sufficient condition of Whitt and Massey essentially says
that X7 and X, stochastically preserve the order relation
Re={(x,y) i x <y}

> A less stringent sufficient condition: Show that X; and X5
stochastically preserve a nontrivial subrelation of R<.



Subrelation algorithm

Given a closed relation R and continuous probability kernels Py
and Ps, define a sequence of relations by R(®) = R,

R(’H‘l) = {(X,y) S R(n) . (Pl(X7 ')7P2(y7 )) € Rgtn)}’

and let R* =72, R(".



Subrelation algorithm

Given a closed relation R and continuous probability kernels Py
and Ps, define a sequence of relations by R(®) = R,

R = {(x.y) € RO (Palx, ). Paly, ) € RO).

and let R* =72, R(".
Theorem (L. 2008+)

The relation R* is the maximal closed subrelation of R that is
stochastically preserved by (P1, P2). Especially, the pair (Py, P>)
preserves a nontrivial subrelation of R if and only if R* # ().

Remark
A modified algorithm works for Markov jump processes.



Application: Multilayer loss network

Multiclass loss network with
» M)y servers dedicated to class-k jobs (layer 1)

» N multiclass servers processing the overflow traffic (layer 2)

X1,1

Ak




Application: Multilayer loss network

Modified system Y = (Y1,17 ce Yl,K; Y271, R Y27K)
» One class-1 server replaced by a shared server
» Can we show that E); , Xix < ED ., Yi in steady state?

Define the relation x ~ y by th Xik < Zi,kYi,k-
» ~ is not an order (different state spaces)
» X and Y do not preserve ~g;

» But maybe (X, Y) preserves some subrelation of ~?



Application: Multilayer loss network

Example

Two customer classes
» Server configuration: My =3, M, =2, N =2
> Arrival rates A1 =1, A\ =2

» Service rate p =1

How many iterations do we need to compute R..?
» X has 72 possible states
» Y has 90 possible states



Application: Multilayer loss network
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Application: Multilayer loss network

What if we started with a stricter relation?

Redefine x ~ y by



Application: Multilayer loss network

R S+ FH
Y is.osadl i dRT AR
° s iR ARE gP
U e e cadl o RRE AR
SIS BT ik
il
7. cadl s dRIE SRIE: SRR
" i

0

o T B OB
ﬁ: .‘. §.'



Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network

Mﬁg

Wit

085" 8% Sl 8o c o000 0000 0o o

e % BEGimin
m MMW ﬁﬁ&

M_m%w

90

2 1

I
70

.
60

50

40

30

20

10



Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network

e

L
o

™

o (=} o o o
(=2} @ ~ o n

A

I
70

.
60

.
50

I
40

30

20

10



Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network
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Application: Multilayer loss network

Theorem (Jonckheere & L. 2008)

The processes X and Y stochastically preserve the relation
R={(x,y): |x —y| € A}, where

A ={0, &, & —e11, 2e — €11}
Especially, the stationary distributions of the processes satisfy
Y= 1 <q [X] <t | Y],
and

X11 Zst Y11,
Xik =st Y1k forall k #1,

ZXZ,k <st Z Yo k.
K K



Application: Load balancing

Xy (t) X{B(t)
— IO O
G .
Mt
Xa(t) N X3 B(t)

Common sense: E(X[B(t) + XIB(t)) < E(X1(t) + Xa(t))



Application: Load balancing

Xy (t) X{B(t)
— IO O
G .
Mt
Xa(t) N X3 B(t)

Common sense: E(X[B(t) + XIB(t)) < E(X1(t) + Xa(t))

The rate kernel pair (Q'B, @) does not stochastically preserve:
p Rnat — {(x,y) x1 <y, X0 < y2}
> RS = {(x,y) : x| < |y|}, where |x| = x1 + xo

How about a subrelation of RS%2?



Application: Load balancing

Theorem (L. 2008+)
The subrelation algorithm started from R*"™ yields

R ={(x,y) i x| < |yl and x1 Vxo < y1 Vyo + (yi Ays — n) "}
1
R*={(x,y): x| <yl and x1 V xa < y1 V ya} .

Especially, (Q“B, Q) stochastically preserves the relation R*.

Remark

» R* is the weak majorization order on Zi

» X ~% Y if and only if Ef(X) < Ef(Y) for all coordinatewise
increasing Schur-convex functions f (Marshall & Olkin 1979).



Conclusions

Algorithmic probability
» Computational methods for analytical results
» Comparison without ordering
» State space reduction

Open problems:
» Numerical methods for finite Markov chains
» Subrelations versus dependence orderings
» Diffusions, Feller processes, martingales, ...



Discussion: Coupling vs. mass transportation

W, = inf Ad
o) = int | 0l ) Me)

» K(u,v) is the set of couplings of 1 and v
¢

» W, is a Wasserstein metric, if ¢ is a metric.
> 1~ v if and only if Wy(u,v) =0 for ¢(x1,x2) = 1(x1 # x2).

(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)
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