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Warm-up

Problem
For which integers n,

1 n
cos(2v2mn) + 1+ (——) >07

According to Bell & Gerhold (2006)
» The inequality holds for n < 10°

» Unknown what happens for large n
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Outline

| Loss network with with monoskill and multiskill servers

» Repacking vs. no-repacking

» Stochastic comparison of throughput

Il Multiclass Erlang loss model

» Time-dependent mean throughput
» Deterministic dynamical system

» Coupling

[1l Some extensions
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Loss network with monoskill and multiskill servers
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Applications

» Call centers

» Customer = Calling customer

» Monoskill server = English or Gaelic speaking agent
» Multiskill server = Bilingual agent
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Applications

» Call centers

» Customer = Calling customer

» Monoskill server = English or Gaelic speaking agent
» Multiskill server = Bilingual agent

> Telecom operators

» Customer = Fixed bit-rate data stream

» Monoskill server = Channel of bandwidth in own network
» Multiskill server = Channel of bandwidth in shared link
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Applications

» Call centers

» Customer = Calling customer

» Monoskill server = English or Gaelic speaking agent
» Multiskill server = Bilingual agent

> Telecom operators

» Customer = Fixed bit-rate data stream

» Monoskill server = Channel of bandwidth in own network
» Multiskill server = Channel of bandwidth in shared link

» Other

» Customer = Any object requesting a single (atomic) resource
» Monoskill server = Any dedicated resource
» Multiskill server = Any shared resource
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Loss network with K customer classes

» M, monoskill servers dedicated to class k

» N multiskill servers

» State vector X = (Xi,1,..., X1,k: X2,1,. ., X2,K)

(A1, p1)

(Ak» k)
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Performance

Measure workload in bits
» Each class-k customer brings exp(uk) bits of work

» Each server processes work at unit rate (1 bit/s)
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Performance

Measure workload in bits
» Each class-k customer brings exp(uk) bits of work

» Each server processes work at unit rate (1 bit/s)

Input:
» Rate of arriving class-k work (bit/s): Ax/puk
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Performance

Measure workload in bits
» Each class-k customer brings exp(uk) bits of work

» Each server processes work at unit rate (1 bit/s)

Input:
» Rate of arriving class-k work (bit/s): Ax/puk

Throughput:
» Rate of processed work (bit/s):

1
jim —/0 IX(s)| ds

t—oo t

> IX(0)] = 22k (Xak(8) + Xo k(1))



Steady-state analysis

Assume
» Interarrival times ~ exp(\k)
» Service times ~ exp(uk)
» All independent
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Steady-state analysis

Assume
» Interarrival times ~ exp(\k)
» Service times ~ exp(uk)
» All independent

The process X = (X1,1,..., X1,k; X2,1,
» is Markov

» has finite state-space

oo Xo.K)
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Steady-state analysis

Assume
» Interarrival times ~ exp(\k)
» Service times ~ exp(uk)
» All independent

The process X = (X1,17 ey Xl,K; X2,1, . ,XQ,K)
> is Markov

» has finite state-space

= Steady-state distribution of X solvable by matrix inversion
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Analytical complexity

Example (Simplest nontrivial case)

» Two traffic classes
> M1 =1, M2 =0

» One multiskill server
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Analytical complexity

Example (Simplest nontrivial case)

» Two traffic classes
> M1 =1, M2 =0

» One multiskill server

= P(X =0) = ¢/G, where
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Analytical complexity

Example (Simplest nontrivial case)
» Two traffic classes
> M1 =1, M2 =0

» One multiskill server

= P(X =0) = ¢/G, where

co = 2X\3 2 + MAapipe + 4Mipdpe + 2hapdpe + 2ui o
+ 2\ pius + 2p3 3,

G = A o1 + MA3u1 + 5X3hop? 4+ 30303 + 6 \oud 4+ 20313
+ 2o 4+ Mo + Xopo + A3 10 + AN2 hopa o + TA2 02 1p
+ TAdopipa + 6A1 3 2 + 4dopipa + 2 p2 + A s
+ 3\ pa s + AN i s + 203 5 -
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Computational complexity

Example (Small system)
» Two traffic classes
> M1 =9, M2 =9
» N=9
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Computational complexity

Example (Small system)
» Two traffic classes
> M1 =9, M2 =9
» N=9

= Generator matrix has over 30 million entries
= Not invertible



Computational complexity

Example (Small system)

» Two traffic classes
> M1 = 9, M2 =9
» N=9

= Generator matrix has over 30 million entries
= Not invertible

Number of states proportional to Mj - - - MxNK
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Approximative methods

Parametric models for the overflow processes

» Approximate overflow process with a Poisson process
(Fredericks; 1980)
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Approximative methods

Parametric models for the overflow processes

» Approximate overflow process with a Poisson process
(Fredericks; 1980)

» Hyperexponential decomposition (Franx, Koole, Pot; 2006)
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Approximative methods

Parametric models for the overflow processes

» Approximate overflow process with a Poisson process
(Fredericks; 1980)

» Hyperexponential decomposition (Franx, Koole, Pot; 2006)

Analytically provable bounds
» Find a simpler system that behaves better/worse

» = Upper/lower bound for performance
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Approximative methods

Parametric models for the overflow processes

» Approximate overflow process with a Poisson process
(Fredericks; 1980)

» Hyperexponential decomposition (Franx, Koole, Pot; 2006)

Analytically provable bounds
» Find a simpler system that behaves better/worse
» = Upper/lower bound for performance

» Try to perturb the system slightly



Perturbed system
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Perturbed system

o000

7//4,

0o (o0 |

Blocking of blue customers can be avoided by redirecting one red
customer
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Perturbed system

oo [ofo}

Blocking of blue customers can be avoided by redirecting one red
customer
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Repacking policy

Redirect customers from multiskill to monoskill servers, as soon as
possible

» Service interruptions (for memoryless customers)
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Repacking policy

Redirect customers from multiskill to monoskill servers, as soon as
possible

» Service interruptions (for memoryless customers)
! __ / !/ . / !
» Markov process X' = (X] 1, ... X1 ki Xa10- - 7X2,K)
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Repacking policy

Redirect customers from multiskill to monoskill servers, as soon as
possible

» Service interruptions (for memoryless customers)
> Markov process X' = (X{ 1,..., X] ki X531, -+ X3 k)
» Throughput

1 t
lim _/ IX'(s)| ds
0

t—oo t
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Steady-state analysis of the system with repacking
Define Y/ = (Y{,..., Yj) with Y, = X{ , + XJ ,

> Arriving customer is accepted if and only if

Y| <M +---+Mx+ N
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Steady-state analysis of the system with repacking
Define Y/ = (Y{,..., Yj) with Y, = X{ , + XJ ,

> Arriving customer is accepted if and only if

Y| <M +---+Mg+N

» = Y'is a reversible Markov process with

P(Y' =x)=G[] (Ak/ i)™
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Steady-state analysis of the system with repacking
Define Y/ = (Y{,..., Yj) with Y, = X{ , + XJ ,

> Arriving customer is accepted if and only if

Y| <M +---+Mg+N

» = Y'is a reversible Markov process with

P(Y' =x)=G[] (Ak/ i)™

» = Easy numerical computation of throughput:

1 t
lim -/ 1X(s)| ds = E|X'| = E|Y/|
0

t—oo t
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Markov reward approach (1/4)

How to prove E r(X) < Er(X'), that is

D ) m(x) <> r(x)w'(x),

X

without knowing 7 and «'?
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Markov reward approach (1/4)

How to prove E r(X) < Er(X'), that is

D ) m(x) <> r(x)w'(x),

X

without knowing 7 and «'?

Markov reward approach (van Dijk; 1998)
> Prove that E* [ r(X(s)) ds < EX [; r(X'(s)) ds for all t
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Markov reward approach (1/4)

How to prove E r(X) < Er(X'), that is
D ) m(x) <> r(x)w'(x),

without knowing 7 and «'?

Markov reward approach (van Dijk; 1998)
> Prove that E* [ r(X(s)) ds < EX [; r(X'(s)) ds for all t
» Divide by t and let t — o0
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Markov reward approach (1/4)

How to prove E r(X) < Er(X'), that is

D ) m(x) <> r(x)w'(x),

X

without knowing 7 and «'?

Markov reward approach (van Dijk; 1998)
> Prove that E* [ r(X(s)) ds < EX [; r(X'(s)) ds for all t
» Divide by t and let t — o0

> Reduce the problem to discrete time using uniformization
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Markov reward approach (2/4)

Uniformization
» Markov chain Y}, with transition matrix P, =/ + 71Q

» Poisson process N with rate
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Markov reward approach (2/4)

Uniformization
» Markov chain Y}, with transition matrix P, =/ + 71Q

» Poisson process N with rate

[e o]

E oY) = > e O Exg(v)

n=0
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Markov reward approach (2/4)

Uniformization
» Markov chain Y}, with transition matrix P, =/ + 71Q
» Poisson process N with rate
o
(yt)”
EX Y — ~t (’Y Ex Y
o(Ya(r)) r;oe o Ere(Ya)
o0
_ vt)" _
=3 O Q)0
n=0 ’

= "%(x) = EX¢(X(1))
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Markov reward approach (2/4)

Uniformization
» Markov chain Y}, with transition matrix P, =/ + 71Q
» Poisson process N with rate
o
(yt)”
EX Y — ~t (’Y Ex Y
o(Ya(r)) r;oe o Ere(Ya)
o0
_ vt)" _
=3 O Q)0
n=0 ’

= e'(x) = E¥ ¢(X(t))
> = X(t) =st Ya(r)
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Markov reward approach (3/4)

Let Y, be the uniformized Markov chain for X'(t), then

EXr(X() =) e—vt”% EXr(Y,)
n=0 ’

EXr(X'(6) =) e‘”t% EX r(Y,)
n=0

ra
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Markov reward approach (3/4)

Let Y, be the uniformized Markov chain for X'(t), then
o0
—ye(7t)"
Er(X(1) =) e vtT EX r(Y,)

n=0
oo

X ! _ — t(’yt)n X !
EX r(X'(t)) _Zoe M- Er(Y))
Sufficient condition for E r(X) < E r(X’):

EXr(Y,) <E*r(Y,) foralln
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Markov reward approach (4/4)

Cumulative reward (similarly for X')

N t _100 e £)n
E/Or(X(s))ds:fy Ze %

n=1

(

n—1

EX) " r(Ye)

k=0

)
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Markov reward approach (4/4)

Cumulative reward (similarly for X')

Ex/0 r(X(s))ds =1 Z e_7t% (Ex 2_: r(Yk)>

n=1 k=0
Define
n—1 n—1
Va(x) =E*Y r(Yi) and Vj(x) =E*>_ r(¥})
k=0 k=0
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Markov reward approach (4/4)

Cumulative reward (similarly for X')

Ex/0 r(X(s))ds =1 Z e_7t% <Ex 2_: r(Yk)>

n=1 k=0
Define
n—1 n—1
Va(x) =E*Y r(Yi) and Vj(x) =E*>_ r(¥})
k=0 k=0

Sufficient condition for E r(X) < E r(X’)

Va(x) < Vi(x) foralln
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Comparison of throughput (1/3)

Theorem (George, Jonckheere, Leskeld; 2005)
Assume N A

- e Lt

1 KK

Then repacking improves the steady-state mean throughput:

E|X| < E|X|.
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Comparison of throughput (2/3)

Proof.
Markov reward approach for

Vi) = [ " 1X(s)] ds



Comparison of throughput (2/3)

Proof.
Markov reward approach for

Vi(x) = EX /0 IX(s)| ds

1. Discretize time using uniformization
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Comparison of throughput (2/3)

Proof.

Markov reward approach for
t
Vi) = [ 1X(9)] ds
0

1. Discretize time using uniformization
2. Show that V;(x) < Vi(x + exk)
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Comparison of throughput (2/3)

Proof.

Markov reward approach for
t
Vi) = [ 1X(9)] ds
0

1. Discretize time using uniformization
2. Show that V;(x) < Vi(x + exk)
3. Conclude that Vi(x) < Vi(x — ek + €1,k)
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Comparison of throughput (2/3)

Proof.
Markov reward approach for

Vi) = [ " 1X(s)] ds

1. Discretize time using uniformization

2. Show that Vi(x) < Vi(x + ex4)

3. Conclude that Vi(x) < Vi(x — ek + €1,k)
4. Conclude that Vi(x) < V{(x)

N\
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Comparison of throughput (2/3)

Proof.

Markov reward approach for

A

Vi) = [ " 1X(s)] ds

Discretize time using uniformization

Show that Vi(x) < Vi(x + exx)

Conclude that Vi(x) < Vi(x — ex i + €1,)
Conclude that V;(x) < V{(x)

Divide by t and take t — oo
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Comparison of throughput (2/3)

Proof.

Markov reward approach for

A

Vi) = [ " 1X(s)] ds

Discretize time using uniformization

Show that Vi(x) < Vi(x + exx)

Conclude that Vi(x) < Vi(x — ex i + €1,)
Conclude that V;(x) < V{(x)

Divide by t and take t — oo
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Comparison of throughput (3/3)

Unnatural " stability” condition
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Comparison of throughput (3/3)

Unnatural " stability” condition

How to get rid of the condition?
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Comparison of throughput (3/3)

Unnatural " stability” condition

How to get rid of the condition?
> Key step: Vi(x) < Vi(x+ ex k)

/e ﬁ\#
\§&



Comparison of throughput (3/3)

Unnatural " stability” condition

How to get rid of the condition?
> Key step: Vi(x) < Vi(x+ ex k)
» Monoskill servers are isolated

» = Focus on the multiskill servers
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Comparison of throughput (3/3)

Unnatural " stability” condition

How to get rid of the condition?
> Key step: Vi(x) < Vi(x+ ex k)
» Monoskill servers are isolated

» = Focus on the multiskill servers

Simpler problem:
> Assume no monoskill servers
» = Erlang loss model with N servers
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Outline

| Loss network with with monoskill and multiskill servers

» Repacking vs. no-repacking

» Stochastic performance comparison

Il Multiclass Erlang loss model

» Time-dependent mean throughput
» Deterministic dynamical system

» Coupling

[1l Some extensions
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Multiclass Erlang loss model

(A1, p1)
Shared resource, N units

» Complete sharing

» Interarrival times exp(Ax) ( )

» Holding times exp(u)

> All independent

(X2, p2)

Reward rate

r(X(8) = IX(8)] 2= Xa(t) + Xa()

A
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Time-dependent analysis

Problem
Mean collected reward

Vi(x) = EX /O H(X(s)) ds

» Is the map x — V4(x) increasing?

o
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Time-dependent analysis

Problem
Mean collected reward

Vi(x) = EX /O H(X(s)) ds

» Is the map x — V4(x) increasing?

Earlier work

» Monotonicity with respect to input rates (Nain; 1990)
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Time-dependent analysis

Problem
Mean collected reward

Vi(x) = EX /O H(X(s)) ds

» Is the map x — V4(x) increasing?

Earlier work
» Monotonicity with respect to input rates (Nain; 1990)

» Monotonicity criteria for optimal admission policies (Altman,
Jiménez, Koole; 2001) and (van der Wal, Ormeci; 2006)
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Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].
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Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].

Proof.

» Choose a version of X
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Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].

Proof.
» Choose a version of X

» Choose independently o =4 exp(p«)
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Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].

Proof.
» Choose a version of X
» Choose independently o =4 exp(p«)
> Let
)A((t): {X(t)—l—ek, t<o,
X(t), t>o

/A
&/



Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].

Proof.
» Choose a version of X
» Choose independently o =4 exp(p«)
> Let
)A((t): {X(t)—l—ek, t<o,
X(t), t>o

» = X is a version of X(K)
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Special limiting case: No blocking

Theorem
Assume N = oo, and let X and X (k) be versions of the the

multiclass Erlang model started at x and x + ey, respectively.
Then for all t,

IX(1)] <ot IXP(2)].

Proof.
» Choose a version of X
» Choose independently o =4 exp(p«)
> Let
)A((t): {X(t)—l—ek, t<o,
X(t), t>o

» = X is a version of X(K)
> = |X(b)] < |X(t)] for all ¢ P

O
/A
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Example: One server with ;1 =0 and A, =0

exp(M1)

Typical reward rate with X(0) =0
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Example: One server with 1y =0 and A, =0

exp(M1)

exp(p2)

Typical reward rate with X(0) =0

exp(A1)

Typical reward rate with X(0) = &
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Example: One server with 1y =0 and A, =0

exp(M1)

exp(p2)

Typical reward rate with X(0) =0

exp(A1)

Typical reward rate with X(0) = &

Assume A\; = up =1, then

E0|X(t)=1—et
E® [X(t)|=1—te!
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Example: One server with 1y =0 and A, =0

Assume A\; = up =1, then

E0|X(t)=1—et
o0 E® [X(t)|=1—te!

exp(M1)

‘ ‘ ‘ = Mean reward rate not monotone:
Typical reward rate with X(0) =0

E%|X(t)] > E®2 |X(t)| fort>1

exp(p2) oo

exp(A1)

Typical reward rate with X(0) = & P
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Example: One server with 1y =0 and A, =0

exp(M1)

Typical reward rate with X(0) =0

exp(p2) oo

exp(A1)

Typical reward rate with X(0) = &

Assume A\; = up =1, then

E0|X(t)=1—et
E® [X(t)|=1—te!

= Mean reward rate not monotone:

E%|X(t)] > E®2 |X(t)| fort>1

But anyway for all ¢,

t t
E / IX(s)| ds < E® / IX(s)| ds
0 0

A
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Problem as a deterministic dynamical system

Uniformized cumulative mean reward V,(x)
> Define 0k Vp(x) = Va(x + ex) — Va(x)
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Problem as a deterministic dynamical system

Uniformized cumulative mean reward V,(x)
> Define 0k Vp(x) = Va(x + ex) — Va(x)
» The differences satisfy 8, V°(x) = 0 and

N
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Problem as a deterministic dynamical system

Uniformized cumulative mean reward V,(x)
> Define 0k Vp(x) = Va(x + ex) — Va(x)
» The differences satisfy 8, V°(x) = 0 and

5V (x) =

( 1+(1—)\-1—/,Lk—/,L-X)5kVn(X)

+) NG Va(x+ &)+ D mixidiVa(x —¢),  |x| <N-1,
J J

1 1+ (1= e — o )8k V(%) = D A6 V(%)
J

+ ) ok Va(x — €), x| =N —1.
\ J
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Problem as a deterministic dynamical system

Uniformized cumulative mean reward V,(x)
> Define 0k Vp(x) = Va(x + ex) — Va(x)
» The differences satisfy 8, V°(x) = 0 and

5V (x) =
( 1+(1—)\-1—/,Lk—/,L-X)5kVn(X)

+ ) NGk Va(x + &)+ D pixid Val(x — €j),
J J

1 1+ (1= e — o )8k V(%) = D A6 V(%)
J

+ Y w0k Va(x — &),
\ J

How to prove dx V,(x) > 0 for all k and x?

x| <N —1,

|x| = N — 1.
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Positive trajectory of an affine dynamical system

Problem
Given a positive vector b in R, determine the set of matrices

A € R¥*9 sych that the system

x(0) =0,
x(t+1) = Ax(t) + b,

is positive for all t.

o
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Positive trajectory of an affine dynamical system

Problem
Given a positive vector b in R, determine the set of matrices

A € R¥*9 sych that the system

x(0) =0,
x(t+1) = Ax(t) + b,

is positive for all t.

Positive linear systems theory (Farini and Rinaldi; 2000)

» Restrict to A, b such that x(t) is positive for an arbitrary
positive initial state
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Positive trajectory of an affine dynamical system

Problem
Given a positive vector b in R, determine the set of matrices

A € R¥*9 sych that the system

x(0) =0,
x(t+1) = Ax(t) + b,

is positive for all t.

Positive linear systems theory (Farini and Rinaldi; 2000)

» Restrict to A, b such that x(t) is positive for an arbitrary
positive initial state

» = all entries of A must be positive
» = not helpful in Markov context
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Monotonicity for "stable” system

Assume \ N
_1_|_..._+__KS]_
H1 UK

N
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Monotonicity for "stable” system

Assume \ \
Mo

H1 12714

» Not hard to verify that §; V,(x) < m
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Monotonicity for "stable” system
Assume \ N
A 44 2K <1
H1 KK

» Not hard to verify that §; V,(x) < ﬁ
» Apply induction to

5kv"+1(x):
( 1+(1—)\-1—/,Lk—/,L-X)5kVn(X)

+) NG Va(x+ &)+ D mixidiVa(x —¢),  |x| <N-1,
J J

) 1+ (1= e — - X)8kVa(x) = D AjdjVin(x)
J

+ ) 1ok Va(x — €), x| =N —1.
\ J {

N\

e
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Natural coupling (1/3)

Find a stochastic process X = (X, X)
» State space {(x1,x, X1, %) : x| < N, |X| < N}
» X Markov with generator @ and initial state x
» X Markov with generator @ and initial state x + e
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Natural coupling (1/3)

Find a stochastic process X = (X, X)
» State space {(x1,x, X1, %) : x| < N, |X| < N}
» X Markov with generator @ and initial state x
» X Markov with generator @ and initial state x + e

Natural construction
» Dynamical evolution map F(x,:): A— X
» Arrival point process A= {(Tp, Sp)}n>1
» X(t) = F(x, A)(t)
> X(t) = F(x + &, A)(t)
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Natural coupling (2/3)
(X, X) is Markov with generator @

a(x,%y,9) =
( AL(|x] < N, %[ < N), (v, 9) = (x, %) + (e &)
(K < N8I = V), (1,9) = (%, %) + (,0)
MK = N, 181 < V), (7,9) = (%, %) + (0, ex)
(X + X )1(xk > 0,% > 0), (y,¥) = (x,%X) — (e, ex)
pexil(xe > 0,% = 0), (y,¥) = (x,%) — (&, 0)
L pSal(xe = 0,% > 0),  (y,¥) = (x,%) — (0, ex)
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Natural coupling (2/3)
(X, X) is Markov with generator @

a(x,%y,9) =
( AL(|x] < N, %[ < N), (v, 9) = (x, %) + (e &)
(K < N8I = V), (1,9) = (%, %) + (,0)
MK = N, 181 < V), (7,9) = (%, %) + (0, ex)
(X + X )1(xk > 0,% > 0), (y,¥) = (x,%X) — (e, ex)
pexil(xe > 0,% = 0), (y,¥) = (x,%) — (&, 0)
L pSal(xe = 0,% > 0),  (y,¥) = (x,%) — (0, ex)

For all x and X,
Y a(x%y,9) = a(x,y)
v

D a(x%y,9) =a(%9)
y

ra
\§&



Natural coupling (3/3)

Recall that

Vi) = [ IX(s) ds,

so in terms of the coupling (X,)A(),

Vil +ex) — () = E [ (1K) - 1X()]) ds
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Natural coupling (3/3)

Recall that

Vi(x) = E¥ /0 IX(s)) d,

so in terms of the coupling (X,)A(),

Vil +ex) — () = E [ (1K) - 1X()]) ds

Because D = {(x, X) : x = X} is absorbing,

Ve(x + &) — Va(x) = E /0 o (1X(s) = IX(s)1) s,

where Tp is the entry time of (X, X) into D

(=}
\§&
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Natural coupling for N = 2

X2 + w2 w2 A2 + p2
A1 Ao
©1 2
p1l| | A1 1 M1 | AL
A1 A2
w1 B2
B2 || A2 B2 2 | | A2
A1+ p1 ©1 A1+ p1
A1 A>
H1 H2
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Consequences of the natural coupling

Theorem |
Let X and X be versions of the multiclass Erlang process started

at x and x + ey, respectively. Then for all t,

IX(0)] = 1 <t IX(2)] <ot IX(8)] + 1,

and especially,
|Ve(x + ex) — Vie(x)| < t.
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Consequences of the natural coupling

Theorem |
Let X and X be versions of the multiclass Erlang process started

at x and x + ey, respectively. Then for all t,
1X(£)] = 1 <o [X(£)] <o |X(£)] + 1,

and especially,
|Ve(x + ex) — Vie(x)| < t.

Proof.
The set
D' = {(X, %) : % — x € {0,%e1, tep, (2 — e1)}}
is absorbing for the natural coupling of X and X. O
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Asymmetric coupling (1/4)

Assume p1 < o
> Class-1 customers stay longer

> x> x — e; is less probable than x — x — e

)

g
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Asymmetric coupling (1/4)

Assume p1 < o
> Class-1 customers stay longer

> x> x — e; is less probable than x — x — e

Split the faster rate exponential

> exp(u2) =st exp(u1) A exp(pz — p1)
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Asymmetric coupling (1/4)

Assume p1 < o
> Class-1 customers stay longer

> x> x — e; is less probable than x — x — e

Split the faster rate exponential

> exp(u2) =st exp(u1) A exp(pz — p1)

H2 —N
H2 — p1

/e ﬁ\#
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Asymmetric coupling (2/4)

Py b2 Az + p2
A1 A2
I B2
1| [ A1 H1 H1| | A1
AL A2
A1 B2
H2 | | A2 H2 2| | A2
A1+ 1 H1 Mt
Ay A2
1 2
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Asymmetric coupling (2/4)

P o+ 2 ) 2 A2 + p2
AL A2
K1 K2
1| [ A1 H1 H1| | A1
A1 A2
K1 K2
H2 | | A2 H2 2| | A2
p M p) I A1+ p1
AL A2
M1 K2




Asymmetric coupling (3/4)

/€ 8\7;
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Asymm
etric coupli
pling (3/
4)
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Asymmetric coupling (4/4)

X2 + K2 H2 2 + p2
A A2
I K2
A1 M
M1 1 H
A1 A2
©1 K2
H2—p1 | | A2 H2—p1 H2—p1| | A2
AL+ p K1 At
A1 A2
P 12
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Consequences of the asymmetric coupling

Theorem .
Assume p1 < pa. Let X and X be versions of the multiclass Erlang

process started at x and x + e1, respectively. Then for all t,

X ()] <a 1X(2)],

and especially,
Vt(X) S Vt(X + el).
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Consequences of the asymmetric coupling

Theorem .
Assume p1 < pa. Let X and X be versions of the multiclass Erlang

process started at x and x + e1, respectively. Then for all t,

X ()] <a 1X(2)],

and especially,
Vt(X) S Vt(X + el).

Proof.
The set
Df = {(x,&) ‘% —x€{0,ep,e; — 62}}
is absorbing for the asymmetric coupling of X and X. O
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Special case with u; = o

Corollary
Assume py = pp, let k € {1,2}. Let X and X be versions of the
multiclass Erlang process started at x and x + e, respectively.
Then for all t,

IX(8)] <st [X(2)],

and especially,
Vi(x) < Vi(x + ek).
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A2+ p
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Ao
A2+
A1 -
= w :
m
AL
m
! * A2
m
A1 .
1 -
A1+
A2
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e
AL+ p
A1 .
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Strong monotonicity of the one-server model (1/2)

Theorem
Assume N = 1, and X and X(K) be versions of the multiclass

Erlang process starting at 0 and ey, respectively. Then for all k

and t, . .
/ IX(s)| ds <ot / X8 (5)| ds.
0 0

o
2/
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Strong monotonicity of the one-server model (2/2)

Proof.

Non-Markov coupling
» Choose a version of X
> Let 0 =4 exp(uk) be independent of X
» Construct X by

X(t—o0), t>0o

R e, t<
X(t):{ K ’

o
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Strong monotonicity of the one-server model (2/2)

Proof.

Non-Markov coupling
» Choose a version of X
> Let 0 =4 exp(uk) be independent of X
» Construct X by

R e, t<
X(t):{ K ’

X(t—o0), t>0o

Then
» X is a version of X(K)
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Strong monotonicity of the one-server model (2/2)

Proof.

Non-Markov coupling
» Choose a version of X
> Let 0 =4 exp(uk) be independent of X
» Construct X by

R e, t<
X(t):{ K ’

X(t—o0), t>0o

Then
» X is a version of X(K)
> oK) ds =ont+ [§ 1X(s) ds > [y IX(s)| s

/e ﬁ\#
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Outline

| Loss network with with monoskill and multiskill servers

» Repacking vs. no-repacking

» Stochastic performance comparison

Il Multiclass Erlang loss model

» Time-dependent mean throughput
» Deterministic dynamical system

» Coupling

[11 Some extensions
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Comparison of overall blocking probability

Theorem
Assume p1 = --- = uk. Then the overall blocking probability is
smaller in the system with repacking.

Proof.
By the Little’s law,

E(X1k + Xok) = (1 = bic) A/ pk-
Hence K
ket Mk E(Xuk + Xok)
Zf:l Ak
Likewise, b’ = ... O

b=1
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What if p; # pi for some j, k?

Example: no monoskill servers for class 2

(A1, p1) =(1,1)

(A2, p2) = (1, p2)
Repacking =
> class-1 blocking increases
> class-2 blocking decreases

» overall blocking probability increases if pp < 2/5

/e ﬁ\#
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Summary

The time-dependent mean throughput x — V;(x) in the multiclass
Erlang model is monotone

P

N\
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Summary

The time-dependent mean throughput x — V;(x) in the multiclass
Erlang model is monotone

» N = oo (strong monotonicity; trivial coupling)

> uy =--- = uk (strong monotonicity; asymmetric coupling)
» N =1 (non-Markov coupling)

» N = 2 (asymptotic analysis)

» 2 < N < oo (ongoing work)

Applications
» Computable performance bounds
» Optimality criteria for admission policies
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