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Foreword. This minicourse is about conformally invariant random curves in two dimensional
domains. The study of these curves is motivated by critical phenomena in statistical physics: it can
be generally argued that models of statistical mechanics at their critical points of continuous phase
transitions should have scaling limits which exhibit conformal symmetry. The random curves we
consider are the natural candidates for scaling limits of interfaces arising in these models — some
such interfaces are illustrated in Figures 1, 2, 3. We will encounter different random curves,
which are all described and constructed in a rather similar manner. They have become known
collectively as Schramm-Loewner evolutions, stochastic Loewner evolutions, or briefly SLEs.

Figure 1: Exploration path of critical percolation on hexagonal lattice separates hexagons of the
two different colours.

Figure 2: An interface separates different spin clusters in the critical Ising model with Dobrushin
boundary conditions (simulation and picture by Antti Kemppainen).

In this short time it is impossible to cover even the crucial parts of the theory in detail, so the aim
is rather to introduce the SLE curves and give examples of some of the most common techniques
that are needed when working with them. I regret that there will be no time to cover any of the
topics in statistical mechanics, which are the real motivation for studying SLEs, and which feature
remarkable recent achievements as well as important open research problems. For the reader
who is interested in obtaining a more profound understanding of SLEs, there are review articles
and overviews [KN04, BB06, Car05], lecture notes [Wer02, Bef10, Law10], a textbook [Law05], and
finally of course research articles which would be too numerous to list here. From the ICM talks
[Sch06, Smi06, Smi10] one gets a fair picture of the state of the current research.
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Figure 3: Loop erasure of a random walk.
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Chapter 1

Tools from complex analysis and
stochastic processes

To be able to work with conformally invariant random curves, we need to briefly review some
background on conformal geometry and stochastic processes. The goal is merely to mention some
of the concepts and results that will be needed later, and to provide references for them.

1.1 On conformal mappings

Below we review some facts about conformal mappings in two dimensions. Most of the statements
are proven in complex analysis textbooks such as [Ahl78], and the slightly more advanced topics
are treated for example in [Ahl73].

In differential geometry, a mapping between Riemannian manifolds is said to be conformal
if the metric becomes multiplied by a positive scalar function. The angles between tangent
vectors are independent of such multiplicative factor, and conformal mappings can alternatively
be defined as mappings which preserve angles. In two dimensions, for subsets of R2 = C, such
mappings are well understood — indeed from complex analysis we know that a mapping between
subset of C preserves the magnitude of angles when it is either holomorphic (in which case also
the orientation of angles is preserved) or anti-holomorphic (in which case the orientation of angles
is reversed). We only consider mappings that preserve the angles with orientation, so for the
rest of these notes a conformal mapping from one open set Λ1 ⊂ C to another Λ2 ⊂ C signifies a
bijective holomorphic function Λ1 → Λ2. If there exists a conformal mapping f : Λ1 → Λ2, we call
the domains Λ1 and Λ2 conformally equivalent. A conformal map f : Λ1 → Λ2 and its inverse
f−1 : Λ2 → Λ1 are in particular continuous, so conformal equivalence is a stronger notion than
homeomorphism.

1.1.1 Simply connected domains and the Riemann mapping theorem

All (non-empty) connected, simply connected open subsets of C are homeomorphic to each
other, and it is a remarkable fact that with the exception of the full complex plane they are all
also conformally equivalent. A few examples of such domains, with notation that we will use
throughout these notes, are

upper half-plane H =
{
z ∈ C : =m(z) > 0

}
unit disk D = {z ∈ C : |z| < 1}

horizontal strip S =
{
z ∈ C : 0 < =m(z) < π

}
rectangle (0,Lx) × (0,Ly) =

{
z ∈ C : 0 <<e(z) < Lx, 0 < =m(z) < Ly

}
and so on. We emphasize, however, that the domains need not be as nice as the examples above —
domains such as the comb ((0, 1)× (0, 1)) \∪∞n=1(i 1

n ,
1
2 + i 1

n ]), or the interior of a fractal Jordan curve
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exemplify some wilder possibilities. The conformal equivalence of simply connected domains in
known as the Riemann mapping theorem, and here is a standard formulation of the statement.

Theorem 1 (Riemann mapping theorem) Let Λ ⊂ C be a simply connected open set such that the
complement C \ Λ is non-empty. Then for any point z ∈ Λ there exists a unique bijective holomorphic
function f : Λ→ D such that

f (z) = 0 and f ′(z) > 0.

Exercise 1 Show that C is not conformally equivalent to a simply connected proper subdomain Λ ( C.

To obtain a conformal map f : Λ1 → Λ2 we may use the above theorem to get conformal maps
f1 : Λ1 → D and f2 : Λ2 → D, and then set f = f−1

2 ◦ f1.
The theorem also implies that a conformal map between two simply connected domains is not

unique, we were free to choose any z to be mapped to 0, and furthermore we could still rotate the
image by multiplying by any complex number of modulus one: the mapping z 7→ eiθ f (z) would
be conformal Λ→ D and map z 7→ 0, but the derivative at z would be on the half line eiθR+.

The non-uniqueness of the conformal map between two simply connected domains corre-
sponds of course to the existence of nontrivial conformal self-maps of any of these domains: if f
and f̃ are two different conformal maps Λ → D, then f−1

◦ f̃ is a conformal self map of Λ which
is not the identity. It is useful to recall the explicit form of conformal self maps of some of the
simplest domains.

Lemma 1 Conformal maps f : D→ D are precisely the functions of the form

f (z) = u
z − a

1 − āz
,

where u and a are complex parameters such that |a| < 1 and |u| = 1.
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Figure 1.1: The radial coordinate system inD after the application of a conformal self map ofD.

Figure 1.1 illustrates the image of the radial coordinate system of D by a conformal self map
f : D→ D. The radii and circles intersect at right angles, and by conformality, so do their images.
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Lemma 2 Conformal maps f :H→ D are precisely the functions of the form

f (z) =
az + b
cz + d

,

where a, b, c, d ∈ R are parameters such that ad − bc > 0 (it is always possible to normalize ad − bc = 1).
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Figure 1.2: A conformal self map of the upper half-plane.

Figure 1.2 illustrates the image of the Euclidean coordinate system ofH by a conformal self map
f :H→H. The horizontal and vertical lines intersect at right angles, and again by conformality,
so do their images.

Let us still give two concrete examples of conformal maps between two different simply
connected domains.
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Figure 1.3: Logarithm composed with Möbius transformation mapsH to S.

First, the map z 7→ exp(z) maps the horizontal strip S = {x+ i y : x ∈ R, 0 < y < π} to the upper
half-planeH, and it is clearly holomorphic and bijective. In the other direction, if log denotes the
branch of logarithm corresponding to the choice arg ∈ [0, 2π), then z 7→ log(z) = log |z| + i arg(z)
is conformalH→ S. Any conformal map fromH to S is of the form log ◦µ, where µ : H→ H is
a Möbius transformation, one such map is illustrated in Figure 1.3. The images of horizontal and
vertical lines intersect forming right angles as they should.

A conformal map from the rectangle to the half-plane is given by Jacobi’s elliptic sine. More
precisely, denoting the elliptic modulus by k ∈ (0, 1), the rectangle is (−K,K) × (0,K′), with K =∫ π/2

0 (1− k2 sin2(θ))−1/2 dθ and K′ =
∫ π/2

0 (1− (1− k)2 sin2(θ))−1/2 dθ complete elliptic integrals. The
mapping z 7→ sn(z; k) then takes this rectangle conformally to H, mapping the corners −K + iK′,
−K, K, K + iK′ to the points −k−1/2, −1, 1, k−1/2, respectively. Figure 1.4 illustrates this map.
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Figure 1.4: Jacobi’s elliptic function sn maps a rectangle conformally to the upper half-plane.

Möbius transformations
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Figure 1.5: Möbius transformations map circles and straight lines to circles or straight lines. This
map is from the unit disk to the upper half-plane.

Both of the above Lemmas concerning self maps of a simply connected domain are special
cases of the fact that any conformal map between two disks of the Riemann sphere (ordinary
disks, half-planes, exteriors of ordinary circles) is a Möbius transformation

µ(z) =
az + b
cz + d

, a, b, c, d ∈ C.

Conversely, the image of any circle or straight line under the a nondegenerate (ad − bc , 0)
transformation of the above form is a circle or straight line. As an example, Figure 1.5 features a
conformal mapD→H and shows the image of the radial coordinate system under this map.

Three real degrees of freedom in choosing a map between simply connected domains

From either of the Lemmas or the Theorem it is clear that choosing a unique conformal map
between two simply connected domains amounts to fixing three real parameters (the group of self
maps of a simply connected domain is a three dimensional Lie group). We will frequently use for
example the following choices:

• If Λ1,Λ2 are simply connected domains, z1 ∈ Λ1 and z2 ∈ Λ2, and θ ∈ R then there exists
a unique conformal map f : Λ1 → Λ2 such that f (z1) = z2 and f ′(z1)/eiθ > 0. (This follows
directly from the statement of Theorem 1.)

• If Λ1,Λ2 are simply connected domains, a1, b1, c1 ∈ ∂Λ1 and a2, b2, c2 ∈ ∂Λ2 such that a j, b j, c j
appear counter-clockwise along the boundaries of the respective domains Λ j, then there
exists a unique conformal map f : Λ1 → Λ2 such that f (a1) = a2, f (b1) = b2, f (c1) = c2. (An
easy way to verify this is to construct a self map of the half plane which maps three boundary
points to any desired images.)
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* Strictly speaking, for domains with non-Jordan boundary, boundary point is not the
appropriate notion, but instead one should map the domain toD (or some other domain
with nice boundary) and consider the preimages of points of ∂D. We leave it for the
careful reader to replace the term boundary point by prime end throughtout these
notes.

A few convenient ways of fixing the three parameters of conformal maps

We will frequently use the following choices.

f

D D \K

Figure 1.6: A hull in the unit disk, and the map f from its complement back to the disk.

Let us first consider subsets of the unit diskD. If K ⊂ D is a compact set such that D = D \K is
simply connected, K = K ∩D and 0 < K, then we call K a hull in the unit disk. Figure 1.6 illustrates
such a hull. As stated in Theorem 1, we can choose a conformal map whose three degrees of
freedom are fixed by requiring the origin to be mapped to the origin and direction of derivative
to be positive,

fD : D→ D such that fD(0) = 0 and f ′D(0) > 0.

In fact, applying the Schwarz lemma to f−1 : D→ D, we see that |( f−1
D )′(0)| ≤ 1 and consequently

f ′D(0) ≥ 1. The inequality is strict if K ∩D , ∅. We call the logarithm of the derivative of fD at the
origin the disk capacity of the hull K, and denote

capD(K) = log f ′D(0) ≥ 0

so that
f ′D(z) = ecapD(K) z + O(z2).

Note that if D1 and D2 are two domains of this type with corresponding hulls K1 and K2, then

fD2 ◦ fD1 : f−1
D1

(D2)→ D

( fD2 ◦ fD1 )′(0) = f ′D1
(0) f ′D2

(0) = ecapD(K1)+capD(K2),

so in a sense the disk capacity is additive. This shows in particular that if K′ ⊂ K (and for the
corresponding domains D′ ⊃ D), then capD(K′) ≤ capD(K), with an equality only if K′ = K.

Next, let us consider subsets of the upper half-plane H. If K ⊂ H is a compact set such that
H = H \ K is simply connected and K = K ∩H, then we call K a hull in the half-plane. Figure 1.7
illustrates such a hull. We can choose a conformal map g̃ : H → H which maps the boundary
point ∞ to itself, and two real parameters remain, since z 7→ a g̃(z) + b has the same property.
Schwarz reflection

g̃(z) = g̃(z)

can be used to extend g̃ to C \ (K ∪ K∗), and we then notice that the map z 7→ 1/g̃(1/z) has a
removable singularity at the origin, in fact a zero. In other words g̃ has a Laurent expansion
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H \K H

g

Figure 1.7: A hull in the half-plane, and the map g from its complement back to the half-plane.

g̃(z) = cz + d + O(z−1). The free parameters a, b can be chosen so that gH(z) = a g̃(z) + b has the
expansion

gH(z) = z + O(z−1),

i.e. gH is as close to identity as possible in neighborhoods of infinity. We call a map with such an
expansion hydrodynamically normalized, and we call

capH(K) = lim
z→∞

(
z (gH(z) − z)

)
the half-plane capacity of the hull K, so that

gH(z) = z +
capH(K)

z
+ O(z−2).

Exercise 2 Show that capH(K) ≥ 0, with a strict inequality if K ∩H , ∅.

Note that if H1 and H2 are two domains of this type with corresponding hulls K1 and K2, then

gH2 ◦ gH1 : g−1
H1

(H2)→H

(gH2 ◦ gH1 )(z) = = z +
capH(K1) + capH(K2)

z
+ O(z−2),

so in a sense the half-plane capacity is additive. In particular, if K′ ⊂ K (and for the corresponding
domains H′ ⊃ H), then capH(K′) ≤ capH(K), with an equality only if K′ = K.

Finally, let us consider subsets of the horizontal strip S. If K ⊂ S is a compact set such that
S = S \ K is simply connected, K = K ∩ S, then we call K a hull in the strip. We can choose a
conformal map h̃ : S→ S such that the boundary points ±∞ are preserved, and we still have one
real parameter to fix: the maps z 7→ h̃(z) + c with c ∈ R all preserve the two infinities. One can
show that the behavior of the conformal maps at ±∞ is such that the limits limz→±∞(h̃(z)− z) exist,
so we may choose the translation c such that hS(z) = h̃(z) + c satisfies

hS : S→ S such that lim
z→+∞

(hS(z) − z) = − lim
z→−∞

(hS(z) − z).

We call such maps strip symmetrically normalized, and we call the quantity

capS(K) = ± lim
z→±∞

(hS(z) − z)

the strip capacity of the hull K, and one can show that capS(K) ≥ 0 with strict inequality if K∩S , ∅.
Note that if S1 and S2 are two domains of this type with corresponding hulls K1 and K2, then

hS2 ◦ hS1 : h−1
S1

(S2)→ S

lim
z→+∞

(hS2 (hS1 (z)) − z) = capS(K1) + capS(K2),

so in a sense the strip capacity is additive. Therefore, in particular, if K′ ⊂ K (and for the
corresponding domains S′ ⊃ S), then capS(K

′) ≤ capD(K), with an equality only if K′ = K.
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Figure 1.8: The complement H \ [x, x + i h] of a slit of height h located at x is mapped to the
half-plane in such a way that at infinity the map is close to the identity.

A slit map example

Let us give one more example of explicit conformal maps. For z,w ∈ C, we denote by [z,w]
the closed line segment from z to w, i.e. [z,w] = {z + s(w − z) : 0 ≤ s ≤ 1}. The complement in
the upper half-plane of a vertical segment (slit) starting from the real axis is a simply connected
domainH\[x, x+ih]. Note that the boundary points of the form x+iy, 0 ≤ y < h, can be approached
either from the left or the right of the slit, and we interpret these choices as two different boundary
points. The reason for this becomes clear when we choose a conformal map to the half-plane. The
hydrodynamically normalized conformal map g :H \ [x, x + ih]→H is

g(z) =
√

(z − x)2 + h2 + x,

where we use the branch of the square root such that
√

w ∈H for all w ∈ C \ [0,∞). A map of this
type is illustrated in Figure 1.8. The two ways of approaching the boundary point x+ iy, 0 ≤ y < h,
have different limits after the conformal map

lim
ε↘0

(
g(x − ε + i y)

)
= x −

√
h2 − y2

lim
ε↘0

(
g(x + ε + i y)

)
= x +

√
h2 − y2,

7
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as one easily sees by paying some attention to the branch of the square root.
Our choice of conformal map here is such that far away the map is close to identity, g(z) =

z +O(z−1). This property manifests itself in Figure 1.8 as the fact that far away the horizontal and
vertical lines of the Euclidean coordinate system are only slightly deformed. The two ways of
approaching a boundary point on the slit can be obtained by following the (almost) horizontal
lines at the same height from far left and from far right: when the height of the lines is less than
the height of the slit, these lines end at two (different) points on the interval [x − h, x + h].

1.1.2 Loewner chains

Idea of Loewner chain via infinitesimally changing conformal maps

The Riemann mapping theorem guarantees the existence of conformal maps between any two
simply connected domains, but its proof is non constructive, and typically one can only obtain
explicit formulas for the conformal maps if the domains are simple enough, as in the examples so
far.

Instead, there is a method which describes how the conformal maps vary if the domains are
changed by removing a very small piece at a well localized point. Suppose that D̃ ⊂ D are domains
and D \ D̃ is a small set located near a point x ∈ ∂D, and let f and f̃ be conformal maps from D
and D̃, respectively, to some domain Λ. Since the two domains don’t differ by much, we try to
choose conformal maps which don’t differ by much either. We can write f̃ = f ◦ g, with g : D̃→ D
is close to the identity

g(z) ≈ z + ε vx(z),

where ε measures the size of the small set D \ D̃ in an appropriate sense, and vx : D → C is a
holomorphic function specifying how we have to move each point to obtain a map D → D̃. It is
more appropriate to think of vx as a holomorphic vector field

vx(z) ∂z,

so that g is the flow of this vector field until time ε determined by the size of the removed piece
D \ D̃. Note that since ∂D and ∂D̃ coincide except in a small neighborhood of the point x, the
flow of the vector field must preserve the boundary, i.e. the vector field must be tangent to the
boundary: for z ∈ ∂D \ {x}

vx(z) ∂z ‖ ~τz,

where ~τz is a tangent vector of ∂D at z. The holomorphic vector field must have some singularity
at the boundary point x if the flow of the vector field is to remove the piece D \ D̃ located near x. It
turns out that the singularity should be a pole, with residue such that arg(Resz=x vx(z)) = 2 arg(~τx).
We will outline the argument for this in a concrete case afterwards.

A Loewner chain is a family of such continuously shrinking domains (Dt)t≥0 and their confor-
mal maps (gt)t≥0, gt : Dt → D0, for which we can write the infinitesimal change of the conformal
maps as a flow of Loewner vector fields: holomorphic vector fields in D0 which are tangent to the
boundary except at the point where the shrinking of the domain is located, where there is a pole.

We will make this idea more precise in concrete cases below, but let us make some comments
about the choice of the vector field and give some examples of possible choices. First note that
it may be convenient to push forward the vector field from D0 to some nice reference domain,
and do the considerations there — indeed this is necessary already to make sense of the notions
of tangent vector and residue on the boundary. Then, regarding the way we prefer to choose the
conformal maps gt: if we want the maps gt to fix some point w ∈ D0, the vector fields should
have a zero at this point. The reader is invited to think of the algebraic restrictions on the number
and order of zeros on the boundary or in the interior of the domain. Finally, let us give three nice
examples of Loewner vector fields

• In the unit disk D, the vector fields −z z+x
z−x ∂z are tangent to the boundary except at x ∈ ∂D,

and they have a simple zero at the interior point 0. These Loewner vector fields are illustrated
in Figure 1.9.

8
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Figure 1.9: The Loewner vector field −z z+x
z−x ∂z and its flow inD.

• In the upper half-plane H, the vector fields 2
z−x ∂z are tangent to the boundary except at

x ∈ R, and they have a zero of order two at the “boundary point”∞ (infinity is a boundary
point if we viewH as a subset of the Riemann sphere, and to see the order of the zero, one
has to choose a local coordinate in a neighborhood of infinity). These Loewner vector fields
are illustrated in Figure 1.10.

• In the horizontal strip S, the vector fields coth( z−x
2 ) ∂z are tangent to the boundary except

at x ∈ R, and they have simple zeros at the “boundary points” ±∞. These Loewner vector
fields are illustrated in Figure 1.11.

We discuss the second case in more detail below.

Hydrodynamically normalized Loewner chain in the half-plane

Let us consider a Loewner chain in the upper half-plane H, and let us choose the conformal
maps to be as close to identity at infinity as possible. We consider a family (Ht)t≥0 of shrinking
subdomains:

H0 =H and s < t ⇒ Hs ⊃ Ht.

We denote
Kt = H \Ht,

assume that Kt are hulls in the half-plane for all t ≥ 0. We assume the hulls first of all to be strictly
increasing, Ks ( Kt for s < t, and that K0 = ∅, and most importantly that the hulls satisfy the
following local growth condition

9
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Figure 1.10: The Loewner vector field 2
z−x ∂z and its flow inH.

• For all T > 0 and ε > 0 there exists a δ > 0 such that for all t ∈ [0,T] the piece Kt+δ \ Kt can
be disconnected from infinity in the domain Ht = H \ Kt by a connected set S of diameter
smaller than ε.

We then choose the hydrodynamically normalized conformal maps gt : Ht →H,

gt(z) = z +
capH(Kt)

z
+ O(z−2).

The local growth condition can be shown to guarantee that gt(z) evolves continuously in time t,
up to the time when the solution ceases to exist. The half-plane capacities capH(Kt) are therefore
continuous and strictly increasing, whence we can assume a time parametrization such that
capH(Kt) = 2t.

For 0 ≤ s and δ > 0 the mapping g̃δ = gs+δ ◦ g−1
t : gs(Hs+δ) → H is still hydrodynamically

normalized. Consider the harmonic function

z 7→ =m(g̃δ(z) − z) H→ R+.

It’s boundary values are 0 except in a neighborhood of the point Xs which is the image of the
position of local growth

{Xs} =
⋂
δ>0

gs(Ks+δ \ Ks).

We can write a representation of the harmonic function using the Poisson kernel PH(z; ξ) =
−

1
π =m( 1

z−ξ ) in the half-plane

=m(g̃δ(z) − z) ≈ const. ×
−1
π
=m

( 1
z − Xs

)
,

and consequently

g̃δ(z) ≈ z +
const.
z − Xs

.

10
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Figure 1.11: The Loewner vector field coth( z−x
2 ) ∂z and its flow in S.

The constant has to be 2δ, by additivity of the half-plane capacity, so

1
δ

(
gs+δ(g−1

s (z)) − gs(g−1
s (z))

)
≈

2
z − Xs

.

Substituting z = gs(w) we expect to get

d
dt

gt(w)
∣∣∣
t=s =

2
gs(w) − Xs

,

which indeed could be proved by doing the argument a bit more carefully.
The Loewner chain (gt)t≥0 thus satisfies the Loewner differential equation

d
dt

gt(z) =
2

gt(z) − Xt
, (1.1)

where Xt is the image under gt of the position of local growth of the hulls, a continuous function
which we call the driving function of the Loewner chain (gt). This is a particular case of flows of
Loewner vector fields vx(z)∂z

d
dt

gt(z) = vXt (gt(z)), (1.2)

with the vector fields vx(z)∂z = 2
z−x∂z which are illustrated in Figure 1.10.

Note that the slit map of Figure 1.8 exemplifies this picture: if the driving function is constant
Xt = x for all t ≥ 0, then the solution of ġt(z) = 2/(gt(z)−x) with initial condition g0(z) = z is clearly
gt(z) =

√
(z − x)2 + 4t + x, the hydrodynamical conformal map fromH \ [x, x + i 2

√
t] toH.

1.2 On stochastic calculus

In these notes we essentially only consider continuous stochastic processes indexed by continuous
time t.

1.2.1 Martingales and optional stopping theorem

The information we have about stochastic processes accumulates in time, and this is represented
by a filtration (Ft)t≥0. The sigma algebra Ft represents information available at time t, so that in

11
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particular for any stochastic process (Xt)t≥0 the value Xt at time t must be measurable with respect
to Ft. The information is accumulating, meaning that sigma algebras become finer, Fs ⊂ Ft for
s < t. Usually we say there’s no information available at time zero, soF0 is the trivial sigma-algebra
{∅,Ω}. Typically we also consider the information contained in a given process (Xt)t≥0, in the sense
that Ft is the smallest sigma-algebra with respect to which all Fs, + ≤ s ≤ t, are measurable.

A stochastic process (Mt)t≥0 is said to be a martingale (with respect to the filtration (Ft)t≥0) if
the conditional expected value of the future of the process given the information at the present is
the same as the present value of the process, i.e. for all 0 ≤ s ≤ t

E
[
Mt

∣∣∣ Fs

]
= Ms.

Roughly speaking, martingales are stochastic processes which are conserved in mean. In partic-
ular, the expected value of a martingale is constant in time: with s = 0 the martingale property
reads

E
[
Mt

]
= M0 for any t ≥ 0.

A random time τ, whose occurrence before time t ≥ 0 can be decided with the information
available at time t, is called a stopping time. The optional stopping theorem states that if (Mt) is a
martingale and τ is a (finite) stopping time, then

E
[
Mτ

]
= M0.

1.2.2 Brownian motion

The standard Brownian motion onR is the process (Bt)t≥0 whose finite dimensional marginals are,
for 0 < t1 < t2 < · · · < tn,

P
[
Bt1 ∈ A1, . . . ,Btn ∈ An

]
=

∫
· · ·

∫
A1×···×An

exp
( n∑

j=1

(x j − x j−1)2

2(t j − t j−1)

) 1∏n
j=1

√
2π(t j − t j−1)

dx1 · · ·dxn,

where t0 = 0 and x0 = 0. Figure 1.12 shows a realization of the Brownian motion.

0.2 0.4 0.6 0.8 1.0

-1.0

- 0.5

0.0

0.5

1.0

Figure 1.12: Values Bt of a Brownian motion are plotted on the vertical axis against t on the
horizontal axis.

A few important properties of the Brownian motion are

12
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• The Brownian motion is the scaling limit of simple random walks: if Sn =
∑n

j=1 ξ j with ξ j

i.i.d. E[ξ j] = 0, E[ξ2
j ] = 1, then the law of the process (

√
δSbt/δc)t≥0 tends to the law of (Bt)t≥0

as δ↘ 0.

• For any ε > 0, the function t 7→ Bt is (almost surely) Hölder continuous with exponent 1
2 − ε,

but it is not Hölder continuous with exponent 1
2 .

• The process (Bt)t≥0 is centered Gaussian and, the value at time t is mean zero variance t
normal distributed, Bt ∼ N(0,

√
t).

• For any s ≥ 0, the increments Bs+t − Bs are independent of B|[0,s], and the increment process
(Bs+t − Bs)t≥0 has the same law as (Bt)t≥0.

• The process (Bt)t≥0 is a martingale.

• The process (B2
t − t)t≥0 is a martingale.

To check the martingale property of B2
t − t, we write for 0 ≤ s < t

B2
t = (Bs + Bt − Bs)2 = B2

s + 2 Bs (Bt − Bs) + (Bt − Bs)2

and recall that the increment Bt − Bs is independent of B|[0,s]. Then compute

E
[
B2

t − t
∣∣∣ B|[0,s]

]
= E

[
B2

s + 2 Bs (Bt − Bs) + (Bt − Bs)2
− t

∣∣∣ B|[0,s]

]
= B2

s + 2 Bs E[(Bt − Bs)] + E[(Bt − Bs)2] − t

= B2
s + 0 + (t − s) − t

= B2
s − s.

Characterizations of the Brownian motion

The standard Brownian motion onR could also be defined as the centered Gaussian process (Bt)t≥0
with covariance

E
[
Bt1 Bt2

]
= min {t1, t2} .

We will later use the fact that Brownian motion can be characterized using this property of
independent stationary increments: if (Xt)t≥0 is a continuous real valued process with X0 = 0, such
that for all s ≥ 0 the increment process (Xs+t−Xs)t≥0 has the same law as (Xt)t≥0 and is independent
of X|[0,s], then (Xt)t≥0 has the law of (√

κBt + α t
)

t≥0

for some κ ≥ 0, α ∈ R.
Another characterization of the Brownian motion by Lévy is the following: if (Xt)t≥0 and

(X2
t − t)t≥0 are continuous martingales and X0 = 0, then X has the law of standard Brownian

motion.

1.2.3 Stochastic calculus

We will need to do calculus with differentials of Brownian motion. The reader will find a proper
treatment of this stochastic calculus (or Itô’s calculus) in any of the textbooks [KS91, Oks02, RY99].
Here we will give an intuitive explanation of the meaning of such calculus and most important
formulas for working with it.

We will denote by dt a differential of the time parameter t of our stochastic processes, intuitively
this is to be interpreted as (∆t) j = t j − t j−1, where 0 = t0 < t1 < t2 < · · · is a discretization of time.
Expressions involving dt are always to be integrated (or the increments (∆t) j are to be summed)
over time intervals much longer than the mesh |∆| = max j(∆t) j of the discretization of time.
Similarly, we will denote by dBt a differential of the Brownian motion, corresponding intuitively
to (∆B) j = Bt j −Bt j−1 . Again, expressions involving dBt are to be integrated (or the increments (∆B) j

13
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are to be summed) over finite time intervals much longer than |∆| = max j(∆t) j. Note that (∆B) j is
a centered Gaussian of variance (∆t) j, independent of B|[0,t j−1], and it is a good intuition that dBt is
a centered Gaussian of variance dt independent of B|[0,t]. Thus the of size of dBt is of order

√
dt.

For example, if σ : [0,∞)R is a given deterministic function, then multiples σ(t j−1) (∆B) j of the
small independent centered Gaussians add up to a bigger centered Gaussian, and the expression∫ s+

s−
σ(t) dBt

is Gaussian with mean 0 and variance
∫ s+

s−
σ(t)2 dt, independent of B|[0,s−]. Note however, that in

the above example we needed that the coefficients σ don’t depend on B.
There is one important thing to pay attention to, the formula (dBt)2 = dt which may seem

counterintuitive — the squared random infinitesimal Brownian increment is deterministic in-
finitesimal time increment. One naive explanation is as follows. The square of the Brownian
increment ((∆B) j)2 has the law of (∆t) j times the square of a unit normal random variable. Thus
indeed the expected value is the time increment, E[((∆B) j)2] = (∆t) j. The randomness, on the
other hand, has too small scale: the variance of ((∆B) j)2 is 2((∆t) j)2, so summing over a finite time
interval with any bounded coefficients the increments squared results to a random variable which
is has variance which tends to zero as the discretization of time gets finer, |∆| = max j(∆t) j ↘ 0,
hence (dBt)2 becomes deterministic and is simply given by its expected value. Expressions such
that dBt dt and (dt)2 are zero, as the corresponding increments are of too small scale.

Itô’s formula

We consider stochastic processes (Xt)t≥0, whose infinitesimal increments have the form

dXt = αt dt + βt dBt,

where (αt) and (βt) are some processes (which are predictable with the information about the
Brownian motion B up to the corresponding time instant). Such an equation for the increments is
called stochastic differential equation, and a more appropriate meaning of it is

Xs = X0 +

∫ s

0
αt dt +

∫ s

0
βt dBt,

where the integrals in turn are to be understood as limits of discretizations.
Note that the conditional expected value

E
[ ∫ s2

s1

βt dBt

∣∣∣ B|[0,s1]

]
is zero, since the integral is a sum of multiples of Brownian increments which are independent
of B|[0,s1] (and the coefficients are independent of the increments due to the predictability require-
ment). Therefore we expect a process (Xt) with increments dXt = αt dt + βt dBt to be a martingale
if and only if α ≡ 0 (this is only slightly too naive because of issues of existence of the expected
values).

We often need to know what are the increments of a process which is obtained by applying
some function to another process. If dXt = αt dt+βt dBt and f is a twice continuously differentiable
function, then the increments of the process ( f (Xt))t≥0 are given by Itô’s formula

d f (Xt) = f ′(Xt) βt dBt + f ′(Xt) αt dt +
1
2

f ′′(Xt) β2
t dt.

It is easy to understand this formula as a Taylor expansion with the rules (dBt)2 = dt, (dt)2 = 0
and dBt dt = 0.

As a first example, we calculate

d(B2
t − t) = 2 Bt dBt +

1
2

2 dt − dt = 2 Bt dBt.

Indeed, no dt term remains, in accordance with B2
t − t being a martingale.

The Itô’s formula easily generalizes to a case where one has several independent Brownian
motions and their infinitesimal increments.
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Time changes of stochastic processes

1.2.4 Conformal invariance of two-dimensional Brownian motion

As an application of the above techniques, one can prove that the two-dimensional Brownian
motion is conformally invariant (up to a time change).

Using the conformal invariance of the two-dimensional Brownian motion and the optional
stopping theorem one for example obtains the following probabilistic interpretation of the half
plane capacity.

Exercise 3 Show that if K is a hull in the upper half-plane, (Bt) is a two-dimensional Brownian motion
Bt = [Bx

t ,B
y
t ]>, and τ = inf {t ≥ 0 : Bt ∈ K ∪R}, then

capH(K) = const. × lim
y→∞

y EB0=i y[=m(Bτ)].

This formula provides an alternative way of proving positivity of the half-plane capacity.

15



Random conformally invariant curves Kalle Kytölä
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Chapter 2

Introduction to Schramm-Loewner
Evolutions

2.1 Schramm’s classification principles

Here we give the argument, due to Oded Schramm [Sch00], ¡¡¡¡¡¡¡ .mine which identifies SLEs as
the appropriate candidates of scaling ======= which identifies SLEs as the correct candidates
of scaling ¿¿¿¿¿¿¿ .r1972 limits of interfaces in critical statistical mechanics models. When the
setup is such that all the domains we need are conformally equivalent, this Schramm’s principle
classifies all possible random curves which can be described by Loewner evolutions, which are
conformally invariant, and which satisfy a natural Markovian type property. Having found the
classification, we then take that as a definition of SLE.

Conformally invariant random curves

Let us now start considering conformally invariant random curves. We thus seek to associate to
each domain Λ (with a number of marked points) a probability measure on curves in that domain,
such that the push-forward of the probability measure in Λ by a conformal map f from Λ to
another domain Λ′ coincides with the probability measure associated to Λ′.

In such a consideration, we naturally restrict attention to some class of domains (with marked
points) that are conformally equivalent. For concreteness we first discuss one of the simplest
conformal types, simply connected domains Λ ⊂ C with two marked boundary points a, b ∈ ∂Λ,
and look for (oriented but unparametrized) random curves from a to b in Λ. By the Riemann
mapping theorem, if (Λ1; a1, b1) and (Λ2; a2, b2) are two such domains, there exists a conformal
map f : Λ1 → Λ2 such that f (a1) = a2 and f (b1) = b2, so this collection of domains indeed forms
a conformal equivalence class. Note further that such conformal map is not unique, but there is
a one parameter family of conformal self maps of any given domain of this type. The setup of
simply connected domains with a random curve connecting two marked boundary points is ofter
referred to as the chordal case.

In this setup, we seek a collection (P(Λ;a,b)) of probability measures associated to domains Λ
with marked boundary points a, b ∈ ∂Λ, such that for any conformal f : Λ→ f (Λ) we have

f∗ P(Λ;a,b) = P( f (Λ); f (a), f (b)).

In other words, if a random curve γ (in Λ from a to b) has the law P(Λ;a,b), then its image f ◦ γ has
the law P( f (Λ); f (a), f (b)).

Conformal invariance alone is not a very restrictive requirement. Indeed, if we were given
any probability measure Pref on curves in one reference domain (Λref; aref, bref), subject only to the
condition that Pref is invariant under the conformal self maps of the reference domain, then we
could define the probability measures in (Λ; a, b) as f∗ Pref, where f is any conformal map from
the reference domain to (Λ; a, b), and thus we would obtain a conformally invariant collection of
probability measures. To find interesting conformally invariant random curves which can also
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be classified, we impose a further condition of domain Markov property, which is motivated by
interfaces in statistical mechanics.

The domain Markov property (chordal case)

a
γs

Λ

b

Figure 2.1: The domain Markov property concerns the conditional law of the remaining part of
the curve, given an initial segment γ[0, s] of it.

We still first consider the chordal setup: random curves from a ∈ ∂Λ to b ∈ ∂Λ in the closure
of a simply connected domain Λ. We consider the curves as oriented but unparametrized: two
parametrized curves γ1 : [T−1 ,T

+
1 ]→ C and γ2 : [T−2 ,T

+
2 ]→ C are identified if γ1 = γ2 ◦ θ for some

increasing bijection θ : [T−1 ,T
+
1 ] → [T−2 ,T

+
2 ]. An initial segment of γ : [T−,T+] → C is a restriction

of γ to a subinterval containing the beginning, i.e. γ|[T−,s] with T− ≤ s ≤ T+. The tip of an initial
segment γ|[T−,s] is the point γ(s).

The crucial assumption which adds significant content to our considerations is the following

• Domain Markov property: We assume that given any initial segment γ|[0,s] of the random
curve γ : [0,T] → Λ in (Λ; a, b), the conditional law of the remaining part γ|[s,T] is the
probability measure associated to the domain (Λ̃; ã, b), where Λ̃ is component containing b of
the complement Λ \ γ[0, s] of the initial segment and ã = γ(s) is the tip of the initial segment.
Put in another way,

P(Λ;a,b)

[
·

∣∣∣γ|[0,s] = η
]

= η � P(Λ\η[0,s];η(s),b)[ · ],

where�denotes concatenation of curves and Λ\η[0, s] is understood to stand for the relevant
connected component only.

The domain Markov property thus related the conditional law of the remaining part after an
initial segment to the law in the remaining domain. This property is motivated by interfaces
in statistical mechanics models, as the reader will easily understand by considering for example
the Ising model on a hexagonal lattice, and an interface which is a boundary between plus and
minus spin clusters. In statistical mechanics, this property does not even need the model to be
at a critical point. It is remarkable that when we combine the domain Markov property with the
conformal invariance anticipated to emerge at the critical point, we obtain a simple classification of
the possible random curves. This observation made in [Sch00] is known as the Schramm’s principle
and will be discussed next.

The Schramm’s principle (chordal case)

For the techniques of Loewner chains to be applicable, we still have to impose the following
regularity assumption on the random curves
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• Loewner regularity: We assume that the curve γ : [0,T] → Λ starts from a, i.e. γ(0) = a, and
that the tip of any initial segment γ|[0,s] is in the component containing b of the complement
Λ \ γ[0, s] of the initial segment, and that the local growth condition is satisfied.

Recall that by conformal invariance, f∗ P(Λ;a,b) = P( f (Λ); f (a), f (b)), it is enough to describe the
random curve in one reference domain, and to push-forward the definition to other domains by
conformal maps. For the chordal case it is convenient to choose the reference domain (H; 0,∞),
and use the chordal Loewner chain in the half-plane to describe the curve.

Assume that our collection of probability measures (P(Λ;a,b)) satisfies conformal invariance, domain
Markov property and Loewner regularity. Then let γ be a random curve in the half-plane with law
P(H;0,∞).

0

H H

gt

Xt

γt

Figure 2.2: The curve is encoded by the Loewner chain (gt)t≥0, where gt is a conformal map from
the unbounded component of the complement of γ[0, t] to the half-plane.

As in Section 1.1.2, parametrize γ by the half-plane capacity of the initial segments and encode
the growth of these initial segments in the Loewner chain. More precisely, let Ht be the unbounded
component ofH\γ[0, t] — the Loewer chain (gt) then consists of the hydrodynamically normalized
conformal maps

gt : Ht →H, gt(z) = z + 2t z−1 + O(z−2).

By Loewner regularity, the conformal maps gt satisfy the Loewner equation

d
dt

gt(z) =
2

gt(z) − Xt

for some continuous driving function t 7→ Xt ∈ R. The random curve γ is encoded by the driving
function t 7→ Xt, and we henceforth use the term driving process to emphasize the randomness of
(Xt).

0

γs

gs

Xs Xt+s

gs+t ◦ g−1
sgs(γs+t)

γs+t

Figure 2.3: To construct the Loewner chain (g̃t)t≥0 for the curve defined by γ̃t = gs(γs+t) − Xs, we
compose the maps of the original Loewner chain.

Consider an initial segment γ|[0,s] of the random curve. The Loewner chain to describe the
initial segment corresponds to the restriction of the driving process (Xt)t∈[0,s]. By the domain
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Markov property, the conditional law of the remaining part γ|[s,T] given the initial segment is
P(Hs;γ(s),∞). Now note that the map

z 7→ gs(z) − Xs

is conformal from Hs to H, and such that γ(s) 7→ 0 (definition of driving function) and ∞ 7→
∞ (hydrodynamical normalization). Therefore, conditionally on the initial segment, conformal
invariance states that the law of the image of γ|[s,T] by the map gs − Xs has the law P(H;0,∞). The
image curve γ̃ is defined by

γ̃(t) = gs(γ(s + t)) − Xs, t ≥ 0.

Let (g̃t) denote the collection of hydrodynamically normalized conformal maps g̃t : H̃t → H,
where H̃t is the unbounded component ofH \ γ̃[0, t]. In fact,

z 7→ gs+t

(
g−1

s (z + Xs)
)
− Xs

is a conformal map H̃t →H, and it is a matter of simple calculation to verify the normalization

gs+t

(
g−1

s (z + Xs)︸       ︷︷       ︸
≈ z+Xs−

2s
z+Xs

+···

)
− Xs =

(
z + Xs −

2s
z + Xs

+ · · ·
)

+
2(s + t)

z + Xs −
2s

z+Xs
+ · · ·

+ · · · − Xs

=
(
z + Xs −

2s
z

)
+

2(s + t)
z

− Xs + O(z−2)

= z +
2t
z

+ O(z−2).

We see that not only is the above map hydrodynamically normalized, but also the curve γ̃ is still
parametrized by capacity. In conclusion the Loewner chain for γ̃ is given by

g̃t(z) = gs+t

(
g−1

s (z + Xs)
)
− Xs.

This Loewner chain must satisfy a Loewner’s equation of the form

d
dt

g̃t(z) =
2

g̃t(z) − X̃t
,

and indeed from the expression above we calculate

d
dt

g̃t(z) =
d
dt

(
gs+t

(
g−1

s (z + Xs)
)
− Xs

)
=

2

gs+t

(
g−1

s (z + Xs)
)
− Xs+t

=
2

g̃t(z) + Xs − Xs+t
.

We get that the driving process of (g̃t) is given by the increment of the driving process of (gt)

X̃t = Xs+t − Xs.

Moreover, since γ̃ has the same law P(H;0,∞) as γ, the driving process (X̃t) must have the same law as
(Xt). Also recall that the considerations so far were done conditionally on the initial segment γ|[0,s]
or equivalently conditionally on its driving function (Xt)t∈[0,s], so by we see that (X̃t) is independent
of (Xt)t∈[0,s]. The continuous process (Xt) therefore has independent and identically distributed
increments, so its law is necessarily that of a multiple of Brownian motion plus linear drift(

Xt

)
t≥0

in law
≡

(√
κBt + α t

)
t≥0
, κ ≥ 0, α ∈ R.

However, we now check that only α = 0 is consistent with the requirement that P(H;0,∞) is invariant
under the one parameter family of conformal self maps of (H; 0,∞). These self maps are the
scalings of the half-plane, z 7→ λz for λ > 0. To map complements of initial segments λγ[0, t] of
the scaled curve λγ hydrodynamically to the half-plane, one uses the map

z 7→ λ gt(z/λ).
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The Laurent expansion

λ gt(z/λ) = λ
(
z/λ +

2t
z/λ

+ · · ·
)

= z +
2λ2t

z
+ · · ·

reveals that the correct capacity parametrization of λγ is

γ(λ)(t) = λγ(λ−2t).

The capacity parametrized Loewner chain for λγ is (g(λ)
t ) with

g(λ)
t (z) = λ gλ−2t(z/λ).

The Loewner equation satisfied by this Loewner chain is obtained by calculating the time deriva-
tive

d
dt

g(λ)
t (z) = λλ−2 2

gλ−2t(z/λ) − Xλ−2t
=

2
λ gλ−2t(z/λ) − λXλ−2t

=
2

g(λ)
t (z) − λXλ−2t

,

from which we see that the driving process (X(λ)
t ) of (g(λ)

t ) is

X(λ)
t = λXλ−2t.

If Xt ≡
√
κBt + αt, then

X(λ)
t ≡ λ

(√
κBλ−2t + αλ−2t

)
≡ λ
√
κ
√

λ−2 Bt + λαλ−2t ≡
√
κBt + αλ−1t.

The scaled curve λγ would have a different law if α , 0, so the conformal invariance under self
maps of (H; 0,∞) requires α = 0 and finally

Xt ≡
√
κBt.

We have obtained a strong classification: if a random conformally invariant chordal curve
satisfies domain Markov property (and Loewner regularity), then the curve is the push forward
by conformal maps from the half-plane (H; 0,∞) of a curve whose Loewner driving process is a
multiple of Brownian motion. The requirements we imposed motivated by interfaces in critical
models of statistical mechanics characterized the law of a curve up to one parameter κ.

2.1.1 The chordal SLEκ
The conclusion obtained by Schramm’s principle is that there can be no other conformally invariant
chordal random curves with domain Markov property except the ones whose half-plane Loewner
chain has driving process (

√
κBt)t≥0 for some κ ≥ 0. We thus call the Loewner chain determined

by

g0(z) = z,
d
dt

gt(z) =
2

gt(z) − Xt
, Xt =

√
κBt

the chordal Schramm-Loewner evolution with parameter κ in (H; 0,∞), or briefly chordal SLEκ in
(H; 0,∞).

A priori the chordal SLEκ is a collection of conformal maps (gt)t≥0, where gt : H \ Kt → H is a
hydrodynamically normalized map from complements of random hulls Kt ⊂H, and the hulls are
growing: Kt ⊂ Ks for t < s. It is however natural to ask whether there is a curve γ : [0,∞)→H such
that Kt = γ[0, t], or if at least Kt is generated by a curve in the sense thatH \ Kt is the unbounded
component ofH \ γ[0, t]. The following result answers the latter question in the affirmative.

Theorem 2 (Rohde and Schramm, [RS05]) For the chordal SLEκ in (H; 0,∞), the limits

γ(t) = lim
ε↘0

g−1
t (Xt + iε)

exist and depend continuously on t ≥ 0. We call the curve γ the chordal SLEκ trace in (H; 0,∞). The
hulls (Kt) are generated by the trace.
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The proof is somewhat lengthy although not particularly difficult, and in fact the case κ = 8 needs
to be considered separately — it was completed in [LSW04]. The interested reader will find a
careful proof in the generic case κ , 8 in [Law10].

Admitting the above result on the chordal SLE trace, we from here on view the chordal SLEκ
as a random curve rather than a Loewner chain. This is certainly closer to the original motivation,
and it is worth emphasizing that the curve is the fundamental object, whereas the Loewner chain is
merely an artefact resulting from our description of the curve. Figures 2.4 — 2.9 portray simulated
chordal SLEκ traces for a few different values of κ.

Figure 2.4: Initial segment of a chordal SLE2 trace in (H; 0,∞).

We immediately remark the invariance under conformal self-maps of a domain (Λ; a, b). In the
following form it directly follows from the scaling calculation we did in the course of establishing
the Schramm’s principle in the chordal case.

Proposition 1 The law of chordal SLEκ in (H; 0,∞) is invariant under the scalings z 7→ λz, λ > 0.

It is also natural to ask for other properties of SLEs. The following result on the qualitative
properties divides the parameter regions of κ to three phases.

Theorem 3 (Rohde and Schramm, [RS05]) The (trace of the) chordal SLEκ in (H; 0,∞) is transient,

lim
t↗∞

γ(t) = ∞,

and it has the following properties according to the parameter κ ≥ 0

0 ≤ κ ≤ 4: The trace γ : [0,∞)→H is a simple curve, and γ(t) ∈H for all t > 0.

4 < κ < 8: For any z ∈ H almost surely there exists a t > 0 such that z ∈ Kt but z < γ[0, t], i.e.
the trace surrounds (or “swallows”) the point z without passing through it. Also γ[0,∞) ∩ R is
unbounded.

κ ≥ 8: The trace is a space filling curve, γ[0,∞) =H, i.e. the trace visits every point of the domain.

22



Random conformally invariant curves Kalle Kytölä

Figure 2.5: Initial segment of a chordal SLE8/3 trace in (H; 0,∞).

We will prove some of the statements in the next chapter, the others could be proven by quite
similar techniques.

The simulated pictures give some hints about the three phases, although due to the necessary
discretization of the curves for the simulation, the pictures have no genuinely different phases. It
is also somewhat challenging to reduce numerical errors in simulating SLEs, so from the pictures
it might not be clear that phase transitions occur at the precise values of the parameter κ.

One of the most notable quantitative properties of chordal SLEκ is the fractal dimension.
Looking at the simulated pictures, one may already guess that the fractal dimension of the curve
increases with the parameter κ.

Theorem 4 (Beffara, [Bef08]) For 0 ≤ κ ≤ 8, the Hausdorff dimension of γ, the trace of the chordal
SLEκ, is 1 + κ

8 . For κ > 4, the Hausdorff dimension of ∂Kt, the boundary of the SLE hull, is 1 + 2
κ .

It is not very difficult to obtain the sharp upper bound for the Hausdorff dimension, and in the next
chapter we present an argument which leads to the correct value of the dimension. A reasonably
accessible and careful proof of the entire result can be found in [Law10].

2.1.2 Other SLEs

It turns out that Schramm’s principle works rather well in a few of the simplest situtations besides
just the chordal case, notably the following:

• random curves in simply connected domains with three marked boundary points

• random curves in simply connected domains with a marked boundary point and a marked
interior point

In each of the two cases, Riemann mapping theorem guarantees that any two domains are con-
formally equivalent, and in these cases there are no conformal self maps of a domain — all three
degrees of freedom are needed to fix the marked points. We may thus expect that the conformal
invariance requirement is somewhat less restrictive, and indeed we will find that the classification
leaves room for an additional parameter.
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Figure 2.6: Initial segment of a chordal SLE3 trace in (H; 0,∞).

Exercise 4 Find a Schramm’s principle for Loewner regular conformally invariant curves with domain
Markov property in the following situation: the domain Λ ( C is simply connected, the curve start from
boundary point a ∈ ∂Λ, and the law P(Λ;a,b,c) depends also on two other marked boundary points b, c ∈ ∂Λ.
Hint: It is convenient to work in (S; 0,+∞,−∞), and use a Loewner chain corresponding to Loewner vector
fields coth( z−x

2 ) ∂z.

One could also consider other configurations, such as four or more marked boundary points
in simply connected domains, or more marked interior points, or multiply connected domains.
In each of these cases, however, there are conformal moduli, i.e. two generic such domains
are no longer conformally equivalent. The requirement of conformal invariance then has weaker
consequences, and an attempt of classification as above becomes less satisfactory — in applications
to statistical mechanics models one needs more input from the model itself for identifying the
appropriate random curves.
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Figure 2.7: Initial segment of a chordal SLE4 trace in (H; 0,∞).

Figure 2.8: Initial segment of a chordal SLE6 trace in (H; 0,∞).

Figure 2.9: Initial segment of a chordal SLE8 trace in (H; 0,∞).
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Figure 2.10: According to the value of the parameter κ, SLE is in one of the three qualitatively
different phases: the trace γ is either a simple curve, a self-touching curve, or a space filling curve.
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Chapter 3

Calculations with Schramm-Loewner
evolutions

In this minicourse we present two key techniques for calculating things with SLEs:

• Coordinate changes of SLEs

• Matringales from domain Markov property.

We give a few examples of each of the two techniques, chosen so that the calculations remain
simple enough but at the same time illustrate and emphasize some important properties of SLE
curves.

It is very common that the two techniques are combined together to derive an interesting
property of SLEs, like in the case of the restriction property of chordal SLE8/3 which can be found in
almost any introduction to SLEs. Often the calculations also allow for natural interpretations using
Girsanov’s theorem — a change of drift of the driving process resulting either from coordinate
changes or conditioning on an event can be seen as a weighting of the SLE probability measure
by a martingale. We will only comment on these interpretations briefly.

3.1 Coordinate changes of SLEs

In this section we consider descriptions of the same random curve by different Loewner chains. We
emphasize that the random curve is the fundamental object and its parametrization and Loewner
chain description are somewhat arbitrary choices, although certain choices are without a doubt
more convenient than others.

The article [?] does several coordinate changes systematically. The same idea and almost
identical calculations are fundamental for many different SLE problems, so variations on this
theme have appeared in the literature ever since SLEs were introduced.

The chordal SLE in half-plane with another endpoint

We have defined the chordal SLEκ in H from 0 to ∞ as the curve which generates the Loewner
chain with driving process (

√
κBt)t≥0. In any other domain (Λ; a, b), the chordal SLEκ is the image

of this curve by a conformal map from (H; 0,∞) to (Λ; a, b).
Let us consider the case where the domain is still the half-planeH, the starting point still the

origin, but the end point is some point b ∈ R \ {0} at finite distance. The chordal SLEκ in (H; 0, b)
is clearly a Loewner regular curve (up to the first time it disconnects b from infinity), so we can
give a description of it by a chordal Loewner chain.

So, let γ : [0,∞)→H be the chordal SLEκ trace in (H; 0,∞) parametrized by capacity as above,
and let γ̂(t) = µ(γ(t)), where µ is a conformal map from (H; 0,∞) to (H; 0, b). Such conformal maps
are Möbius transformations, and there is a one parameter family of them:

µ(z) =
b z

z − s
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where the parameter s ∈ R\{0} is the point whose image under µ is infinity. We will use a Loewner
chain that fixes infinity to describe the image curve γ̂ = µ ◦ γ, so in a sense we are observing the
original SLE curve in (H; 0,∞) from the point s.

Let (gt)t≥0 be the Loewner chain defining the chordal SLEκ in (H; 0,∞),

g0(z) = z,
d
dt

gt(z) =
2

gt(z) − Xt
, Xt =

√
κBt.

We want to find the Loewner chain that describes γ̂ = µ ◦ γ, the chordal SLEκ in (H; 0, b). To this
end, let ĝt be the hydrodynamically normalized conformal map from the unbounded component
Ĥt ofH \ γ̂[0, t] toH. Note that γ̂ is not yet parametrized by capacity, but it is not difficult to see
that it would only take a differentiable change of parametrization to achieve that. Let us denote
by st the half-plane capacity of the hull generated by γ̂[0, t], so that ĝt(z) = z+2st z−1 +O(z−2). Then
by Loewner regularity of the image curve γ̂, until the time that γ̂ disconnects b from∞we have

ĝ0(z) = z,
d
dt

ĝt(z) =
2 ṡt

ĝt(z) − ξt

for some driving process (ξt)t≥0, and with ṡt = d
dt st the speed of capacity growth of γ̂.

We already have at our disposal the conformal map gt ◦ µ−1 : Ĥt →H. The hydrodynamically
normalized conformal map ĝt : Ĥt → H is obtained by post-composing with an appropriate self
map µt of the half-plane,

ĝt = µt ◦ gt ◦ µ
−1.

One could give an explicit expression for the time dependent Möbius transformation µt, but it
turns out to be not necessary. We note that the driving process (ξt) is the image under the Loewner
chain (ĝt) of the tip of γ̂, or alternatively

ξt = ĝt

(
γ̂(t)

)
=

(
µt ◦ gt ◦ µ

−1
)(
µ(γ(t))

)
= µt(Xt).

Also since
µt = ĝt ◦ µ ◦ g−1

t ,

we can calculate the time derivative of µt(z). We just recall the Loewner equation for ĝt, and
observe that the time derivative of g−1

t is easily read from

0 =
d
dt

(z) =
d
dt

(
gt(g−1

t (z))
)

=
2

gt(g−1
t (z)) − Xt

+ g′t(g−1
t (z))

( d
dt

g−1
t (z)

))
,

with the result
d
dt

g−1
t (z) =

−2 (g−1
t )′(z)

z − Xt
.

Now we calculate the time derivative of µt as follows

d
dt
µt(z) =

d
dt

(
ĝt(µ(g−1

t (z)))
)

=
2 ṡt

ĝt(µ(g−1
t (z))) − ξt

+ (ĝt ◦ µ)′(g−1
t (z))

−2 (g−1
t )′(z)

z − Xt

=
2 ṡt

µt(z) − ξt
−

2µ′t(z)
z − Xt

.

The Möbius transformation µt :H→H, and its time derivative as well, is regular at the point Xt
on the boundary (the only pole of µt is at the point gt(s), so that ĝt = µt ◦ gt ◦ µ−1 fixes infinity).
Therefore, the poles at z→ Xt of the two terms in d

dtµt(z) must cancel. We do a Laurent expansion
for the first term, keeping in mind that µt(Xt) = ξt,

2 ṡt

µt(z) − ξt
=

2 ṡt(
ξt + µ′t(Xt) (z − Xt) + 1

2µ
′′

t (Xt) (z − Xt)2 + · · ·
)
− ξt

=
2 ṡt

µ′t(Xt) (z − Xt)
−

ṡt µ′′t (Xt)
µ′t(Xt)2 + O(z − Xt).
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The second term is even easier

−
2µ′t(z)
z − Xt

=
−2µ′t(Xt)

z − Xt
− 2µ′′t (Xt) + O(z − Xt).

For the poles to cancel, we must have

ṡt = µ′t(Xt)2.

This is of course intuitive. On the one hand, ṡt is the speed of capacity growth of the curve γ̂ at
time t. On the other hand, a small piece of the curve γ̂[t, t + ∆t] becomes, after mapping to the
half-plane by ĝt, the image of gt(γ[t, t + ∆t]) under µt. But gt(γ[t, t + ∆t]) is a small piece of curve in
H of capacity ∆t, and it is located near Xt. So µt essentially scales this piece by the factor µ′t(Xt) and
the image has capacity approximately µ′t(Xt)2 ∆t, which is the asserted capacity growth st+∆t − st.

We made the expansions at z → Xt of the two terms in d
dtµt(z) up to constant terms, so we

immediately read the time derivative of µt at the point Xt,( d
dt
µt

)
(Xt) = −3µ′′t (Xt).

This facilitates the determination of the driving process (ξt) of the Loewner chain (ĝt) since
ξt = µt(Xt), as we observed earlier. Now, recalling that dXt =

√
κdBt, the Itô derivative of ξt is

dξt = d
(
µt(Xt)

)
= µ′t(Xt)

√
κ dBt +

κ
2
µ′′t (Xt) dt +

( d
dt
µt

)
(Xt) dt

= µ′t(Xt)
√
κ dBt +

κ − 6
2

µ′′t (Xt) dt.

We may further remark that any Möbius transformation ν has the property

ν′(z)2

ν′′(z)
=

1
2

(
ν(z) − ν(∞)

)
.

Applied to µt at Xt, noting µt(∞) = ĝt(b), this gives

µ′′t (Xt)
µ′t(Xt)2 =

2
ξt − ĝt(b)

,

which allows us to simplify the Itô derivative of ξt to

dξt =
√
κ ṡt dBt +

κ − 6
ξt − ĝt(b)

ṡt dt.

In order to have a standard Loewner chain description of γ̂, the chordal SLEκ in (H; 0, b), we
should use s = st as the time parameter. Denote by s 7→ ts the inverse function of t 7→ st. Then the
Loewner equation takes the usual form

d
ds

ĝts (z) =
2

ĝts (z) − ξts

and the change of time parametrization of the driving process leads to

dξts =
√
κ dB̂s +

κ − 6
ξt − ĝt(b)

ds,

where (B̂s)s≥0 is a standard Brownian motion with respect to the time parameter s. This displays
that the change of the chordal SLE endpoint to b excerts a drift on the driving process, whose
strength is inversely proportional to the conformal distance of the tip and the endpoint. The sign
and strength of the drift depend on κ, and at κ = 6 the additional drift vanishes.1

1This particular phenomenon at κ = 6 gets a natural interpretation from a percolation result of Smirnov. The chordal
SLE6 is the scaling limit of exploration path of critical percolation — and the exploration path doesn’t feel where its
declared endpoint is.
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The Loewner chain (ĝts )s≥0 is of the form that is usually taken as definition of the SLE variant
SLEκ(ρ) in the domain (H; 0, b,∞), with the particular value ρ = κ− 6 here. Below we will discuss
the Schramm’s principle applied to simply connected domains with three marked boundary
points, and conclude that the most general (Loewner regular) conformally invariant random
curves with domain Markov property are SLEκ(ρ), for κ ≥ 0 and ρ ∈ R. In view of this fact, the
result of the coordinate change had to be of this form.

The process SLEκ(κ − 6) is also instrumental for the construction of so called conformal loop
ensembles via an exploration tree, but for this purpose the process has to be continued in a
slightly nontrivial fashion beyond the first time that the curve disconnects the target point b from
the observation point ∞. This is beyond the scope of the present minicourse, but the interested
reader may consult the article [She09] for further information.

SLEs with three marked boundary points

In an earlier exercise, the following version of Schramm’s principle was considered. To each
simply connected domain Λ ( C and three boundary points a, b, c ∈ ∂Λ one associates a probability
measure P(Λ;a,b,c) on Loewner regular curves starting from a and ending on the arc b̂c, and such
that conformally invariance holds in the sense that f∗P(Λ;a,b,c) = P( f (Λ); f (a), f (b), f (c)) for f a conformal
map. The classification result is that such curve in (S; 0,+∞,−∞) must be described by a Loewner
chain

h0(z) = z,
d
dt

ht(z) = coth
(ht(z) − Vt

2

)
, Vt =

√
κBt + α t,

for some κ ≥ 0 and α ∈ R. In other domains the curve can be defined by conformal transport,
as the image of the curve in (S; 0,+∞,−∞) under a conformal map f : S → Λ such that f (0) = a,
f (+∞) = a, f (−∞) = c.

For easier comparison with the chordal SLE, let us take the curve in the upper half-plane so
that it starts from the origin and one of the marked points is at infinity. To obtain the curve in
(H; 0,∞, c), where c < 0, we use the conformal map f from S toH such that f (0) = 0, f (+∞) = ∞
and f (−∞) = c.

A formula for that map is
f (z) = |c|(ez

− 1).

Let η : [0,∞) → S be the curve in (S; 0,+∞,−∞) and consider the image γ(t) = f (η(t)). The
component of S \ η[0, t] which contains both ±∞ is denoted by St and the Loewner chain (ht)t≥0
consists of conformal maps ht : St → S normalized so that ht(z) − z → ±t as z → ±∞. The curve
γ is Loewner regular, too, and Ht = f (St) is the component of H \ γ[0, t] which contains infinity
(and c). Again, the curve γ as we define it is not parametrized by half-plane capacity, but it
takes a C1 reparametrization to achieve this. Denote again by st half the half-plane capacity of
the hull generated by γ[0, t], so that if gt : Ht → H is the hydrodynamical conformal map, then
gt(z) = z + 2stz−1 + O(z−2). The maps (gt) satisfy the Loewner flow equation

d
dt

gt(z) =
2 ṡt

gt(z) − Xt
,

where ṡt = d
dt st is half the speed of capacity growth and Xt is the image of the position of local

growth
Xt = gt(γ(t)) = gt( f (η(t))).

We have at our disposal one conformal map from Ht toH, namely the composition f ◦ ht ◦ f−1,
but it is not hydrodynamically normalized. The hydrodynamically normalized maps can be
obtained by post-composing with the appropriately chosen conformal self map ofH,

gt = µt ◦ f ◦ ht ◦ f−1,

where µt : H → H is a Möbius transformation. In this situation µt preserves infinity, so we
can write µt(z) = at z + bt, and it turns out not to be necessary to write down at and bt explicitly
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(although it is not difficult to do so, and the reader should perhaps nevertheless do that as an
exercise). For brevity, let us also denote by

ϕt = µt ◦ f = gt ◦ f ◦ h−1
t

the conformal map S→Hwhich is important for us at time t. This map in particular gives us the
driving process of γ,

Xt = ϕt(Vt).

We will next calculate the time derivative of the map ϕt. For this purpose we need the time
derivative of h−1

t , and we leave it as an easy exercise for the reader to check that

d
dt

h−1
t (z) = −(h−1

t )′(z) coth
(z − Vt

2

)
.

Using this and the Loewner flow equation for gt, we write the time derivative we are interested
in as

d
dt
ϕt(z) =

d
dt

(
gt( f (h−1

t (z)))
)

=
( d
dt

gt

)
( f (h−1

t (z))) + (gt ◦ f )′(h−1
t (z)))

( d
dt

h−1
t

)
(z)

=
2 ṡt

gt( f (h−1
t (z))) − Xt

− (gt ◦ f )′(h−1
t (z))) (h−1

t )′(z) coth
(z − Vt

2

)
=

2 ṡt

ϕt(z) − Xt
− ϕ′t(z) coth

(z − Vt

2

)
.

Taylor expansion of the two terms at z = Vt like before gives

d
dt
ϕt(z) =

1
z − Vt

( 2 ṡt

ϕ′t(Vt)
− 2ϕ′t(Vt)

)
−

ṡt

ϕ′t(Vt)2 − 2 ϕ′′t (Vt) + O(z − Vt).

The maps ϕt as well as their derivatives are regular at the boundary point Vt, so we require the
pole to cancel, and obtain the equation

ṡt = ϕ′t(Vt)2,

which again is the intuitive property resulting from the change of capacity under the approximate
scaling that ϕt does in neighborhoods of Vt. So we have an expression for the (explicit) time
derivative of ϕt at the point Vt ( d

dt
ϕt)(z) = −3ϕ′′t (Vt) + O(z − Vt).

We are in a position to compute the increment of Xt = ϕt(Vt) by Itô’s formula, recalling also
dVt =

√
κdBt + αdt. The result is

dXt = d
(
ϕt(Vt)

)
=

( d
dt
ϕt)(Vt) dt + (

√
κ dBt + α dt) ϕ′t(Vt) +

κ
2

dt ϕ′′t (Vt)

=
√
κ ṡt dBt +

(κ − 6
2

ϕ′′t (Vt)
ϕ′t(Vt)2 + α

1
ϕ′t(Vt)

)
ṡt dt.

We leave it for the reader to verify using the expressions we have found so far, that

ϕ′′t (Vt)
ϕ′t(Vt)2 =

1
Xt − gt(c)

=
1

ϕ′t(Vt)
.

Then we may perform a time change to the the half-plane capacity time parameter s, under which
we have the ordinary

d
ds

gts (z) =
2

gts (z) − Xts

.
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The driving process becomes

d(Xts ) =
√
κ dB̃s +

(κ − 6
2

+ α
) 1

Xts − gts (c)
ds.

The driving process of the image curve is the one that defines SLEκ(ρ) in (H; 0,∞, c), with
ρ = κ−6

2 + α. We have thus shown by a Schramm’s principle (the exercise with three marked
boundary points) and a coordinate change that the most general Loewner regular conformally
invariant random curve which satisfies the domain Markov property and depends on three
boundary points of a simply connected domain, is SLEκ(ρ), for κ ≥ 0 and ρ ∈ R.

As a notable example, the curve η would have been a chordal SLEκ in (S; 0,+∞) if α = 6−κ
2 .

Reflecting the sign of the drift α, the chordal SLEκ in (S; 0,−∞) would have α = κ−6
2 , and coming

back to the half-plane picture, the chordal SLEκ in (H; 0, c) corresponds to ρ = κ− 6 as we already
found before.

3.2 SLE martingales constructed by domain Markov property

One of the most important ways of calculating things with SLEs consists in finding a martingale
whose end value is the quantity of interest. The domain Markov property provides a natural way
of constructing martingales that compute relevant quantities. We will illustrate this technique
in two example cases. The first example is a computation of the probability that the chordal
SLEκ touches a given boundary arc. This case explains first of all why κ = 4 is the point of
phase transition from simple curves to self-touching curves, and it also gives a certain crossing
probability that is interesting in the statistical mechanics models. The second example concerns
the dimension of the SLE trace. Here we in fact only state a property which gives an upper bound
for the Hausdorff dimension, and furthermore we only give a heuristic derivation, which could
be made rigorous by slightly altering the definitions and putting in a little bit of extra work. The
rigorous derivation can be found in the literature, but the heuristic derivation is shorter and at
least as enlightening as the proper one.

Boundary visits of chordal SLE

Let γ(Λ;a,b) denote the chordal SLEκ trace in the domain Λ from a ∈ ∂Λ to b ∈ ∂Λ. Our goal is to
find an expression for

P
[
γ(Λ;a,b)

∩ A , ∅
]
,

where A ⊂ ∂Λ \ {a, b} is an arc of the boundary of the domain. By conformal invariance, it is
sufficient to find an answer in the reference domain (H; 0,∞).

The phase transition at κ = 4

The first thing we show is that the chordal SLEκ only touches the boundary when κ > 4. If the
chordal SLEκ trace γ in (H; 0,∞) touches the boundary at a point x ∈ (0,∞), then all the points
x′ ∈ (0, x) are disconnected from infinity by the curve, and they belong to the SLE hull after the
time s such that γ(s) = x. Furthermore, by the scale invariance stated in Proposition 1, either all
x′ > 0 have a positive probability to become part of the hull, or no x′ > 0 ever becomes a part of
the hull. The question of whether the trace can touch the boundary at any other point but the
starting point a = 0 and the end point b = ∞, is equivalent to whether the boundary points can
become a part of the hull.

Recall that the hull Ks is defined as the set of points z ∈H such that the Loewner equation

d
dt

Zt =
2

Zt − Xt

with initial condition
Z0 = z ∈H
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has no solution up to time s, i.e. that the denominator Dt = Zt − Xt becomes zero before the
times s (or at least its values accumulate at 0). The denominator is governed by the Itô stochastic
differential equation

dDt =
2

Dt
dt −

√
κ dBt.

This is in fact just a time change of the familiar Bessel process: if t(u) = u/κ, then with respect to
the time parameter u we have

dDt(u) =
2/κ
Dt(u)

du + dB̃u,

where (B̃u)u≥0 is a standard Brownian motion: B̃u = −
√
κBu/κ. Recall that the Bessel process (βt)

of dimension d is defined by the Itô stochastic differential equation

dβt =
(d − 1)/2

βt
dt + dBt,

and for integer d it corresponds to the absolute value of the d-dimensional Brownian motion. The
Bessel process hits the origin in finite time (when started away from the origin) if and only if d < 2.
Comparing the equations we equate d = 1 + 4/κ, and correspondingly the denominator process
Dt hits zero if and only if κ > 4.

We have shown that the chordal SLEκ trace touches the boundary if and only if κ > 4. The
reader may judge to which extent the pictures 2.4 – 2.9 plausibly illustrate this phenomenon. Let us
furthermore remark that SLE’s touching the boundary is equivalent to self touching of the curve.
Indeed, suppose that the chordal SLEκ trace γ in (H; 0,∞) has a double point γ(t1) = γ(t2) for
0 ≤ t1 < t2. Pick s ∈ (t1, t2), and consider conditioning on γ[0, s]. By the domain Markov property,
the conditional law of γ[s,∞) is the law of chordal SLEκ in (Ht;γ(s);∞). But if γ(t2) = γ(t1), then
the point γ(t2) on the curve γ[s,∞) is not in the interior of the domain Ht, which means that the
chordal SLEκ touches the boundary of its domain (by conformal invariance it doesn’t matter in
which domain this happens). Thus, admitting the existence of the chordal SLE trace, we have
shown the first phase transition stated in Theorem ??: for κ ≤ 4 the trace is a simple curve which
doesn’t touch the boundary of the domain, and for κ > 4 the trace has double points and touches
the boundary.

The martingale and the probability to touch a boundary interval

Let us then compute the probability for the chordal SLEκ, κ > 4, to touch a boundary arc. The
equivalent question in the half-plane is to compute

P(z−, z+) = P
[
γ(H;0,∞)

∩ [z−, z+] , ∅
]
,

where 0 < z− < z+, say (intervals on the negative real axis are handled similarly). The technique
to do so relies on finding a martingale whose end value is the indicator of the event that the
boundary interval is touched.

The conditional expected values of any random variable, conditioned on the initial segments
γ(H;0,∞)[0, t], t ≥ 0, constitute a martingale by construction. In particular, the conditional probabil-
ities

Mt = P
[
γ(H;0,∞)

∩ [z−, z+] , ∅
∣∣∣ γ(H;0,∞)[0, t]

]
form a martingale (Mt).

By the domain Markov property, given the initial segment γ(H;0,∞)[0, t], the remaining part
γ(H;0,∞)[t,∞) of the curve has the law of the chordal SLEκ trace in (Ht;γ(t),∞), so we can write

Mt = P
[
γ(Ht;γ(t),∞)

∩ [z−, z+] , ∅
]
.

Furthermore, we may use the conformal map z 7→ gt(z)−Xt from (Ht;γ(t),∞) back to the reference
domain (H; 0,∞), and by conformal invariance of SLE the image curve gt ◦ γ|[t,∞) −Xt has the law
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of a chordal SLEκ in (H; 0,∞). The remaining part γ[t,∞) touches the interval [x1, x2] if and only if
the image curve touches the interval [gt(z−)−Xt, gt(z+)−Xt], and thus the martingale reads simply

Mt = P
[
γ(H;0,∞)

∩ [gt(z−) − Xt, gt(z+) − Xt] , ∅
]

= P(gt(z−) − Xt, gt(z+) − Xt).

Thus, the domain Markov property and conformal invariance allowed us to express the martingale
as a function of two stochastic processes, essentially the Loewner flows of the points z− and z+

(translated by an amount determined by the driving process Xt). In fact Proposition 1, the scale
invariance of the chordal SLEκ, allows us to simplify further, since the probability of touching an
interval [z−, z+] can only depend on the ratio z−/z+

P(z−, z+) = p
(z−

z+

)
.

For the moment, let us suppose that the function p : (0, 1)→ [0, 1] in the expression

Mt = p
( gt(z−) − Xt

gt(z+) − Xt

)
is nice enough, say twice continuously differentiable, so that we can apply Itô’s formula. These
types of assumptions become justified in the end of the calculation in an almost automatical
manner. Recall that the numerator and denominator in the ratio individually follow time changed
Bessel processes, both driven by the same Brownian motion

dZ±t =
2

Z±t
−
√
κ dBt.

Computing the Itô derivative of Mt = p(Z−t /Z
+
t ) is routine, and the result is

dMt = dt
( Z−t − Z+

t

2 (Z+
t )2 Z−t

(
(−4 + (2κ − 4)rt) p′(rt) − κ rt (1 − rt) p′′(rt)

))
+ dBt

(
· · ·

)
,

where we have denoted the ratio by rt = Z−t /Z
+
t . We only care about the dt term, because if (Mt) is

to be a martingale, this term has to vanish. Now requiring the dt term to vanish for generic values
of the ratio rt amounts to the differential equation

(−4 + r(2κ − 4)) p′(r) − κ(1 − r)r p′′(r) = 0.

Integrate to get
p′(r) = const. × r−

4
κ (1 − r)2 4−κ

κ ,

and thus

p(r) = c1 + c2

∫ 1

r
u−

4
κ (1 − u)2 4−κ

κ du.

The differential equation has a two dimensional solution space, but of course there are boundary
conditions that the correct solution must satisfy. When the ratio r = z−/z+ tends to zero, scale
invariance tells us that the probability that the SLE curve touches the interval must become one
if the curve is ever to touch the boundary. Similarly, when r tends to one, the interval shrinks to
a point and the probability to touch the interval should tend to zero (unless the curve visits each
point, which is indeed what would happen for κ ≥ 8). The constants are thus determined

c1 = 0, c2 =
1∫ 1

0 u−
4
κ (1 − u)2 4−κ

κ du
,

although the latter only makes sense if the integral is convergent, which indeed requires κ > 4
(for convergence at u = 0) and κ < 8 (for convergence at u = 1), and we have found

p(r) =
4
√
π

28/κ Γ( 8−κ
2κ ) Γ(κ−4

κ )

∫ 1

r
u−

4
κ (1 − u)2 4−κ

κ du.
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The standard way to finish the argument, and in particular to get rid of the so far unjustified
assumption that p is twice continuously differentiable, is to reverse the logic of the above reasoning.
We define p by the formula we just found, and then notice that the process

t 7→ p
(Z−t
Z+

t

)
is a local martingale (by Itô’s formula) — not surprisingly as this is what we believe Mt is! The
process is furthermore bounded (the values of p are between zero and one), so it is a uniformly
integrable martingale up to any stopping time until which both Z±t are well defined. Take τz− to
be the stopping time at which z− becomes a part of the hull — this is also the first time at which
the SLE trace γ touches the interval [z−,∞). There are two possibilities regarding z+. If the point
γ(τz− ) is on the interval [z−, z+], then the point z+ does not become a part of the hull yet, and the
ratio Z−t /Z

+
t tends to zero (the denominator remains non-zero, while the numerator tends to zero).

In this case the value of our uniformly integrable martingale tends to p(0) = 1. If, however, the
point γ(τz− ) is on the interval (z+,∞), then easy estimates of harmonic measure show that the ratio
Z−t /Z

+
t tends to one. In this case the value of our uniformly integrable martingale tends to p(1) = 0.

We conclude that the endvalue of the uniformly integrable matringale is the indicator of the event
we are interested in

lim
t↗τz−

p
(Z−t
Z+

t

)
=

{
1 if γ touches [z−, z+]
0 if γ doesn’t touch [z−, z+] ,

so with the optional stopping theorem we have derived the probability we were interested in

P
[
γ(H;0,∞) touches [z−, z+]

]
= E

[
p
(Z−τz−

Z+
τz+

)]
= E

[
p
(Z−0
Z+

0

)]
= p

(z−

z+

)
.

Particular case: the Cardy’s crossing probability formula

0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0

p

Figure 3.1: A plot of the boundary touching probability at κ = 6.
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Ly

Lx

Figure 3.2: In percolation theory one is interested in the box crossing events, that is, existence of a
connected open cluster touching the left and right sides of an Lx × Ly rectangle.

The dimension of the SLE trace

As a second application of the same technique, let us consider the determination of the fractal
dimension of the SLE curve. Below, γ denotes a chordal SLEκ trace.

The question of dimension of the curve is intimately related to the probability that the curve
gets close to a given point. For z ∈ C and ε > 0 denote by Bε(z) = {w ∈ C : |w − z| < ε} the ball of
radius ε centered at z. We will argue that

P
[
γ ∩ Bε(z) , ∅

]
∼ εα, (3.1)

with some α > 0 which depends on κ, but which is the same for all z ∈ Λ. The number α gives us
the dimension of the curve at least in the following sense. If we cover an open bounded A ⊂ Λ by
nε ∼ ε−2 balls of radius ε, with centers z1, z2, . . . , zn, then the expected number of these balls that
the curve visits is

E
[
#{ j = 1, 2, . . . ,nε : γ ∩ Bε(z j) , ∅}

]
=

nε∑
j=1

P
[
γ ∩ Bε(z j) , ∅

]
∼ nε εα ∼ εα−2.

If the fractal dimension of the curve is d, then the typical number of ε-balls in A that the curve
visits should be of order ε−d, and in this sense the fractal dimension is

d = 2 − α.

In fact an estimate of the type of Equation (3.1) easily leads to an (almost sure) upper bound
dimHausdorff(γ) ≤ 2−α on the Hausdorff dimension of γ. To obtain the corresponding (almost sure)
lower bound is much more involved — this was originally achieved by Beffara in [Bef08], and the
interested reader will find a relatively clear proof in the lecture notes of Lawler [Law10].

We will give a heuristic derivation of the asymptotics of the probability to visit a small ball,
in the spirit of Equation (3.1). It would not be very difficult, with a minor modification of the
definitions, to fill in the gaps in the argument and to make it rigorous. However, the technicalities
involved would take us a bit too far from the main point, so here we content ourselves with the
idea and refer the interested reader to [RS05, Bef08, Law10] for the details.

We denote by γ(Λ;a,b) the chordal SLEκ trace in domain (Λ; a, b), and we again mostly work in
our reference domain (H; 0,∞). Let us assume that there exists and α > 0 such that the limit

lim
ε↘0

ε−α P
[
γ(H;0,∞)

∩ Bε(z) , ∅
]

= G(z)

exists and is positive for all z ∈ H. Such a function G(z), giving the z dependence of the constant
in front of the asymptotic visiting probability of small balls, is sometimes called the chordal SLEκ
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Figure 3.3: For an SLE6 curve started from a corner of an L × 1 rectangle, the probability to touch
one of the opposite sides of the rectangle before the other, is the scaling limit of percolation crossing
probabilities.

Green’s function in the domain (H; 0,∞). We immediately note that by the scale invariance,
Proposition 1, for any λ > 0 we have

P
[
γ(H;0,∞)

∩ Bε(z) , ∅
]

= P
[
γ(H;0,∞)

∩ Bλε(λz) , ∅
]
,

so after multiplying by ε−α and taking the limit we see that

G(z) = λα G(λz).

Thus we can write
G(x + iy) = y−α H

(x
y

)
.

Let us then construct the martingales appropriate for the problem. By definition, the condi-
tional probabilities

P
[
γ(H;0,∞)

∩ Bε(z) , ∅
∣∣∣ γ(H;0,∞)[0, t]

]
form a martingale, so let us define, for ε > 0 the martingales

M(ε)
t = ε−α P

[
γ(H;0,∞)

∩ Bε(z) , ∅
∣∣∣ γ(H;0,∞)[0, t]

]
which take into account the asymptotics of the probabilities. By the domain Markov property,
conditionally on the initial segment γ(H;0,∞)[0, t], the law of γ(H;0,∞)[t,∞) is that of γ(Ht;γ(t),∞), so we
have

M(ε)
t = ε−α P

[
γ(Ht;γ(t),∞)

∩ Bε(z) , ∅
]
.

Furthermore, using the conformal mapping z 7→ gt(z) − Xt from (Ht;γ(t),∞) to (H; 0,∞), and
conformal invariance of chordal SLE, we can write

M(ε)
t = ε−α P

[(
gt(γ(Ht;γ(t),∞)) − Xt

)
∩

(
gt(Bε(z) − Xt

)
, ∅

]
= ε−α P

[
γ(H;0,∞)

∩

(
gt(Bε(z) − Xt

)
, ∅

]
.
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Observe that the image of a small ball Bε(z) under a conformal map is approximately a small ball
at the image point, with radius multiplied by the absolute value of the derivative of the map.
Therefore we may write an approximation

M(ε)
t ≈ ε−α P

[
γ(H;0,∞)

∩ B|g′t(z)| ε(gt(z) − Xt)
)
, ∅

]
,

which would in fact be an equality had we used an appropriate conformally invariant notion of
radius. Considering the limit ε↘ 0 of the martingales, Mt = limε M(ε)

t , the approximation above
says that the process

Mt = |g′t(z)|α G
(
gt(z) − Xt

)
should be a local martigale. As before, we can now write the Itô derivative and obtain a differential
equation for G. Indeed, first note that Zt = gt(z) − Xt satisfies the (complex) Bessel type equation

dZt =
2
Zt

dt −
√
κ dBt,

or in terms of the real and imaginary parts Zt = Rt + i It

dRt =
2Rt

R2
t + I2

t

dt −
√
κ dBt, dIt =

−2It

R2
t + I2

t

dt.

We also need the time derivative of |g′t(z)|, which is easiest to get in the logarithmic form: one
reckognizes the derivative of the Loewner equation as

d
dt

log
(
g′t(z)

)
=

−2
(gt(z) − Xt)2 ,

and then one takes the real part

d
(

log |g′t(z)|
)

=
−2(R2

t − I2
t )

(R2
t + I2

t )2
dt.

Taking into account the scale invariance G(x + iy) = y−α H(x/y) our local martingale reads

Mt =
( |g′t(z)|

It

)α
H
(Rt

It

)
.

Applying Itô’s formula we get

dMt =
8 |g′t(z)|α

I2+α
t

(
1 + r2

t

)−2 {
α H(rt) + (1 + r2

t ) rt H′(rt) +
κ
8

(1 + r2
t )2 H′′(rt)

}
dt +

(
· · ·

)
dBt,

where we have denoted the ratio of real and imaginary parts by rt = Rt
It

. Because the process is a
local martingale, the dt term has to vanish and therefore we require

α H(r) + (1 + r2) r H′(r) +
κ
8

(1 + r2)2 H′′(r) = 0.

Solutions to this differential equation exist for any α, and correspondingly there are local martin-
gales of the desired form. However, the solution we are interested in should be positive. Once we
observe that the equation is an eigenvalue equation of Sturm-Liouville type, the eigenvalue being
−α, and we recall that a positive solution must have the unique extremal eigenvalue, the number
α can be determined. We guess that the positive solution is of the form

H(r) = (1 + r2)β,

and then solve for β and α

β =
κ − 8
2κ

, α = 1 −
κ
8
.
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The result makes sense when α ≥ 0, that is, for κ ≤ 8.
We in particular get the fractal dimension of the chordal SLEκ trace stated in Theorem ??

d = 2 − α = 1 +
κ
8
,

and we have even found how the probability to visit small balls depends on the position of the
ball

P
[
γ(H;0,∞)

∩ Bε(x + i y) , ∅
]
∼

(ε
y

)1− κ8 1

(1 + x2

y2 )
8−κ
2κ

(3.2)

=
(ε

y

)1− κ8
(

sin(arg(x + i y))
) 8−κ

κ .

Not surprisingly, for κ < 8, among balls whose center is at a given height y, the visiting probability
gets smaller when the center of the ball gets further away from the starting point 0 of the SLE
curve. The limiting case κ = 8 suggests a constant probability to visit any ball, and indeed a more
careful analysis would show that the SLE trace then passes through any point almost surely.
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