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Foreword

These lecture notes are primarily intended for the regular M.Sc. level course MS-
E1600 Probability Theory at Aalto University.

The principal aim of the course is to familiarize the students with the mathematical
foundations of randomness. The reasons why one should study such a theoretical
formalism vary according to the ambitions of the individual. The development of a
logically solid theory of random phenomena should perhaps be seen as worthwhile in
its own right. We will stick strictly to the fundamentals, so this course offers quite
ideal practice on precise mathematical reasoning, including formulating proofs. A
more pragmatic motivation might be that these theoretical foundations are necessary
for following many subsequent courses in probability and statistics, and for under-
standing more advanced topics. In any case, whether one plans to work in statistics,
machine learning, or pure mathematics, relevant research literature often requires
familiarity of this theory as a language, e.g., being able to distinguish between con-
vergence in probability, convergence in distribution, convergence almost surely, or
other notions of convergence of random variables. The present course attempts to
provide just enough of the core mathematical theory to develop an appreciation of
such differences.

The course in its current format is very concise: 12 lectures and six sets of exercises
during a six weeks period. One of the regrettable consequences is that there is
almost no time to enter any of the interesting applications of the theory that is being
developed. There are other courses devoted to more specific topics in probability
which build on the theoretical foundations of the present course and come closer to
actual applications.

In order to be prepared to internalize the theory during this concise course, the
student must have a little bit of mathematical maturity to begin with. Besides
some calculus of infinite series, differentiation, and integration, it is crucial to have a
working knowledge of set theory, especially the notion of countability, and a little bit
of familiarity with continuous functions in the context of metric spaces or topological
spaces, say. Appendices A and B serve as quick reminders of such prerequisites, and
before engaging in this text beyond the introduction, one should make sure to grasp
their content.

The material in the chapters which correspond to the 12 lectures has been kept to
minimum. A number of basic results that do not fit in these are left to Appen-
dices C – F. The material in the main chapters can be considered as the minimum
of what the students are expected to internalize during the short course, while the
material in these appendices is something that one can expect to encounter soon
after this basic course, and it can then be quickly picked up with a little bit of
further effort.

There is already a vast number of textbooks in probability theory, and the con-
tents of mathematics courses at advanced B.Sc. or early M.Sc. level have become
quite standard. For the students of the present course we recommend in particu-
lar [JP04], because it is a very concise account of probability theory quickly covering
very much the same topics as the present course. A slightly more challenging alterna-
tive is [Wil91], which is a remarkably well-written, mathematically elegant account
of probability that manages incorporate fascinating and important probabilistic in-
sights into a brief text. Both the theory and a significant number of interesting
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and relevant examples and applications are covered in [Dur10]. The present lecture
notes borrow shamelessly from all of the above sources. And the purpose of these
notes is not to replace the best textbooks on the subject, but rather to provide the
students an account that follows the structure and scope of the concise six weeks
probability theory course as closely as possible.

The structure of these notes is largely based on an earlier version of the course
taught by Lasse Leskelä, and on parts of the textbook [Wil91]. I have received
very valuable comments, especially by Joona Karjalainen, Alex Karrila, and Niko
Lietzén, as well as many students, which have lead to improvements to the notes.
I am, of course, responsible for all remaining mistakes. Still, you could help me —
and perhaps more importantly the students who will use this material — by sending
comments about mistakes, misprints, needs for clarification, etc., to me by email
(kalle.kytola@aalto.fi).
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Glossary of notations

For convenience, we provide here a list of some of the used mathematical notation
and abbreviations, together with brief explanations or references to the appropriate
definitions during the course.

Numbers

Z the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

Z≥0 the set of non-negative integers Z≥0 = {0, 1, 2, 3, . . .}

N the set of natural numbers N = {1, 2, 3, 4, . . .}

Q the set of rational numbers Q =
{
n
m

∣∣ n,m ∈ Z, m 6= 0
}

R the set of real numbers

C the set of complex numbers C =
{
x+ iy

∣∣ x, y ∈ R
}

i imaginary unit i =
√
−1 ∈ C

(a, b) open interval (a, b) =
{
x ∈ R

∣∣ a < x < b
}

[a, b] closed interval [a, b] =
{
x ∈ R

∣∣ a ≤ x ≤ b
}

(a, b] (a, b] =
{
x ∈ R

∣∣ a < x ≤ b
}

[a, b) [a, b) =
{
x ∈ R

∣∣ a ≤ x < b
}

Logical notation

⇒ logical implication (“only if”) P ⇒ Q means:
if P is true then also Q is true

⇐ reverse logical implication (“if”) P ⇐ Q means:
if Q is true then also P is true

⇔ logical equivalence P ⇔ Q means:
P is true if and only if Q is true

∀ “for all” (logical quantifier)

∃ “there exists” (logical quantifier)

s.t. such that

iff if and only if
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Set operations

s ∈ S s is an element of set S

#S number of elements in the set S

⊂ subset relation A ⊂ B means:
if x ∈ A then also x ∈ B

∅ the empty set

P power set / collection of all subsets P(S) = {A ⊂ S}

∪,
⋃

union A ∪B =
{
x
∣∣ x ∈ A or x ∈ B

}⋃
j Aj =

{
x
∣∣ x ∈ Aj for some j

}
∩,
⋂

intersection A ∩B =
{
x
∣∣ x ∈ A and x ∈ B

}⋂
j Aj =

{
x
∣∣ x ∈ Aj for all j

}
× Cartesian product A×B =

{
(a, b)

∣∣ a ∈ A, b ∈ B}
\ set difference A \B =

{
x
∣∣ x ∈ A, x /∈ B}

(· · · )c complement of · · ·

lim sup lim supnAn :=
⋂
m∈N

⋃
n≥mAn

lim inf lim infnAn :=
⋃
m∈N

⋂
n≥mAn

Probability and measure theory

Ω sample space / the set of outcomes

ω an outcome ω ∈ Ω

F sigma-algebra / the collection of events see Lecture I

P probability measure see Lecture II

E expected value see Lecture VII

IA indicator of event A

⊥⊥ independent see Lecture V

a.s. almost surely / with probability one Remark II.6
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Specific sigma algebras

S generic sigma-algebra on a set S Definition I.1

F generic sigma-algebra on the sample space Ω

B(X) Borel sigma-algebra on a topological space X Definition I.10

B = B(R) Borel sigma-algebra on the real line R Section I.3.1

T∞ tail sigma-algebra Equation (VI.4)

σ(· · · ) the sigma-algebra generated by · · · Definitions I.6 and IV.1

Specific measures

µ generic measure on measurable space (S,S ) Definition II.4

µ# counting measure (on some set) Example II.10

P generic probability measure on sample space Ω Definition II.5

Λ Lebesgue measure on the real line R Example II.12

Spaces of random variables

mF random variables measurable w.r.t. F

mF + non-negative random variables measurable w.r.t. F

sF simple random variables measurable w.r.t. F

sF + non-negative simple random variables measurable w.r.t. F

bF bounded random variables measurable w.r.t. F

bF + non-negative bounded random variables measurable w.r.t. F

Lp p-integrable random variables

Notions of convergence

a.s.−→ convergence almost surely Definition XI.1
P−→ convergence in probability Definition XI.2

L1−→ convergence in L1(P) Definition XI.8
law−→ convergence in distribution (law) Definition XII.10



Lecture O

Introduction

O.1. What are the basic objects of probability theory?

Probability theory forms the mathematically precise and powerful foundations for
the study of randomness. Its most basic objects — defined and studied in the rest
of this course — are:

Ω — Outcomes (of a random experiment)
An outcome ω of a random experiment represents a single realization
of the randomness involved. The sample space Ω is the set consisting
of all possible outcomes.

F — Events1

An event E is a subset E ⊂ Ω of the set of possible outcomes. The
event E is said to occur if the randomly realized outcome ω ∈ Ω belongs
to this subset, i.e., if ω ∈ E. Generally we can not allow all subsets of
Ω as events, but instead we have to select a suitable collection F of
subsets on which it is possible to have consistent rules of probability.

P — Probability (measure)2

To each event E we assign the probability P[E] of the event, which is
a real number between 0 and 1.

In addition to the three basic objects (Ω,F ,P) above, the following two fundamental
notions will also be indispensable:

Random variable3

Random variables are the quantities of interest in our probabilistic
model. A random variable is a suitable function X : Ω→ S, associating
to each possible outcome ω ∈ Ω a value X(ω) ∈ S. You may think
of the Goddess of Chance choosing the outcome ω at random, and
the chosen outcome subsequently determining the value X(ω) of any
quantity of interest.

Expected value4

The expected value E[X] of a real-valued quantity of interest X, i.e., a
random variable X : Ω→ S ⊂ R, represents an average of the possible
values of X over all randomness, weighted according to probabilities P.
The expected value is an integral with respect to the probability mea-
sure P in the sense of Lebesgue, and we will correspondingly use the

1We will address the precise axioms required of the collection F of events in Lecture I.
2We will address the precise axioms required of the probability measure P in Lecture II.
3Random variables will be defined precisely in Lecture III.
4Expected values will be defined precisely in Lecture VII.

ix
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following notations interchangeably

E
[
X
]

=

∫
Ω

X(ω) dP(ω).

The purpose of this course is to make precise mathematical sense of the above
notions. Before rushing into the theory, however, we continue with a brief informal
introduction. For the informal examples below, it suffices to have an intuitive idea
of the above notions.

O.2. Informal examples of the basic objects in random phenomena

Example O.1 (One coin toss).
The possible outcomes of a single coin toss are “heads” and “tails”, abbreviated H and T,
respectively. The sample space of a single coin toss experiment would thus be

Ω = {H,T} .
As events, we can in this case allow all subsets of Ω, so the collection of events is

F =
{
∅, {H} , {T} , {H,T}

}
,

with interpretations of the events:

{H} the event that the coin toss results in “heads”

{T} the event that the coin toss results in “tails”

∅ the event that the coin toss results in neither “heads” nor “tails”

{H,T} the event that the coin toss results in either “heads” or “tails”

The last two events may appear perplexingly trivial, but we want to allow them as events,
because logical reasoning with other events may result in impossibilities or certainties. In
fact, ∅ ⊂ Ω always corresponds to the impossible event, which is not realized by any possible
outcome ω ∈ Ω, whereas Ω ⊂ Ω always corresponds to the sure event which is realized by
any outcome ω ∈ Ω of the randomness.

A fair coin toss is considered equally likely to result in “heads” or “tails”, and a single fair
coin toss is thus unsurprisingly governed by the probability measure P which assigns the
following probabilities to the above events:

P
[
{H}

]
=

1

2
, P

[
{T}

]
=

1

2
, P

[
∅
]

= 0, P
[
{H,T}

]
= 1.

This example is not overly exciting, but the distinct roles of the three basic objects Ω, F ,
and P should be recognized here!

Example O.2 (Repeated coin tossing).
In an experiment where coin tosses are repeated ad infinitum, the possible outcomes are
all possible sequences of “heads” and “tails”, i.e., functions from N to {H,T}. The sample
space of such a repeated coin tossing experiment would be the space of all such functions

Ω = {H,T}N =
{
ω : N→ {H,T}

}
,
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which is uncountably infinite (it can be identified with the set of infinite binary sequences,
Example A.16). This uncountable cardinality in a rather innocent probabilistic model can
be taken as the first warning that some care is needed in a proper mathematical treatment
of probability.

LetXn denote the relative frequency of heads in the first n coin tosses. The relative frequency
is a function of the outcome ω (as random variables generally are!), given by the ratio

Xn(ω) =
#
{
j
∣∣ j ≤ n and ω(j) = H

}
n

.

We may ask whether the frequencyXn tends to 1
2 in the long run, as n→∞. This is certainly

not true for all ω ∈ Ω = {H,T}N. For example for the sequence ω′ = (H,H,H,H, . . .) of all
heads, we have Xn(ω′) = 1 for all n and therefore limn→∞Xn(ω′) = 1 6= 1

2 . Even worse, for
the sequence

ω′′ = (H,T,T,T︸ ︷︷ ︸
3 times

,H,H,H,H,H,H,H,H,H︸ ︷︷ ︸
32 times

,T, . . . ,T︸ ︷︷ ︸
33 times

, . . .)

the limit limn→∞Xn(ω′′) does not even exists. In view of these “counterexamples”, it should
be clear that any statement about Xn tending to 1

2 in the long run must be probabilistic in
nature (somehow referring to P), rather than pointwise on the entire sample space Ω.

There are various possible probabilistic notions of Xn tending to 1
2 as n→∞. Compare for

example the following two statements:

(a) For any ε > 0 we have

lim
n→∞

P
[
|Xn −

1

2
| > ε

]
= 0.

(b) We have

P
[

lim
n→∞

Xn =
1

2

]
= 1.

As we develop the mathematical foundations of probability, we should ask, for example:

• Can we make precise mathematical sense of statements such as (a) and (b) above?
• Does one of these two statements imply the other?
• Is either of the statements actually true?

(say for the usual probability P governing fair, repeated coin tossing)

The next example further illustrates the types of questions one may want to answer
with the mathematical theory of probability. It concerns a branching population
model known as Galton-Watson process.5 In the footnotes we indicate which parts of
the present course are relevant for the questions that arise, but the reader interested
in the detailed solutions should look them up in books on stochastic processes.

5The idea of using this branching process to illustrate the applicability of probability theory
is borrowed from the excellent textbook [Wil91].
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Example O.3 (Branching process).
Consider a population producing offspring randomly as follows (this population model is
known as the Galton-Watson process).

The population is started from a single ancestor, who has a random number of descendants
according to some given distribution. These descendants of the ancestor form the first
generation in the population, and we denote the random number of individuals in the first
generation by Z1.

Each of the Z1 individuals in the first generation then independently of each other and the
ancestor has a random number of its own descendants according to the same distribution.
These descendants of the descendants of the ancestor form the second generation, and we
denote the number of individuals in the second generation by Z2.

The process continues branching in the same way, with all individuals in each generation
having descendants randomly, which together form the next generation. The numbers of
descendants of each individual are assumed to follow the same distribution and to be inde-
pendent of each other. The random number of individuals in the n:th generation is denoted
by Zn.

The first question that this model poses in the foundations of probability theory is:

Is there a well defined mathematical model of this branching process?

In particular, what are the sample space Ω, the collection of events F , and the probability
measure P describing the process?6 At least each Zn should be a random variable, i.e., a
function of the realization ω ∈ Ω of all involved randomness.

Admitting that the model can be defined, we can start asking more interesting questions
about the model itself. One such question concerns the survival of the population, or
conversely the extinction of the population:

Does the lineage of the ancestor ever terminate?

The lineage terminates, i.e., the population becomes extinct, if in some generation n ∈ N
there are no individuals, Zn = 0. The event En that the generation n contains no individuals
consists of those outcomes ω of the randomness for which Zn(ω) = 0, i.e.,

En =
{
ω ∈ Ω

∣∣∣ Zn(ω) = 0
}
.

6It turns out that countable product spaces of rather simple discrete probability spaces are
sufficient to precisely construct the model, cf. Lecture IX.
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We may observe that if the generation n contains no individuals, then the next generation
n+ 1 can not contain any either, so

Zn(ω) = 0 =⇒ Zn+1(ω) = 0.

Equivalently, for the corresponding events we have the inclusion

En ⊂ En+1.

These events thus form an increasing sequence (of subsets of Ω)

E1 ⊂ E2 ⊂ E3 ⊂ · · · .

The probabilities of the events should increase correspondingly,

P[E1] ≤ P[E2] ≤ P[E3] ≤ · · ·

and as a bounded increasing sequence of real numbers, these probabilities have a limit

lim
n→∞

P[En].

One natural question is: can we use the events En to construct the event E that extinction
occurs eventually?7 And is its probability P[E] equal to the above limit limn→∞ P[En]?8

A more ambitious version of the question is: can we concretely calculate the probability
P[E] of eventual extinction?9

The expected size E[Zn] of generation n turns out to be dn, where d is the expected number
of descendants of one individual. Imagine then that we define the “renormalized size” of
generation n as Rn = d−n Zn, so as to have expected value one, E[Rn] = 1. By techniques
that go just a little bit beyond the present course (martingale convergence theorem) one can
show that there exists a limit of the random variables Rn as n→∞. The limit

lim
n→∞

Rn

is itself a random variable, which can be interpreted to describe the asymptotic long term
size of the population in units that make the expected sizes equal to one. Given this, it is
natural to wonder whether the expected value of this asymptotic quantity can be calculated
by interchanging the limit and the expected value10

E
[

lim
n→∞

Rn

]
?
= lim

n→∞
E
[
Rn

]
︸ ︷︷ ︸

=1

= 1.

Probability theory provides the means to make sense of and answer the many questions that
arise in this branching process example — as well as in other interesting models.

O.3. Probability theory vs. measure theory

The present course may appear to involve not so much of random phenomena them-
selves, but more of dry and formal measure theory instead. Our justification for this
is that virtually all advanced probability and statistics builds on the measure theoret-
ical foundations covered in the present course. Frequently used measure theoretical

7It turns out that σ-algebras, studied in Lecture I, permit just flexible enough logical operations
to allow such a construction.

8This indeed turns out to be true, by monotonicity properties of probability measures estab-
lished in Lecture II.

9This can be done using generating functions — a close cousin of the characteristic functions
studied in Lecture XII.

10Whether this can be done turns out to be subtle. In Lectures VII, VIII, and IX we will
learn under which conditions one can interchange the order of limits and expected values (and
integrals and sums, etc.). Such interchanges of order of operations are tremendously useful in
many calculations in practice.
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tools in stochastics include Dominated Convergence Theorem, Monotone Conver-
gence Theorem, Fubini’s theorem, Lp-spaces, etc. The formal foundations also serve
as a common and well-defined language across different branches of stochastics. For
example, various different notions of convergence of random variables used in math-
ematical statistics are what we will be ready to introduce in the last two of our
lectures. The role of the present course is to develop the mathematical foundations
of probability mainly for future use!

Since a large number of basic definitions and results in measure theory and probabil-
ity theory are literally identical, anyone who has already studied measure theory will
recognize many familiar notions. The overlap may raise the question: are measure
theory and probability theory really separate topics in their own right, and is it nec-
essary to study them separately? It would, in fact, be possible to combine measure
theory and probability theory in one extended and coherent course, but the scope
of that could easily become daunting. As the topics are currently taught in separate
courses, it does not matter much whether one first studies measure theory and later
learns about its applicability to probability, or if one proceeds in the opposite order.

Even concerning abstract measure theoretic notions and results, probability the-
ory in fact offers very interesting and useful interpretations. In this course, such
interpretations include, e.g.,

• product measures interpreted as probabilistic independence
• push-forward measures interpreted as laws of random variables
• (sub-)sigma-algebras interpreted as (partial) information.

At its best, probabilistic thinking leads to entirely new techniques in mathematics,
such as

• coupling arguments
• existence proofs relying on random choice.

And finally, probability theory includes inherently stochastic results which do not
belong to the domain of measure theory. Some such results covered in the present
course are:

• zero-one laws (Borel-Cantelli lemmas, Kolmogorov’s 0-1 law)
• laws of large numbers
• central limit theorems.

And despite the similarities, measure theory and probability theory are ultimately
concerned with different questions. To highlight just one difference in emphasis,
note that the identification of the law of a random variable occupies a much more
central place in probability theory than the corresponding question does in analysis.
In developments beyond this first theoretical course, it becomes even more apparent
that probability theory is not just a subset of measure theory11 — consider, e.g.,
martingales, ergodic theory, large deviations, stochastic calculus, optimal stopping,
etc. It is also in such further studies, which build on the present foundational course,
that the advantages of the theory will become clearer.

11Vice versa, of course, there are topics covered in courses of measure theory such as [Kin16],
which are not covered in this course of probability theory, and there are aspects of the theory into
which one gains valuable insights from analysis. Therefore, especially for serious mathematicians,
it is highly recommended to study both topics!
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We hope that these reassurances and the occasional genuinely probabilistic inter-
pretations and results included in the lectures provide a sufficient motivation to
seriously study also the formal (measure theoretical) aspects of probability!





Lecture I

Structure of event spaces

I.1. Set operations on events

Recall that an event is a subset E ⊂ Ω of the set of all possible outcomes, and the
event is said to occur if the outcome ω ∈ Ω that is realized belongs to this subset,
ω ∈ E. We then have the following interpretations of set operations on events:

interpretation

the whole sample space Ω sure event (contains all possible outcomes)

the empty set ∅ impossible event (contains no outcomes)

intersection E1 ∩ E2 “events E1 and E2 both occur”

union E1 ∪ E2 “event E1 or event E2 occurs”

complement Ec = Ω \ E “event E does not occur”

subset E1 ⊂ E2 “occurrence of E1 implies E2”

In other words, set theoretic operations enable logical reasoning with events. The
logical operations and, or, and not are implemented by intersections ∩, unions ∪,
and complements (· · · )c, respectively.1 We therefore at least want that the collec-
tion F of events is stable under such operations, i.e.,

• Ω ∈ F and ∅ ∈ F
• if E1, E2 ∈ F then E1 ∩ E2 ∈ F and E1 ∪ E2 ∈ F
• if E ∈ F then Ec = Ω \ E ∈ F .

In fact, for a meaningful mathematical theory, we need to be able to form also
countably infinite intersections and unions of events. This is the reason for the
following definition.

1Intersection ∩ is indeed the equivalent of the logical quantifier “for all”, ∀, and union ∪ is the
equivalent of the logical quantifier “for some”, i.e., “there exists”, ∃.

1
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I.2. Definition of sigma algebra

Definition I.1 (Sigma algebra).
A collection F ⊂P(Ω) of subsets of a set Ω is a σ-algebra on Ω if

(Σ-1) : Ω ∈ F

(Σ-c) : if E ∈ F then Ec = Ω \ E ∈ F

(Σ-∪) : if E1, E2, . . . ∈ F then
⋃
n∈N

En ∈ F .

Remark I.2 (A sigma algebra is stable under countable set operations).
Note that properties (Σ-1) and (Σ-c) imply that ∅ ∈ F , since ∅ = Ωc.

Likewise, properties (Σ-∪) and (Σ-c) imply that if E1, E2, . . . ∈ F then also
⋂∞
n=1En ∈ F ,

since
⋂∞
n=1En =

(⋃∞
n=1En

c
)c

by De Morgan’s laws, Proposition A.1.

Also, since ∅ ∈ F , we can extend any finite sequence E1, E2, . . . , Ek ∈ F of members of
the collection to an infinite sequence by setting En = ∅ for all n > k, and we thus deduce
from (Σ-∪) that the finite union E1 ∪ · · · ∪En ∈ F also belongs to the collection. Similarly,
finite intersections E1 ∩ · · · ∩ En of members of the collection remain in the collection.

In view of the definition and remark above, σ-algebras are stable under countable set
operations. Since we will always assume the collection of events to be a σ-algebra,
we are thus allowed to perform rather flexible logical constructions with events.

Example I.3 (Examples and counterexamples of sigma algebras).

(i) F = {∅,Ω} is a σ-algebra on Ω, albeit not a very interesting one: it only contains the
impossible event ∅ and the sure event Ω.

(ii) F = P(Ω), the collection of all subsets of Ω, is a σ-algebra on Ω. However, when Ω
is uncountably infinite, consistent rules of probability can typically only be given on a
smaller collection of events.

(iii) F = T (R), the collection of all open subsets of R, is not a σ-algebra on R! You should
recall that arbitrary unions of open sets are open, and finite intersections of open sets
are also open. However, for example the countable intersection

⋂∞
n=1(− 1

n ,
1
n ) = {0} of

open intervals consists of a single point and is not open. The collection in fact satisfies
(Σ-1) and (Σ-∪), but fails to satisfy (Σ-c).

Exercise I.1 (Sigma algebras on small finite sets).
Let a, b, c be three distinct points.

(a) Write down all σ-algebras on Ω = {a, b}.
(b) Write down all σ-algebras on Ω = {a, b, c}.
(c) Give an explicit counterexample which shows that the union of two σ-algebras is not

necessarily a σ-algebra.

In probability theory, we require the collection of events F to be a σ-algebra on the
sample space Ω. The next examples illustrate what sorts of countable set operations
we might encounter in practice. These examples also give a fair idea of the expressive
power of such operations, when used iteratively.

Example I.4 (The event of branching process extinction).
Let us revisit Example O.3 about the branching process. Let Zn denote the random size
of the population in generation n ∈ N, which, as any random variable, depends on the
outcome ω of the underlying randomness. Consider first an event defined by the condition
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that the generation n contains no individuals

En =
{
ω ∈ Ω

∣∣∣ Zn(ω) = 0
}
.

Extinction happens in some generation in the future if there exists some n ∈ N such that
Zn = 0. The corresponding event is

E =
{
ω ∈ Ω

∣∣∣ ∃n ∈ N : Zn(ω) = 0
}

=
⋃
n∈N

{
ω ∈ Ω

∣∣∣ Zn(ω) = 0
}

=
⋃
n∈N

En.

We see that the event E of eventual extinction is the union over the countably many gener-
ations n ∈ N of the events En that generation n is already extinct.

Countable set operations came to our rescue!

Example I.5 (Long term frequency of heads in coin tossing).
Let us revisit Example O.2 about repeated coin tossing. Let Xn be the relative frequency
of heads in the first n coin tosses. Observe that the following are logically equivalent ways
of expressing the property that the frequency tends to 1

2 in the long run:

lim
n→∞

Xn =
1

2
⇐⇒ ∀ε > 0 ∃k ∈ N such that ∀n ≥ k we have

∣∣Xn −
1

2

∣∣ < ε

⇐⇒ ∀m ∈ N ∃k ∈ N such that ∀n ≥ k we have
∣∣Xn −

1

2

∣∣ < 1

m
.

The last expression requires only quantifiers over countable collections, and is therefore good
for our purposes. Consider first an event by the condition |Xn − 1

2 | <
1
m ,

E(m)
n :=

{
ω ∈ {H,T}N

∣∣∣ 1

2
− 1

m
< Xn(ω) <

1

2
+

1

m

}
,

we can now express the event E that the frequency tends to 1
2 in the long run by the following

countable set operations:

E =
⋂
m∈N

⋃
k∈N

⋂
n≥k

E(m)
n .

So at least provided that each E
(m)
n belongs to the collection F of admissible events (seems

reasonable) the properties of σ-algebras allow us to construct the more complicated but
much more interesting event E ∈ F , which contains precise information about the long
term behavior of the frequencies of heads.

Iteratively constructed countable set operations came to our rescue!

I.3. Generating sigma algebras

Definition I.6 (Sigma algebra generated by a collection of subsets).
Let C ⊂ P(Ω) be a collection of subsets of Ω. Then we define σ(C ) as the
smallest σ-algebra on Ω which contains the collection C . We call σ(C ) the
σ-algebra generated by the collection C .

Remark I.7. The language of the above definition is intended to be as accessible as possible, but
let us make sure that the precise meanings are clear as well:

• We say that a σ-algebra F contains the collection C , if each member of C is a member
in F , i.e., if we have the inclusion C ⊂ F of the collections of sets.

• For two σ-algebras F1 and F2, we say that F1 is smaller than F2 if F1 ⊂ F2.

With these clarifications, the meaning should be unambiguous, but one still has to verify that
σ(C ) becomes well defined. If we want to define σ(C ) as the smallest σ-algebra containing C ,
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we first need to know that such a σ-algebra exists and that it is unique!2 These concerns
will be settled in Corollary I.9 below.

One standard use of generated σ-algebras is the following. If C is a collection of some
basic events that we want to be able to discuss, in our definition of a probabilistic
model we could set F = σ(C ), which is exactly the smallest possible collection of
events that contains the basic events and behaves well under countable operations.
Isn’t this convenient!

In Lecture IV we discuss the interpretation of σ-algebras as describing information.
We will realize that the notion of generated σ-algebras corresponds to what informa-
tion can be deduced from some initially given pieces of information (the knowledge
about events in the generating collection C ).

Finally, generated σ-algebras can also be used as a technical tool. It is often very
difficult to describe explicitly all members of even very common and reasonable
σ-algebras. Working with suitably chosen generating collections can bring about
significant simplifications.

Having thus motivated the notion of generated σ-algebras, let us finally address
their well-definedness. The key observation is that intersections of σ-algebras are
themselves σ-algebras.3

Lemma I.8. Suppose that (Fα)α∈I is a non-empty collection (indexed by I 6= ∅) of
σ-algebras Fα on Ω. Then also the intersection F =

⋂
α∈I Fα is a σ-algebra

on Ω.

Proof. By requiring the collection to be non-empty, we ensured that the intersection is well-defined.

We need to verify that the intersection
⋂
α∈I Fα satisfies the three properties in Defini-

tion I.1. Note that for a subset E ⊂ Ω, we have E ∈ F =
⋂
α∈I Fα if and only if E ∈ Fα

for all α ∈ I.

We have Ω ∈ Fα for all α ∈ I, and therefore Ω ∈ F . Thus condition (Σ-1) holds for F .

Suppose that E ∈ F . Then for all α ∈ I we have E ∈ Fα. By property (Σ-c) for the
σ-algebra Fα we get that Ec ∈ Fα. Since this holds for all α, we conclude Ec ∈ F . Thus
condition (Σ-c) holds for F .

Suppose that E1, E2, . . . ∈ F . Then for all α ∈ I we have E1, E2, . . . ∈ Fα. By property (Σ-
∪) for the σ-algebra Fα we get that

⋃∞
n=1En ∈ Fα. Since this holds for all α, we conclude⋃∞

n=1En ∈ F . Thus condition (Σ-∪) holds for F . �

We are now ready to conclude that Definition I.1 indeed made sense.

Corollary I.9 (Well-definedness of the generated sigma algebra).
Let C ⊂P(Ω) be a collection of subsets of Ω. Then the smallest σ-algebra on
Ω which contains the collection C exists and is unique.

2Such issues must be taken seriously. To illustrate the existence issue, imagine trying to
define s > 0 as the smallest real number which is strictly positive: no such thing exists, and if
we disregard that fact, we will soon run into logical contradictions. To illustrate the uniqueness
issue, suppose that a, b, c are three distinct elements, and imagine trying to define S ⊂ {a, b, c} as
the smallest subset which contains an odd number of elements: any of the three singleton subsets
{a} , {b} , {c} ⊂ {a, b, c} are equally small, so which one should S be?

3By contrast, in Exercise I.1(c) you showed that the union of σ-algebras may fail to be a
σ-algebra.
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Proof. The uniqueness part is usual abstract nonsense. Suppose we had two different smallest
σ-algebras which contain the collection C , say F1 and F2. Then we would have F1 ⊂ F2

because F1 is smallest and F2 ⊂ F1 because F2 is smallest, so we get that F1 = F2.

It remains to show that a smallest σ-algebra which contains the collection C exists. Consider
the collection S of all σ-algebras F on Ω such that C ⊂ F . This collection S is non-empty,
because as in Example I.3(ii), the power set of Ω is such a σ-algebra, i.e., P(Ω) ∈ S. Let
us define σ(C ) as the intersection

σ(C ) :=
⋂

F∈S

F

of all these σ-algebras. By Lemma I.8, σ(C ) is itself a σ-algebra. Since for each F ∈ S
we have C ⊂ F , the intersection also has this property, C ⊂ σ(C ). If F is any σ-algebra
which contains C , then clearly σ(C ) is smaller, since F ∈ S appears in the intersection and
thus σ(C ) ⊂ F . Thus the intersection σ(C ) is smallest. �

I.3.1. Borel sigma algebra

Definition I.10 (Borel sigma algebra).
For a topological space X, the Borel σ-algebra on X is the σ-algebra B(X)
generated by the collection T (X) of open sets in X.

Arguably the most important σ-algebra in all of probability theory is the Borel σ-
algebra on the real line R, because it is needed whenever we consider real valued
random variables. We denote simply B = B(R). By definition, B is the smallest
σ-algebra on R which contains all opens sets V ⊂ R. The following proposition
establishes that B can alternatively be generated by various convenient collections
of subsets of the real line.

Proposition I.11 (Generating the Borel sigma algebra on the real line).
The Borel σ-algebra B on the real line R is generated by any of the following
collections of subsets of R:

(i) : C =
{

(−∞, x]
∣∣∣ x ∈ R

}
, (iii) : C =

{
(x, y)

∣∣∣ x, y ∈ R, x < y
}
,

(ii) : C =
{

[x, y]
∣∣∣ x, y ∈ R, x ≤ y

}
, (iv) : C =

{
(x, y]

∣∣∣ x, y ∈ R, x < y
}
.

Remark I.12. The reader can certainly imagine further variations of generating collections of
intervals, and is invited to think about the modifications needed in the proof below.

Proof of Proposition I.11. We will only explicitly check that the collection (i) generates B, the
other cases are similar.

So for the case (i), let C be the collection of all intervals of the form (−∞, x], with x ∈ R.
In order to show that σ(C ) = B, we will separately check the two converse inclusions
σ(C ) ⊂ B and σ(C ) ⊃ B.

inclusion σ(C ) ⊂ B: To show that σ(C ) ⊂ B, it is sufficient to show that B contains all intervals
of the form (−∞, x], because σ(C ) is by definition the smallest such σ-algebra.

Note that the set (x,+∞) is open, and thus is contained in the Borel σ-algebra by definition.

The complement of it is
(
(x,+∞)

)c
= R \ (x,+∞) = (−∞, x]. Since B is a σ-algebra on R

which contains (x,+∞), by property (Σ-c) it contains also the complement (−∞, x]. The
inclusion σ(C ) ⊂ B follows.
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inclusion σ(C ) ⊃ B: To show that σ(C ) ⊃ B, it is sufficient to show that σ(C ) contains all open
sets V ⊂ R, because B is by definition the smallest such σ-algebra. Let us show step by
step that σ(C ) contains all sets of the forms

(a) semi-open intervals intervals (x, y], for x, y ∈ R
(b) open intervals (x, z), for x, z ∈ R
(c) open sets V ⊂ R.

For case (a), note that

(x, y] = (−∞, y] \ (−∞, x] = (−∞, y] ∩ (−∞, x]
c
,

so (x, y] is obtained from members of the collection C by countable (in fact finite) intersec-
tions and complements. Therefore we have (x, y] ∈ σ(C ).

For case (b), note that

(x, z) =

∞⋃
n=1

(
x, z − 1

n

]
,

so the open interval (x, z) is obtained from intervals of type (a) by a countable union. Since
intervals of type (a) are already known to belong to σ(C ), we get that (x, z) ∈ σ(C ).

Finally, for case (c), note that any open set V ⊂ R is a countable union of open intervals —
see Proposition B.5. Since open intervals are already known to belong to σ(C ) by case (b),
we also get V ∈ σ(C ). This concludes the proof. �

The Borel σ-algebra on R will be needed in particular for real valued random vari-
ables. Likewise, for vector valued random variables, we will need the Borel σ-algebra
B(Rd) on the vector spaces Rd. Recall that by definition B(Rd) is the smallest σ-
algebra on Rd which contains all open sets V ⊂ Rd of the d-dimensional Euclidean
space. The next exercise gives a concrete and useful generating collection for this
σ-algebra, in the case d = 2.

Exercise I.2 (Borel σ-algebra on the two-dimensional Euclidean space).
Denote by

C =
{

(−∞, x]× (−∞, y]
∣∣∣ x ∈ R, y ∈ R

}
.

the collection of closed south-west quadrants in R2. Prove that the collection C of closed
south-west quadrants generates B(R2), that is, show that B(R2) = σ(C ).

Hint: Compare with the proof of Proposition I.11. You may use the fact that every open set in R2

can be written as a countable union
⋃∞
n=1Rn of open rectangles of the form Rn = (an, bn)×(a′n, b

′
n).



Lecture II

Measures and probability measures

Recall that the basic objects of probability theory are:

Ω — the set of all possible outcomes (sample space)
F — the collection of all events
P — the probability (measure).

The sample space Ω can be any (non-empty) set, which we in our probabilistic
modelling deem representative of the possible outcomes of the randomness involved.

In the previous lecture we explained why the collection F of events should be stable
under countable set operations, i.e., why it must be a σ-algebra on Ω.

In this lecture we examine the last remaining basic object, P, the probability itself.
We give the axiomatic properties that P is required to satisfy, and we begin studying
the consequences. By the axioms, P is a special case of a mathematical object called
a measure, so there is a large amount of overlap between probability theory and
measure theory. We in fact choose to first develop measure theory in the general
setup up to some point, because even in stochastics we make use of also other
measures besides just probability measures.

II.1. Measurable spaces

In the previous lecture, we emphasized the importance of being able to perform
countable set operations. This merits a definition in its own right.

Definition II.1 (Measurable space).
If S is a set and S is a σ-algebra on S, then we call the pair (S,S ) a measurable
space. A subset A ⊂ S is called measurable if A ∈ S .

Think of measurable spaces as spaces which are ready to accommodate measures.
They come equipped with a good collection S of subsets, which behaves well under
set operations as discussed in Lecture I, and a measure will assign to each of these
good subsets a numerical value appropriately quantifying the size of the subset.

For convenience, let us once more unravel the definition and summarize what a
measurable space is:

• S is a set
• S ⊂P(S) is a collection of subsets which satisfies

(Σ-1): S ∈ S
(Σ-c): if A ∈ S then Ac = S \ A ∈ S .
(Σ-∪): if A1, A2, . . . ∈ S then

⋃∞
n=1An ∈ S .

7



8 II. MEASURES AND PROBABILITY MEASURES

Let us then give some examples of measurable spaces.

The following simple example is primarily relevant when S is finite or countably
infinite.

Example II.2 (Measurable spaces where all subsets are measurable).
If S is any set and P(S) is the collection of all subsets of S, then by Example I.3(ii), P(S)
is a σ-algebra on S. Thus the pair (S,P(S)) is a measurable space.

The following example is extremely important: in integration theory of real valued
functions (or real valued random variables) one needs the set of real numbers R to
carry the structure of a measurable space.

Example II.3 (Real line as a measurable space).
Consider S = R and let S = B be the Borel σ-algebra on R as in Section I.3.1. Then the
pair (R,B) is a measurable space.

The measurable space of Example II.3 will in particular accommodate the usual
measure of length on the real line R (cf. Example II.12 below).

Finally, the class of examples most relevant for probability theory: any pair (Ω,F )
of a sample space Ω together with the collection of events F on it has to be a
measurable space — ready to accommodate a probability measure in the next step!

II.2. Definition of measures and probability measures

The final basic object of probability theory is the probability measure P. In fact,
even in probability theory we actually very often use also measures which are not
necessarily probability measures. For example, counting measures are used when
handling infinite sums, and the (intuitively) familiar measures on R and Rd are used
as references when talking about densities of real valued or vector valued random
variables, respectively.

Let us therefore first define measures in general.

Definition II.4 (Measure).
Let (S,S ) be a measurable space. A measure µ on (S,S ) is a function

µ : S → [0,+∞]

such that

µ
[
∅
]

= 0 (M-∅)

and if A1, A2, . . . ∈ S are disjoint, then

µ
[ ∞⋃
n=1

An

]
=

∞∑
n=1

µ
[
An
]
. (M-∪)

A probability measure has just one further requirement added: that the total prob-
ability must be equal to one.
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Definition II.5 (Probability measure).
Let (Ω,F ) be a measurable space. A probability measure P on (Ω,F ) is a
measure on (Ω,F ) such that P

[
Ω
]

= 1.

Remark II.6 (Sure vs. almost sure).
The event Ω is the sure event : it contains all possible outcomes. The additional requirement
in the above definition merely says that the probability of the sure event is one: P[Ω] = 1.

It is worth noting that there may be also other events E ∈ F , E ( Ω, which have probability
one, P[E] = 1. We say that such an event E is almost sure, or alternatively we say that the
event E occurs almost surely . The notion of sure only depends on the sample space Ω itself,
but the notion of almost sure depends on the probability measure P as well, so occasionally
it is appropriate to use the more specific terminology P-almost sure and P-almost surely .

Remark II.7 (Abuse of terminology).
Often the σ-algebra of the underlying measurable space is clear from the context. Then,
rather than saying that µ is a measure on (S,S ), we simply say that µ is a measure on S.
Likewise, rather than saying that P is a probability measure on (Ω,F ), we simply say that
P is a probability measure on Ω.

If µ is a measure on (S,S ), then we call the triple (S,S , µ) a measure space.
Likewise, if P is a probability measure on (Ω,F ), then we call the triple (Ω,F ,P)
a probability space. In particular, any probability space is a measure space, and
all results for measure spaces can be used for probability spaces. For this reason,
especially in Section II.3 below, we content ourselves to stating basic properties only
for measure spaces in general. There are some results which are valid for probability
measures, but not for general measures. Many such results would actually hold
under a milder assumption, described below.

Definition II.8 (Total mass).
Let µ be a measure on (S,S ). The value µ[S] ∈ [0,+∞] that the measure
assigns to the whole space S is called the total mass of µ.

Definition II.9 (Finite measure).
We say that the measure µ on (S,S ) is finite if its total mass is finite,
µ[S] < +∞. We then also say that the corresponding measure space (S,S , µ)
is finite.

Probability measures, in particular, are finite measures (since P[Ω] = 1 < +∞).

Let us now give a few examples of measures and probability measures.

Example II.10 (Counting measure).
Let S be any set. Equip S with the σ-algebra P(S) consisting of all subsets of S. Then
the counting measure on S is the measure µ#, which associates to any subset A ⊂ S the
number of elements #A in the subset,

µ#

[
A
]

= #A.

In particular, for all infinite subsets A ⊂ S we have µ#

[
A
]

= +∞. Property (M-∅) holds
for µ#, since the empty set has no elements. Property (M-∪) holds since the number of
elements in a disjoint union of sets is obtained by adding up the numbers of elements in
each set.



10 II. MEASURES AND PROBABILITY MEASURES

The counting measure µ# is a finite measure if and only if the underlying set S is a finite
set.

Example II.11 (Discrete uniform probability measure).
Let Ω be any finite non-empty set. Equip it with the σ-algebra P(Ω) consisting of all
subsets of Ω. Then the (discrete) uniform probability measure on Ω is the measure Punif

given by

Punif

[
E
]

=
#E

#Ω
for all E ⊂ Ω.

In other words, the (discrete) uniform probability
measure is just the counting measure normalized
to have total mass one, Punif = 1

#Ω µ#.

The figure on the right shows a uniform random
sample from the finite set of all 30×30 labyrinths,
illustrating that despite its simplicity, the discrete
uniform probability measure can give rise to in-
tricate behavior.

Example II.12 (Lebesgue measure on the real line).
The natural notion of “length” on the real line R corresponds to the Lebesgue measure Λ
on (R,B). For instance a closed interval [a, b] ⊂ R, with a ≤ b, has measure

Λ
[
[a, b]

]
= b− a

equal to the length of the interval, and this property in fact is sufficient to characterize the
measure Λ. The length of the entire real axis, on the other hand, is infinite: Λ[R] = +∞.

R

0 a b

Example II.13 (Higher dimensional Lebesgue measure).
Example II.12 on the one-dimensional space R has a d-dimensional generalization — a mea-
sure on the Euclidean space Rd. The cases d = 1, d = 2, and d = 3 have the interpretation of
“length on the line R”, “area in the plane R2”, and “volume in the space R3”, respectively.

The Euclidean space Rd is equipped with the Borel σ-algebra B(Rd) (see Definition I.10).
The d-dimensional Lebesgue measure Λd is a measure on (Rd,B(Rd)), which is characterized
by the property that any rectangular box [a1, b1]× · · · × [ad, bd] ⊂ Rd has measure

Λd
[
[a1, b1]× · · · × [ad, bd]

]
=

d∏
j=1

(bj − aj)

given by the product of the side lengths of the box.
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a1 b1a2

b2

a3

b3

Any course in traditional measure theory covers the particular example of Lebesgue
measures Λ and Λd in great detail, so we choose not to elaborate on them too
extensively here.

Exercise II.1 (Truncation of measures and conditioning of probability measures).

(a) Let µ be a measure on (S,S ) and let B ∈ S . Show that also A 7→ µ[A ∩ B] defines a
measure on (S,S ).

(b) Let P be a probability measure on (Ω,F ), and let B ∈ F be an event such that P[B] > 0.

Show that the conditional probability A 7→ P
[
A
∣∣B] := P[A∩B]

P[B] is a probability measure

on (Ω,F ).

Example II.14 (Uniform probability measure on an interval).
Consider the truncation of the Lebesgue measure to the unit interval [0, 1] ⊂ R. Let Λ be
the Lebesgue measure on R as in Example II.12. Define a new measure P on R by truncation
as in part (a) of Exercise II.1:

P[A] = Λ
[
A ∩ [0, 1]

]
for all A ∈ B.

Then we have P[R] = Λ
[
[0, 1]

]
= 1, so P is a probability measure on R. For subsets A ⊂ [0, 1]

of the unit interval, P coincides with the Lebesgue measure, P[A] = Λ[A]. For subsets outside
the unit interval, on the other hand, we have A ∩ [0, 1] = ∅ and thus these sets carry no
probability mass: P[A] = Λ[∅] = 0. We call P the uniform probability measure on the unit
interval.

More generally, the uniform probability measure on any interval [a, b] ⊂ R of positive length
is defined by the formula A 7→ 1

b−aΛ
[
A∩[a, b]

]
, where we first truncate the Lebesgue measure

to [a, b] and then normalize the total mass by the length b− a of the interval.

Before starting to examine general results about measures, we still look into one fur-
ther class of examples of probability measures which is relatively easy, yet important
in practice.

II.2.1. Probability distributions on countable spaces

Many probabilistic models concern distributions on the natural numbers N, the
integers Z, or other countable sets. It turns out that on such countable spaces,
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we can characterize probabilty measures in an intuitive way using probability mass
functions.

For the rest of this section we therefore assume that Ω is a non-empty countable
set. Then there exists an enumeration1 Ω = {ω1, ω2, ω3, . . .} with distinct elements
ω1, ω2, ω3, . . . ∈ Ω. Summation over Ω can be defined using the enumeration,∑

ω∈Ω

a(ω) :=
∑
j

a(ωj),

and if the terms of the sum are non-negative, a(ω) ≥ 0, then the result of the sum
is independent of the chosen enumeration.

Definition II.15 (Probability mass function).
A probability mass function (p.m.f.) on Ω is a function

p : Ω→ [0, 1]

such that ∑
ω∈Ω

p(ω) = 1.

To a probability mass function p it is natural to associate a measure defined by

P[E] =
∑
ω∈E

p(ω) for all E ⊂ Ω, (II.1)

and conversely to a probability measure P on (Ω,P(Ω)) it is natural to associate
masses of singleton events {ω} ⊂ Ω

p(ω) = P
[
{ω}

]
for all ω ∈ Ω. (II.2)

The following exercise shows that on countable spaces, probability mass functions
are in one-to-one correspondence with probability measures via the above formulas.

Exercise II.2 (Probability distributions on countable spaces).
Let Ω be a finite or a countably infinite set, and denote by P(Ω) the collection of all subsets
of Ω.

(a) Show that if p is a probability mass function on Ω, then the set function P defined
by (II.1) is a probability measure on (Ω,P(Ω)).

(b) Show that if P is a probability measure on (Ω,P(Ω)), then the function p defined by (II.2)
is a probability mass function on Ω.

Example II.16 (Poisson distribution).
Let λ > 0. Recalling the power series

∑∞
k=0

1
k!λ

k = eλ of the exponential function, it is easy
to see that the function p given by

p(k) = e−λ
λk

k!
for k ∈ Z≥0 = {0, 1, 2, . . .} (II.3)

is a probability mass function on Z≥0.

The Poisson distribution with parameter λ is the probability measure on Z≥0 with the above
probability mass function.

1If Ω is finite, the enumeration terminates, Ω = {ω1, ω2, . . . , ωn}. The more interesting case is
if Ω is countably infinite.
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Example II.17 (Geometric distribution).
Let q ∈ (0, 1). Using the geometric series

∑∞
k=0 r

k = 1
1−r with r = 1 − q, it is easy to see

that the function p given by

p(k) = (1− q)k−1q for k ∈ N = {1, 2, 3, . . .} (II.4)

is a probability mass function on N.

The geometric distribution with parameter q is the probability measure on N with the above
probability mass function.

Example II.18 (Binomial distribution).
Let n ∈ N and q ∈ (0, 1). Using the binomial formula

∑n
k=0

(
n
k

)
aj bn−j = (a + b)n with

a = q and b = 1− q it is easy to see that the function p given by

p(k) =

(
n

k

)
qk (1− q)n−k for k ∈ {0, 1, . . . , n− 1, n} (II.5)

is a probability mass function on the finite set {0, 1, . . . , n− 1, n}.

The binomial distribution with parameters n and q is the probability measure on the finite
set {0, 1, . . . , n− 1, n} with the above probability mass function.

II.3. Properties of measures and probability measures

Let us now discuss some of the first properties of measures and probability measures.

Subadditivity of measures and the union bound

For repeated later use, we start by proving the following additivity properties for
measures of disjoint sets, subadditivity properties of measures of (not necessarily
disjoint) sets, as well as related monotonicity and monotone convergence properties
of measures.

Lemma II.19 (First properties of measures).
Let µ be a measure on a measurable space (S,S ). Then we have the following:

(a) Finite additivity: If A1, . . . , An ∈ S are disjoint measurable sets, then we
have:

µ
[
A1 ∪ · · · ∪ An

]
= µ[A1] + · · ·+ µ[An]. (II.6)

(b) Monotonicity: If A,B ∈ S and A ⊂ B, then we have:

µ[A] ≤ µ[B]. (II.7)

(c) Finite subadditivity: If A1, . . . , An ∈ S are any measurable sets, then we
have:

µ
[
A1 ∪ · · · ∪ An

]
≤ µ[A1] + · · ·+ µ[An]. (II.8)

(d) Monotone convergence of measures: Let A1 ⊂ A2 ⊂ · · · be an increasing
sequence of measurable sets, An ∈ S for all n ∈ N. Then the measures of
the increasing limit An ↑ A =

⋃∞
j=1Aj of sets constitute the increasing limit

µ[An] ↑ µ[A]. (II.9)
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(e) Countable subadditivity: If A1, A2, . . . ∈ S is a sequence of measurable
sets (not necessarily disjoint), then we have:

µ
[ ∞⋃
j=1

Aj

]
≤

∞∑
j=1

µ[Aj]. (II.10)

Proof of (a): Given the disjoint measurable sets A1, . . . , An ∈ S , let us extend this finite sequence
by empty sets: define An+1 = An+2 = · · · = ∅. Since ∅ ∈ S by properties of σ-algebras,
we thus obtain an infinite sequence A1, A2, . . . ∈ S of measurable sets. This sequence of
sets is disjoint (the newly added empty sets do not have common elements with the already
disjoint A1, . . . , An). Thus from axiom (M-∪) it follows that

µ
[ ∞⋃
j=1

Aj

]
=

∞∑
j=1

µ
[
Aj
]
.

But on the left hand side, the union is simply
⋃∞
j=1Aj = A1 ∪ · · · ∪An, because the empty

sets do not contribute to the union. On the right hand side, the sum is
∑∞
j=1 µ[Aj ] =

µ[A1] + · · · + µ[An], because the measures of the empty sets µ[∅] = 0 do not contribute to
the sum. Assertion (a) follows.

Proof of (b): Assume that A,B ∈ S . Note that then also B \ A = B ∩ Ac ∈ S by properties of
σ-algebras. If A ⊂ B, then B = A ∪ (B \A) is a disjoint union. For these two disjoint sets,
we can use part (a) to get

µ[B] = µ
[
A ∪ (B \A)

]
(a)
= µ[A] + µ

[
B \A

]
.

Since µ
[
B \A

]
≥ 0 by properties of measures, the assertion µ[B] ≥ µ[A] follows.

Proof of (c): We will prove the inequality

µ
[
A1 ∪ · · · ∪An

]
≤ µ[A1] + · · ·+ µ[An].

for all A1, . . . , An ∈ S by induction on the number n of sets in the union.

The case n = 1 is clear — the two sides of the inequality are in fact equal. Now assume the
inequality for unions of n sets, and consider A1, . . . , An+1 ∈ S . Define A = A1 ∪ · · · ∪ An
and B = An+1 \ A. Then we have A1 ∪ · · · ∪ An+1 = A ∪ B, where the sets A and B are
disjoint. Thus by part (a) we get

µ
[
A ∪B

]
= µ[A] + µ[B].

The first term on the right hand side is

µ[A] = µ
[
A1 ∪ · · · ∪An

]
≤ µ[A1] + · · ·+ µ[An]

by induction assumption. The second term on the right hand side is µ[B] ≤ µ[An+1]
by monotonicity proven in part (b), since B ⊂ An+1. Notice that the right hand side
µ
[
A∪B

]
= µ

[
A1∪· · ·∪An+1

]
is the measure we are interested in. Therefore, by combining

the observations, we conclude

µ
[
A1 ∪ · · · ∪An+1

]
≤
(
µ[A1] + · · ·+ µ[An]

)
+ µ[An+1],

which finishes the proof of assertion (c) by induction.

Proof of (d): Suppose that A1 ⊂ A2 ⊂ · · · is an increasing sequence of measurable sets, and denote
its limit by A =

⋃∞
j=1Aj . Then A is also measurable by properties of σ-algebras. Now write

first B1 = A1, and then B2 = A2 \A1, . . . , Bn = An \An−1, . . . . These sets B1, B2, . . . are
disjoint and An = B1 ∪ · · · ∪Bn for all n ∈ N. From part (a) we get

µ[An] = µ
[
B1 ∪ · · · ∪Bn

]
=

n∑
j=1

µ[Bj ].
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The right hand sides are the partial sums of an infinite sum with non-negative terms, so
they form a sequence increasing to that infinite sum, and we conclude

µ[An] ↑
∞∑
j=1

µ[Bj ] as n→∞.

On the other hand, by disjointness of B1, B2, . . . and axiom (M-∪), this infinite sum equals

∞∑
j=1

µ[Bj ] = µ
[ ∞⋃
j=1

Bj

]
= µ

[ ∞⋃
j=1

Aj

]
= µ[A].

This proves the assertion (d), µ[An] ↑ µ[A] as n→∞.

Proof of (e): Let A1, A2, . . . ∈ S be a sequence of measurable sets. Form their finite unions
Cn = A1 ∪ · · · ∪ An, for all n ∈ N. Then, as a union of measurable sets, each Cn is also
measurable. This sequence is clearly increasing C1 ⊂ C2 ⊂ · · · , and its limit is the countably
infinite union C =

⋃∞
j=1Aj . We can therefore apply part (d) to get

µ[Cn] ↑ µ[C] as n→∞. (II.11)

On the other hand, by part (c) we have for all n ∈ N

µ[Cn] = µ
[
A1 ∪ · · · ∪An

]
≤

n∑
j=1

µ[Aj ] ≤
∞∑
j=1

µ[Aj ].

If we denote the value of the infinite sum by c :=
∑∞
j=1 µ[Aj ], then this bound µ[Cn] ≤ c

for all n implies that for the limit (II.11) we also have µ[C] ≤ c. Recalling what C and c
are, we have now obtained

µ
[ ∞⋃
j=1

Aj

]
= µ[C] ≤ c =

∞∑
j=1

µ[Aj ].

This finishes the proof. �

Especially part (e) of the above lemma is, despite its simplicity, so useful in probabil-
ity theory that it has been given an affectionate name: “the union bound”. Because
of its importance, we record this fact once more in the probabilistic context.

Theorem II.20 (The union bound).
Let (Ω,F ,P) be a probability space and let E1, E2, . . . ∈ F be a sequence of
events. Then we have

P
[ ∞⋃
j=1

Ej

]
≤

∞∑
j=1

P[Ej]. (II.12)

In other words, the probability that at least one event in a sequence occurs can not
exceed the sum of the probabilities of the events in the sequence.

Probability measures enjoy some properties that may not be valid for measures of
infinite total mass. The following exercise gives a few of them.

Exercise II.3 (Properties specific to probability measures).
Let (Ω,F ,P) be a probability space.

(a) Show that for any event E ∈ F we have

P[Ec] = 1− P[E].

(b) Show that for any two events E1, E2 ∈ F we have

P[E1 ∪ E2] = P[E1] + P[E2]− P[E1 ∩ E2].
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Monotone convergence of probability measures

Part (d) of Lemma II.19 is a monotone convergence statement of measures for in-
creasing sequences of sets. For general measures we do not have the corresponding
monotone convergence for decreasing sequences of sets, as the following counterex-
ample shows.

Example II.21. (Decreasing monotone convergence of measures can fail in general)
Consider the set N = {1, 2, 3, . . .} of natural numbers with the counting measure µ#, as
defined in Example II.10:

µ#[A] = #A for all A ⊂ N.

Consider the subsets An = {n, n+ 1, n+ 2, . . .} ⊂ N. Each of these is an infinite set, so
their counting measures are infinite, µ#[An] = +∞. These sets form a decreasing sequence,

A1 ⊃ A2 ⊃ A3 ⊃ · · · ,
and the limit is the intersection

A =
⋂
n∈N

An.

But no natural number m ∈ N belongs to all of An, n ∈ N, (indeed, m /∈ An as soon as
n > m). Therefore the intersection is empty, A = ∅. The number of elements in this empty
set is zero, #A = 0. In particular, the sequence of counting measures µ#[An] = +∞ does
not tend to the counting measure µ#[A] = 0 of the decreasing limit set A.

Exercise II.4. Construct a similar counterexample with the Lebesgue measure Λ on R.

For probability measures, however, monotone convergence of measures holds for
both increasing and decreasing sequences of events.

Theorem II.22 (Monotone convergence of probability measures).
Let (Ω,F ,P) be a probability space.

(a) If E1 ⊂ E2 ⊂ · · · is an increasing sequence of events with limit E =
⋃
n∈NEn,

then we have P[En] ↑ P[E] as n→∞.
(b) If E1 ⊃ E2 ⊃ · · · is a decreasing sequence of events with limit E =

⋂
n∈NEn,

then we have P[En] ↓ P[E] as n→∞.

Proof. Part (a) follows from part (d) of Lemma II.19, since any probability measure is a measure.
Part (b) is left as an exercise. �

Exercise II.5. Prove part (b) of Theorem II.22 above.

II.4. Identification and construction of measures

We now turn to the following questions:

• Does a measure with some desired properties exist?
(How can we construct measures?)
• How can we check whether two measures are the same?

(What does one need to know to uniquely identify a measure?)
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As we noted in Section I.3, it can be complicated to work with σ-algebras. For the
purposes of the above two questions, in particular, we often prefer to work with
simpler collections. For the identification part, the appropriate simpler collections
are called π-systems (Definition II.23 below)

Courses on traditional measure theory focus quite a lot on the construction of mea-
sures. We refer the interested reader to such measure theory courses for details —
the dedicated reader will find for example Carathéodory’s extension theorem, with
which it is possible to construct, e.g., the Lebesgue measure Λ on R (Example II.12)
and its multi-dimensional analogue Λd on Rd (Example II.13).

Instead, identification of probability measures is of practical relevance in stochastics
and statistics, so we focus more on this latter question. The proof of the main
identification result (Dynkin’s identification theorem, Theorem II.26), is not given
immediately. It can be found in Appendix C, and may be most natural to study
together with the topics of Lecture IV.

Identification of probability measures

Collections of the following type are good for the purposes of identification of mea-
sures.

Definition II.23 (Pi-system).
A collection J of subsets of S is called a π-system if the following holds:

(Π-∩) : if A,B ∈J , then also A ∩B ∈J .

Remark II.24. Any σ-algebra S is also a π-system (since the intersection of two sets in a σ-
algebra belongs to the σ-algebra). However, not every π-system is a σ-algebra, as the
following example shows.

Example II.25 (A pi-system of semi-infinite intervals).
Consider the collection

J (R) :=
{

(−∞, x]
∣∣∣ x ∈ R

}
(II.13)

of semi-infinite intervals (−∞, x] ⊂ R. Then J (R) is a π-system on R: indeed it is clearly
a non-empty collection of subsets of R, and given any two intervals from the collection,
(−∞, x1] and (−∞, x2], their intersection is the interval

(−∞, x1] ∩ (−∞, x2] = (−∞, z], where z = min{x1, x2}

which itself belongs to the collection J (R). Thus property (Π-∩) holds for J (R).

In Proposition I.11 we saw that J (R) generates the Borel σ-algebra B on R, i.e., σ(J (R)) =
B. It is one of the simplest such π-systems, and for this reason we will use J (R) over and
over again, especially when dealing with real valued random variables.

The main result which is used for identification of measures is the following.

Theorem II.26 (Dynkin’s identification theorem).
Let P1 and P2 be two probability measures on a measurable space (Ω,F ). As-
sume that J is a π-system on Ω such that the σ-algebra σ(J ) generated by
it coincides with the σ-algebra F of measurable sets in the measurable space,
i.e., σ(J ) = F . Then the following are equivalent:
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(i) P1[E] = P2[E] for all E ∈J
(ii) the two probability measures are equal, P1 = P2.

Remark II.27. Condition (ii) above is clearly stronger than condition (i). Namely, the equality
of probability measures P1 = P2 means that P1[E] = P2[E] for all E ∈ F , and there are in
general more sets E in this σ-algebra F than in the π-system J . The nontrivial part of
the proof is therefore that condition (i) implies (ii). This will be proven in Appendix C.3.

Cumulative distribution function

In the following we consider a probability measure on the real axis R. Typically such
a probability measure could appear as the law of a real-valued random variable, as
we will discuss later on in the course. In order to have a suitable notation for such
common situations, let us denote the probability measure in this case by ν instead
of P.

Definition II.28 (Cumulative distribution function).
If ν is a probability measure on (R,B), then the cumulative distribution func-
tion (c.d.f.) of ν is the function F : R→ [0, 1] defined by

F (x) := ν
[
(−∞, x]

]
.

A simple but important application of Dynkin’s identification theorem is the fol-
lowing. This case is applicable, e.g., to the identification of the laws of real-valued
random variables.

Corollary II.29 (Cumulative distribution function identify distributions).
Let ν1 and ν2 be two probability measures on (R,B), and F1 and F2 their cu-
mulative distribution functions, reprectively. Then the following are equivalent:

(i) The cumulative distribution functions are equal, F1 = F2.
(ii) The probability measures are equal, ν1 = ν2.

Proof: Equivalence if proved by establishing both implications (i)⇒ (ii) and (ii)⇒ (i).

proof of (ii)⇒ (i): Assuming the probability measures are equal, ν1 = ν2, we get for any x ∈ R

F1(x) := ν1

[
(−∞, x]

]
= ν2

[
(−∞, x]

]
=: F2(x).

proof of (i)⇒ (ii): Assume the equality F1 = F2 of cumulative distribution functions, i.e., that
F1(x) = F2(x) for all x ∈ R. Consider the π-system J (R) of Example II.25. A set
A = J (R) of this π-system is by definition of the form A = (−∞, x] for some x ∈ R. For
such a set, we get

ν1

[
(−∞, x]

]
=: F1(x) = F2(x) := ν1

[
(−∞, x]

]
,

so we have that ν1 and ν2 coincide on J (R). The σ-algebra σ
(
J (R)

)
generated by the

π-system J (R) coincides with the Borel σ-algebra B by Proposition I.11(i). Theorem II.26
then guarantees that ν1 and ν2 coincide on the entire Borel σ-algebra B. �

Since cumulative distribution functions characterize probability measures on (R,B)
by Corollary II.29 above, it is natural to next ask which functions F can qualify as
cumulative distribution functions. There is indeed a rather explicit characterization.
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Deriving the necessary conditions below is an instructive application of the basic
properties of measures which we established in Lemma II.19.

Proposition II.30 (Properties of cumulative distribution functions).
If F : R→ [0, 1] is the cumulative distribution function of a probability measure
ν on (R,B), then it satisfies the following properties:

(a) F is increasing: if x ≤ y then F (x) ≤ F (y)
(b) F is right-continuous: if xn ↓ x ∈ R as n→∞, then F (xn) ↓ F (x)
(c) limx→+∞ F (x) = 1 and limx→−∞ F (x) = 0.

Exercise II.6. Prove Proposition II.30.
Hint: Use appropriate parts of Lemma II.19.





Lecture III

Random variables

Let (Ω,F ,P) be a probability space, i.e.,

Ω — the set of all possible outcomes
F — the collection of events (see Lecture I)
P — the probability measure (see Lecture II).

The key idea of a random variable is the following two step procedure by which
randomness is thought to have effect:

1.) “Chance determines the random outcome ω ∈ Ω.”
2.) “The outcome ω determines various quantities of interest.”

(random variables)

Therefore, a random variable will be a function X defined on Ω, which to an outcome
ω ∈ Ω associates the value X(ω) of some quantity of interest. The function

X : Ω→ S ′

takes values in a suitable set S ′ of possible values of the quantity of interest (some
examples are given below, in Example III.4). Crucially, this function has to be
sufficiently well-behaved so that we can talk about probabilities with which the
quantity assumes certain values. So whenever A′ ⊂ S ′ is a reasonable enough subset
of the possible values, the set of outcomes ω for which X(ω) belongs to A′ should
constitute an event, i.e., {

ω ∈ Ω
∣∣ X(ω) ∈ A′

}
∈ F . (III.1)

This requirement of well-behavedness of the function X : Ω→ S ′ is what the notion
of measurable function captures (cf. Definition III.1 below).

The set in (III.1) above is just the preimage of A′ under the function X : Ω → S ′:
indeed by definition we have

X−1(A′) =
{
ω ∈ Ω

∣∣ X(ω) ∈ A′
}
⊂ Ω.

For simplicity, we will often abbreviate this just as

{X ∈ A′} ⊂ Ω.

This last slight abuse of notation is not only shorter, but it also has the advantage
that the probabilistic interpretation

“the value of our (random) quantity of interest X lies in A′”

of the event becomes apparent at a glance.

21
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III.1. Measurable functions and random variables

Let (S,S ) and (S ′,S ′) be two measurable spaces, i.e., S and S ′ are two sets and
S and S ′ are σ-algebras on these two respectively.

Definition III.1 (Measurable function).
A function f : S → S ′ is called S /S ′-measurable1 if for all A′ ∈ S ′ we have
f−1(A′) ∈ S .

S

f−1(A′)

S′

A′f

Let now (Ω,F ,P) be a probability space, and (S ′,S ′) a measurable space.

Definition III.2 (Random variable).
A random variable with values in S ′ is a F/S ′-measurable functionX : Ω→ S ′.

Remark III.3. This definition precisely requires that {X ∈ A′} ⊂ Ω is an event whenever the
subset A′ ⊂ S′ is S ′-measurable.

Example III.4 (Examples of types of random variables).
Depending on our quantity of interest, the set S′ of allowed values of the random variable
can be for example one of the following:

random numbers: The case S′ = R, S ′ = B (Borel σ-algebra on the real line) corre-
sponds to real-valued random variables, i.e., random numbers.

random vectors: e.g., S′ = Rd, S ′ = B(Rd) (Borel sigma-algebra on Rd)
random matrices: e.g., S′ = Rm×n, S ′ = B(Rm×n) (Borel sigma-algebra on Rm×n)
random graphs: S′ some set of graphs, S ′ a suitably chosen σ-algebra (often simply the

power set P(S′))
etc.: . . .

Usually S and S ′ are at least topological spaces, so we can and will equip them
with their Borel σ-algebras S = B(S) and S ′ = B(S ′), generated by their open
subsets (see Definition I.10). A B(S)/B(S ′)-measurable function f : S → S ′ will
be called a Borel-measurable function or simply a Borel function. Let us give one
interesting example of a random variable with values in a topological space which
is not as simple as the finite dimensional Euclidean spaces in the previous example.

Example III.5 (Brownian motion as a random variable).
Brownian motion is one of the most important stochastic processes: it is a continuous real
valued Markov process in continuous time, which is used to model many things from thermal
motion of microscopic particles to stock prices in finance. Mathematically, the Brownian

1When the two σ-algebras are clear from the context, we usually just say that the function is
measurable.
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motion on the unit time interval is a certain random variable taking values in the space
S′ = C ([0, 1]) of continuous functions h : [0, 1] → R, with the topology induced by the
uniform norm ‖h‖∞ = supt∈[0,1] |h(t)| and the corresponding Borel σ-algebra B

(
C ([0, 1])

)
.

10 t

Bt

The law of a random variable

Suppose that X : Ω→ S ′ is a random variable. Then there is a probability measure
on S ′ which describes how the values of the random variable are distributed.

Definition III.6 (The law of a random variable).
The law (or the distribution) of the random variable X : Ω→ S ′ is the proba-
bility measure PX on (S ′,S ′) defined by

PX [A′] = P
[
X−1(A′)

]
, for A′ ∈ S ′. (III.2)

Exercise III.1. Verify that PX given by (III.2) is indeed a probability measure on (S′,S ′).

With a slight abuse of notation, we usually write the defining equation (III.2) of the
law of X in the more descriptive form

PX [A′] = P
[
X ∈ A′

]
.

If we were to insist on carefully following the notation that was introduced in Lec-
ture II, then instead of “X ∈ A′” we should in principle write “

{
ω ∈ Ω

∣∣ X(ω) ∈ A′
}

”
(this subset of the sample space is the event whose probability concerns us). But
it is clear that doing so would become really cumbersome in actual practice, so
shorthand notations of the above kind are commonplace in probabilistic literature.

III.2. Indicator random variables

Constant functions provide trivial examples of random variables (verify the measur-
ability directly from the definition!). They in fact correctly model situations when
a quantity of interest contains no randomness — such random variables are usually
called “deterministic”.

Constant functions have only one possible value (the constant in question). Arguably
the next simplest example of a random variable would be one which assumes one of
two possible values (depending on the random outcome). It is convenient to take 0
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and 1 as those two values, in which case one speaks of an indicator random variable.
For E ⊂ Ω a subset, we define the indicator function IE : Ω→ R of E by

IE(ω) =

{
1 if ω ∈ E
0 if ω /∈ E.

(III.3)

Exercise III.2 (Measurability of indicators).
Prove that IE is F -measurable if and only if E ∈ F , i.e., if E ⊂ Ω is an event.

When IE is F -measurable, we call it the indicator random variable of the event E.
It “indicates” the occurrence of the event E in the sense that it takes the value 1 if
the event E occurs and value 0 otherwise.

Exercise III.3 (Indicators of intersections and unions).
Let A,B ⊂ Ω.

(a) Show that IA∩B = IA IB .
(b) When is it true that IA∪B = IA + IB?

III.3. Constructing random variables

So far we have given the definition of random variables, but we have hardly addressed
the issue of constructing them — we have only left it as an exercise to characterize
the measurability of random variables with values 0 and 1. At this stage one might
therefore still worry that perhaps the requirements of a measurable function are too
stringent for any interesting examples to exist. . . Fortunately, this is not the case:
almost all functions that you ever encounter turn out to be measurable. The rest of
this lecture is devoted to understanding why.

A very easy case

The example here concerns one case in which we do not have to worry about the
existence of random variables at all — when all subsets of the sample space Ω are
events, then every function on Ω is measurable.

Example III.7 (A case when all functions are measurable).
Suppose that (Ω,F ,P) is a probability space in which all subsets of Ω are events F = P(Ω).
Then any function X : Ω → R is a random variable. Indeed, for any B ∈ B, the preimage
X−1(B) ⊂ Ω is a subset, and therefore X−1(B) ∈P(Ω).

As we have mentioned before, we can usually only take F = P(Ω) when Ω is
countable, so Example III.7 only reassures us of the existence of plenty of random
variables on countable sample spaces. It remains to convince ourselves that inter-
esting random variables exist in other common situations.
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Composition of measurable functions

Most of the time in practice, we construct more complicated random variables from
simpler ones. The measurability of the simpler building blocks should ideally directly
imply the measurability of the more complicated construction.

Composition of functions is one such construction.

Proposition III.8 (Composition of measurable functions is measurable).
Suppose that (S,S ), (S ′,S ′), and (S ′′,S ′′) are three measurable spaces and
that we are given two measurable functions:

f : S → S ′ is S /S ′-measurable

g : S ′ → S ′′ is S ′/S ′′-measurable.

Then the composite function s 7→ g(f(s)) is also measurable:

g ◦ f : S → S ′′ is S /S ′′-measurable.

Proof. We check the measurability of g ◦ f directly using the definition. Let A′′ ∈ S ′′ be a
measurable subset of S′′. Then first, by the S ′/S ′′-measurability of g, the preimage under
g of A′′ is measurable: we have g−1(A′′) ∈ S ′. Using the S /S ′-measurability of f , it
then follows that also the preimage under f of the measurable set g−1(A′′) is measurable:
we have f−1

(
g−1(A′′)

)
∈ S . It is an easy fact about preimages of composite functions

that f−1
(
g−1(A′′)

)
= (g ◦ f)−1(A′′). Therefore we have checked the measurability of the

preimage (g ◦ f)−1(A′′) of any measurable subset A′′ ⊂ S′′ under the composite function
g ◦ f : S → S′′, which by definition says that the composite function g ◦ f is measurable. �

We postpone examples until after we have some more tools at our disposal.

Practical verification of measurability

To verify measurability, it is in fact enough to check the defining condition for just
some collection of subsets that generates the σ-algebra on the target space.

Lemma III.9 (A sufficient condition for measurability).
Let C ′ ⊂ P(S ′) be a collection of subsets of S ′ that generates the σ-algebra
S ′, i.e., σ(C ′) = S ′. Then a function f : S → S ′ is S /S ′-measurable if and
only if f−1(C ′) ∈ S for all C ′ ∈ C ′.

Proof. The condition is clearly necessary for measurability of f : if C ′ ∈ C ′ ⊂ σ(C ′) = S ′ then the
definition of measurability requires that f−1(C ′) ∈ S . It therefore remains only to prove
that the condition is also sufficient.

Assume now that f−1(C ′) ∈ S for all C ′ ∈ C ′. We must prove that then the function f is
S /S ′-measurable. Define

G ′ =
{
G′ ∈ S ′

∣∣∣ f−1(G′) ∈ S
}



26 III. RANDOM VARIABLES

as the collection of the “good” subsets G′ of S′, whose preimages are measurable. By
assumption we have C ′ ⊂ G ′. Now since preimages satisfy the properties

f−1(S′) = S

f−1
(
(G′)c

)
=
(
f−1(G′)

)c
f−1

( ∞⋃
n=1

G′n

)
=

∞⋃
n=1

f−1(G′n)

(see Exercise A.2) and S is a σ-algebra (on S), we see that the collection G ′ of subsets of S′

is a σ-algebra (on S′).

The fact that the σ-algebra G ′ contains the collection C ′ implies that it contains also
the σ-algebra generated by that collection, i.e., σ(C ′) ⊂ G ′. But we have assumed that
σ(C ′) = S ′, so we conclude that S ′ ⊂ G ′. By definition of G ′ this means that every
S ′-measurable subset A′ has the property that f−1(A′) ∈ S . This shows the measurability
of the function f . �

As an application, we see that all continuous functions are good for our purposes.
This gives us quite a lot of measurable functions already.

Corollary III.10 (Continuous functions are Borel-measurable).
Let X and X′ be two topological spaces (e.g., metric spaces). Then any contin-
uous function f : X→ X′ is Borel-measurable.

Proof. Let f : X → X′ be a continuous function and let B(X) and B(X′) be the Borel σ-algebras
on X and X′, respectively. Recall that Borel-measurability of the function f means that f
is B(X)/B(X′)-measurable.

Recall also that the Borel σ-algebra B(X′) is generated by the collection T (X′) of all open
subsets V ′ ⊂ X′. If f : X→ X′ is continuous, then for any open subset V ′ ⊂ X′ the preimage
f−1(V ′) ⊂ X is also open: f−1(V ′) ∈ T (X). As an open set, the preimage is in particular
Borel-measurable: f−1(V ′) ∈ B(X). Therefore we have checked that f−1(V ′) ∈ B(X) holds
for all V ′ in the collection T (X′) which generates B(X′). By Lemma III.9, this is sufficient
to show that the function f is B(X)/B(X′)-measurable. �

For the case S ′ = R (e.g., random numbers), we can in fact use even simpler collec-
tions that generate the Borel σ-algebra.

Corollary III.11 (Measurability of real valued functions).
A function f : S → R is S /B-measurable if and only if for all c ∈ R we have
{f ≤ c} ∈ S .

Remark III.12. Recall that the notation {f ≤ c} is shorthand for

{f ≤ c} :=
{
s ∈ S

∣∣ f(s) ≤ c
}
⊂ S,

which is also the preimage f−1
(
(−∞, c]

)
of the interval (−∞, c].

Proof of Corollary III.11. The collection C =
{

(−∞, c]
∣∣∣ c ∈ R

}
generates the Borel σ-algebra B

on R by Proposition I.11, so the assertion follows from Lemma III.9 above. �

Pointwise operations on measurable functions

Since real numbers have addition and multiplication, we can perform such operations
on real-valued functions pointwise. If f1, f2 : S → R are two functions, then the



III.3. CONSTRUCTING RANDOM VARIABLES 27

pointwise sum f1 + f2 : S → R is defined by

(f1 + f2)(s) = f1(s) + f2(s) ∀s ∈ S,
the pointwise product f1f2 : S → R by

(f1f2)(s) = f1(s) f2(s) ∀s ∈ S,
and if f : S → R is a function and λ ∈ R is a scalar, then the pointwise scalar
multiple λf : S → R is defined by

(λf)(s) = λ f(s) ∀s ∈ S.

Let us denote by mS the set of all S /B-measurable functions S → R. The
pointwise operations allow us to construct new measurable functions from old ones.

Proposition III.13 (Pointwise sums and products preserve measurability).
Let (S,S ) be a measurable space. Then the set mS of all measurable real
valued functions on it is stable under taking pointwise sums, pointwise products,
and pointwise scalar multiples, i.e., the following hold:

(i) f ∈ mS , λ ∈ R =⇒ λf ∈ mS
(ii) f1, f2 ∈ mS =⇒ f1 + f2 ∈ mS

(iii) f1, f2 ∈ mS =⇒ f1f2 ∈ mS .

Proof: We will prove part (ii), and leave parts (i) and (iii) as exercises.

proof of (ii): Suppose that f1, f2 ∈ mS . Note that for c ∈ R and s ∈ S, the condition f1(s) +
f2(s) > c holds if and only if there exists a rational number q ∈ Q such that we have
f1(s) > q and f2(s) > c− q. In other words, the following two subsets of S are equal

{f1 + f2 > c} =
⋃
q∈Q

(
{f1 > q} ∩ {f2 > c− q}

)
.

By measurability of the functions f1 and f2, the subsets {f1 > q} , {f2 > c− q} ⊂ S are
measurable. By properties of σ-algebras, then, the set on the right hand side above is
measurable (note that the set Q of rational numbers is countable). We have thus shown
that {f1 + f2 > c} ∈ S , and by taking complements we get

{f1 + f2 ≤ c} = {f1 + f2 > c}c ∈ S .

By Corollary III.11, this is sufficient to show the measurability of the pointwise sum function
f1 + f2. �

Exercise III.4. Prove the assertions (i) and (iii) in Proposition III.13.

We can also use more subtle pointwise operations. If we are given a sequence
f1, f2, . . . of functions fn : S → R for n ∈ N, then we can define functions supn fn
and infn fn on S by the pointwise supremum and infimum

(sup
n∈N

fn)(s) = sup
n∈N

fn(s) and (inf
n∈N

fn)(s) = inf
n∈N

fn(s).

These functions, however, may assume values +∞ and −∞ even if each fn takes
only finite real values. Thus the functions

sup
n∈N

fn : S → [−∞,+∞] and inf
n∈N

fn : S → [−∞,+∞]

are defined so that their allowed range of values is the extended real line

[−∞,+∞] = R ∪ {+∞} ∪ {−∞} .
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The extended real line is equipped with the topology of a closed interval, so that for
example the tangent function

tan:
[
− π

2
,
π

2

]
→ [−∞,+∞]

is a homeomorphism, when we interpret tan(π/2) = +∞ and tan(−π/2) = −∞
(see Example B.19). From this topology, we get the Borel σ-algebra B([−∞,+∞])
on the extended real line, in the usual way (Definition I.10). It is so convenient to
occasionally allow +∞ and −∞ as possible values that we will slightly abuse the
notation, and write f ∈ mS also for functions

f : S → [−∞,+∞]

that are S /B([−∞,+∞])-measurable.

Likewise, for a sequence f1, f2, . . . of functions S → R we can define the pointwise
lim sup and lim inf,

(lim sup
n

fn)(s) = lim sup
n

fn(s) and (lim inf
n

fn)(s) = lim inf
n

fn(s).

Proposition III.14 (Pointwise supremum and infimum preserve measurability).
Let (S,S ) be a measurable space. Suppose that f1, f2, . . . ∈ mS . Then we
have:

(i) supn fn ∈ mS
(ii) infn fn ∈ mS

(iii) lim supn fn ∈ mS
(iv) lim infn fn ∈ mS .

Proof: We will prove only parts (i) and (iii) — parts (ii) and (iv) are entirely similar.2

proof of part (i). Note that we have supn fn(s) ≤ c if and only if fn(s) ≤ c for all n ∈ N. Therefore
we can write {

sup
n
fn ≤ c

}
=
⋂
n∈N
{fn ≤ c} .

For each n ∈ N we have {fn ≤ c} = f−1
n

(
(−∞, c]

)
∈ S , since fn ∈ mS . Therefore

we have {supn fn ≤ c} ∈ S as a countable intersection of sets in the σ-algebra S . By
Corollary III.11 we conclude that supn fn is a S -measurable function.

proof of part (iii). Recall that we have

lim sup
n

fn(s) = inf
n∈N

(
sup
k≥n

fk(s)
)
,

because the sequence of functions g1, g2, . . . defined by

gn(s) = sup
k≥n

fk(s)

is decreasing (for larger n the supremum contains fewer terms)

g1(s) ≥ g2(s) ≥ g3(s) ≥ · · · .

The function gn is a pointwise supremum of the measurable functions fk ∈ mS , k ≥ n, and
thus itself S -measurable by part (i). Consequently, lim supn fn is the pointwise infimum of
the measurable functions gn ∈ mS , n ∈ N, and thus itself S -measurable by part (ii). �

2In the case when values ±∞ do not appear, parts (ii) and (iv) in fact directly follow
from parts (i) and (iii) and Proposition III.13(i) by observing that infn fn = − supn(−fn) and
lim infn fn = − lim supn(−fn).
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With the above we can conclude the extremely useful fact that pointwise limits of
measurable functions are measurable.

Corollary III.15 (Pointwise limits of measurable functions are measurable).
Let (S,S ) be a measurable space. Suppose that f1, f2, . . . ∈ mS , and suppose
that for all s ∈ S the limit

lim
n→∞

fn(s)

exists. Then the pointwise limit function is measurable: limn→∞ fn ∈ mS .

Proof. When the assumed limit exists, it coincides with both the lim sup and lim inf (cf. Proposi-
tion B.4),

lim inf
n

fn(s) = lim
n→∞

fn(s) = lim sup
n

fn(s).

Therefore the assertion follows from Proposition III.14, part (iii) or (iv). �

Let us now revisit earlier examples about repeated coin tossing. The following illus-
trates how the operations we studied above allow us to construct rather nontrivial
random variables starting from very basic ones.

Example III.16 (The question of existence of limit frequency in coin tossing).

Let Ω = {H,T}N be the sample space for repeated coin tossing as in Examples O.2 and I.5.
Let F be the σ-algebra on Ω generated by the events

Ej :=
{
ω ∈ Ω

∣∣∣ ω(j) = H
}

= “the j:th coin toss is heads”

for j ∈ N, i.e., F = σ
( {
Ej
∣∣ j ∈ N

} )
. Then the indicator random variable of Ej ,

IEj (ω) =

{
1 if ω(j) = H

0 if ω(j) = T,

is F -measurable by Exercise III.2. The relative frequency of heads in the first n coin tosses,

Xn(ω) =
1

n

n∑
j=1

IEj (ω),

is then also F -measurable by Proposition III.13 (the relative frequency Xn is constructed
from the indicators IEj by finite sums and a scalar multiple). Therefore also the upper and
lower limits

L+(ω) = lim sup
n

Xn(ω) and L−(ω) = lim inf
n

Xn(ω)

are random variables, by Proposition III.14. Knowing that these are random variables, do
we learn something interesting about events?

For example, for any r ∈ [0, 1], we should hope to be able to form the event

“relative frequencies of heads tend to r” =
{

lim
n→∞

Xn = r
}

which in more careful notation is the subset
{
ω ∈ Ω

∣∣ limn→∞Xn(ω) = r
}
⊂ Ω. Note that

we have {
lim
n→∞

Xn = r
}

=
{
L+ = r

}
∩
{
L− = r

}
,

and since L+ and L− are F -measurable random variables, the two preimages{
L+ = r

}
= (L+)−1({r}) and

{
L− = r

}
= (L−)−1({r})

are F -measurable events. Thus also their intersection is indeed an event,{
lim
n→∞

Xn = r
}
∈ F ,
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and so it will at least be meaningful to talk about the probability (once we introduce a
probability measure P) of the events that the relative frequency tends to a particular limiting
value r ∈ [0, 1].

In Example I.5 we in fact already reached essentially the same conclusion by direct manip-
ulations with events, without using random variables. The present approach, however, has
some advantages. Consider for instance the slight variation:

“relative frequencies have a limit” =
{
∃ lim
n→∞

Xn

}
.

To show that this is an event, we may now just notice that the limit exists if and only if the
corresponding upper and lower limits coincide, L+ = L−, i.e. if their difference vanishes{

∃ lim
n→∞

Xn

}
=
{
L+ − L− = 0

}
.

This is the preimage of {0} ⊂ R under the pointwise difference L+−L− of random variables,
and as such it is measurable, {

∃ lim
n→∞

Xn

}
∈ F .

It would be more cumbersome to try to conclude the same directly by manipulating events
using countable set operations in the spirit of Example I.5.

III.4. Simple functions

In Section III.2 we discussed the measurability of functions assuming two possible
values, the indicator functions of subsets A ⊂ S defined by

IA : S → R, IA(s) =

{
1 if s ∈ A
0 if s /∈ A.

In Exercise III.2 the measurability of the indicator functions was characterized: we
have IA ∈ mS if and only if A ∈ S .

From two possible values we next proceed modestly to finitely many possible values.

Definition III.17 (Simple function).
A real valued measurable function assuming only finitely many different values
is called a simple function (or a simple random variable in the probabilistic
context).

Any finite linear combination of indicator functions

f(s) =
m∑
k=1

ak IAk (III.4)

of indicators of measurable sets A1, . . . , Am ∈ S is a simple function: it is mea-
surable by Proposition III.13, and there are only finitely many real numbers that
can be expressed as a sum of some of the coefficients a1, . . . , am ∈ R. In fact, if a
simple function f : S → R can only assume m different real values a1, . . . , am, then
we can write it as a linear combination (III.4) with the disjoint measurable sets
Ak := f−1({ak}). Occasionally, choosing this minimal linear combination is very
convenient, but at other times we might not want to insist on disjointness.
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In Corollary III.15 we saw that any pointwise limit of measurable functions is mea-
surable. An important version of the converse statement is also true: any measurable
function can be obtained as a pointwise limit of simple functions!

When (S,S ) is a measurable space, denote by mS + the set of all functions

f : S → [0,+∞]

which are S /B([0,+∞]) measurable.

Lemma III.18 (Approximation of non-negative measurable functions).
Let f ∈ mS +. Then there exists a sequence f1, f2, . . . : S → [0,+∞) of non-
negative simple functions such that fn ↑ f pointwise as n→∞.

s

f(s)

(a) Approximation at stage n = 1.

s

f(s)

(b) Approximation at stage n = 2.

s

f(s)

(c) Approximation at stage n = 3.

s

f(s)

(d) Approximation at stage n = 4.

Figure III.1. Pointwise increasing approximation of non-negative
measurable functions by simple functions.

An illustration of the approximation of a non-negative measurable function is given
in Figure III.1. To prove the above approximation lemma, we will construct the
approximating sequence explicitly. The idea is that at the n:th stage of approxima-
tion, we truncate the values that exceed level n to exactly n, and we replace values
below level n by the nearby values on a grid of mesh 2−n. As n → ∞, the trunca-
tion is done ever further away, and the grid becomes ever finer. The truncation and
discretization at the n:th stage are achieved with the staircase functions

ςn : [0,+∞]→ [0, n]
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illustrated in Figure III.2 and defined piecewise by the formula

ςn(x) =



0 if 0 ≤ x ≤ 1
2n

1
2n

if 1
2n
< x ≤ 2

2n

2
2n

if 2
2n
< x ≤ 3

2n

...
n2n−1

2n
if n2n−1

2n
< x ≤ n

n if n < x.

(III.5)

x

ς1(x)

(a) The staircase function ςn for n = 1.

x

ς2(x)

(b) The staircase function ςn for n = 2.

x

ς3(x)

(c) The staircase function ςn for n = 3.

x

ς4(x)

(d) The staircase function ςn for n = 4.

Figure III.2. The staircase functions ςn : [0,+∞]→ [0, n].

We first check that these staircase functions provide a good approximation of the
identity function of [0,+∞].
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Lemma III.19 (Properties of the staircase functions).

(a) The staircase functions ςn are simple, Borel-measurable, and left-continuous.
(b) For every x ∈ [0,+∞], we have ςn(x) ↑ x as n→∞.

Proof. From the definition (III.5) it is clear that the set of possible values of ςn is the finite set{
j 2−n

∣∣ j ∈ {0, 1, . . . , n2−n}
}

. Each of the preimages ς−1
n ({j2−n}) is an interval, therefore

a Borel set, so ςn is Borel-measurable and simple. Left continuity

lim
x′↑x

ςn(x′) = ςn(x) ∀x ∈ [0,+∞] (III.6)

is also clear from the definition (III.5). This proves part (a).

For part (b), we consider the cases x = +∞ and x ∈ [0,+∞) separately.

Consider first x = +∞. For any n ∈ N, we have ςn(+∞) = n by definition (III.5). These
values form an increasing sequence tending to infinity, i.e., we have ςn(+∞) ↑ +∞ as claimed.

Consider then x ∈ [0,+∞). For any n > x, we have |ςn(x)− x| ≤ 2−n by definition (III.5).
This shows that ςn(x) → x as n → ∞. It is also easy to see that the sequence of values is
increasing, ς1(x) ≤ ς1(x) ≤ · · · . Thus we have ςn(x) ↑ x as claimed. This finishes the proof
of part (b). �

With this, we are ready to prove the approximation lemma.

Proof of Lemma III.18 Let f ∈ mS + be a non-negative measurable function. For each n ∈ N,
define the function fn = ςn ◦ f , i.e.,

fn(s) = ςn
(
f(s)

)
for s ∈ S.

This fn is measurable as the composition of the measurable function f : S → [0,+∞] and
the Borel function ςn : [0,+∞]→ [0, n]. The possible values of fn are contained in the finite
set of possible values of ςn. We conclude that fn is a non-negative simple function.

At any s ∈ S we have f(s) ∈ [0,+∞], and therefore

fn(s) = ςn
(
f(s)

)
↑ f(s) as n→∞

by part (b) of the previous lemma. We have thus constructed the desired sequence f1, f2, . . .
of simple functions, which approximates f pointwise in a monotone increasing way. �

Remark III.20 (Approximating approximations).
For the proof of the approximation lemma itself, it was not really important whether we made
the staircase functions left-continuous or not. Where left-continuity is actually convenient is
the following situation, which appears in particular in the proof of the Monotone convergence
theorem (Theorem VII.8) in Appendix D.

If g1, g2, . . . ∈ mS + is any sequence of non-negative functions such that gn ↑ g as n → ∞,

then we may construct the simple approximations g
(r)
n := ςr ◦ gn, r ∈ N, of each gn,

g(r)
n ↑ gn as r →∞

as well as the simple approximations g(r) := ςr ◦ g, r ∈ N, of the limit function g,

g(r) ↑ g as r →∞.
In this setup, the approximations of the limit function g are the limits of the approximations
of each gn: for every s ∈ S we have by assumption gn(s) ↑ g(s) as n→∞, and therefore by
left-continuity (III.6) of ςn we get, for any r ∈ N,

g(r)
n (s) = ςr

(
gn(s)

)
↑ ςr
(
g(s)

)
= g(r)(s) as n→∞.





Lecture IV

Information generated by random variables

Probability theory offers an important interpretation of σ-algebras: they describe
information.

Let us first mention a few contexts in which this notion of information is used in
stochastics. In this course we will first use of the notion in the next Lecture V in
relation to independence: the elementary notion of independence of events is gener-
alized to the notion of independence of information. Another common and fruitful
use of information (see Appendix E) is conditional expected value, which represents
the best estimate of a random number given some (partial) information about it.
Finally, stochastic processes are random time-dependent phenomena, and it is often
relevant to model how information accumulates as we observe the phenomenon over
a period of time — the mathematical notion suitable for this is refining collections
of σ-algebras indexed by time known as filtrations. There would be yet other con-
texts, but it is in fact useful to interpret all σ-algebras as describing information,
and relate the notion of measurability of functions to this interpretation. So let us
start with an informal description of the ideas and then proceed to precise definition
and properties.

To describe the idea informally, suppose that (Ω,F ,P) is a probability space and
we have an indexed collection (Yγ)γ∈Γ of random variables Yγ : Ω → R on it.1 To
understand what information is contained in these random variables, recall the two
step procedure by which randomness is thought to arise:

1.) “Chance determines the random outcome ω ∈ Ω.”
2.) “The outcome ω determines the values Yγ(ω) of quantities of interest Yγ.”

The motivating question about information is then:

“If you do not know the outcome ω of all randomness, but someone
tells you the values of the quantities of interest Yγ for all γ ∈ Γ,
then for which events E ∈ F are you able to decide whether E
occurs or not?”

Formulated in this way it makes sense that the information contained in the collec-
tion (Yγ)γ∈Γ of random variables is some collection of events — namely those events
whose occurrence can be decided based on the random variables. Evidently, any
event of type {Yγ ∈ A′} concerning the value of any one of the random variables
Yγ can be decided, and thus belongs to the collection. However, in deciding about

1There is no fundamental reason to require that the random variables are real-valued, but we
assume this for the sake of concreteness — and in order to avoid the very awkward notation that
would arise if each random variable Yγ : Ω→ Sγ in the collection would have a different set Sγ of
allowed values (necessarily then also equipped with its own σ-algebra Sγ).

35
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events you are furthermore allowed to use logical reasoning (e.g., the logical opera-
tions described in Section I.1), so the collection of events that can be decided should
itself be a σ-algebra. This motivates the following definition.

IV.1. Definition of σ-algebra generated by random variables

Let (Ω,F ,P) be a probability space and (Yγ)γ∈Γ an indexed collection of random
variables Yγ : Ω→ R on it.

Definition IV.1 (Sigma-algebra generated by random variables).
The σ-algebra generated by the collection (Yγ)γ∈Γ of random variables is the
smallest σ-algebra Y on Ω such that for each γ ∈ Γ the random variable
Yγ is Y -measurable. We denote the σ-algebra generated by the collection by
Y = σ

(
(Yγ)γ∈Γ

)
.

Remark IV.2. Similarly to Section I.3, the smallest σ-algebra with the above property exists and
is unique: it is the intersection of all σ-algebras satisfying the property.

Remark IV.3. Since each random variable Yγ is by definition at least F -measurable, we obviously
have σ

(
(Yγ)γ∈Γ

)
⊂ F . According to the information interpretation, F represents “full

information” (all events on our probability space), so no amount of random variables could
contain more information than that.

Remark IV.4. Although we use the notation σ(· · · ) both for the σ-algebra generated by a col-
lection of subsets (Definition I.6) and for the σ-algebra generated by a collection of random
variables (Definition IV.1), we trust that there is no risk of confusion: it should always be
clear from the context which of these two closely related notions is meant.

An already interesting special case is a collection which contains only one random
variable: the σ-algebra generated by Y : Ω → R is the smallest σ-algebra with
respect to which Y is measurable. We denote it simply by σ(Y ).

Exercise IV.1 (The σ-algebra generated by a random number).
Let Y be a real-valued random variable defined on a probability space (Ω,F ,P).

(a) Show that the σ-algebra σ(Y ) generated by the random variable Y coincides with the σ-
algebra σ

(
Y −1(B)

)
generated by the collection of events Y −1(B) = {Y −1(B)

∣∣B ∈ B}.
(b) Show that we in fact have the equality σ(Y ) = Y −1(B).

Exercise IV.2 (A π-system to generate the σ-algebra generated by a random number).
Let Y be a real-valued random variable defined on a probability space (Ω,F ,P). Let
J (R) =

{
(−∞, x]

∣∣ x ∈ R
}

be the π-system on R as in Example II.25 and define

I = Y −1
(
J (R)

)
=
{
Y −1

(
(−∞, x]

) ∣∣∣ x ∈ R
}
.

Show that I is a π-system on Ω which generates the σ-algebra σ(Y ) generated by the
random variable Y , i.e., σ(I ) = σ(Y ).
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IV.2. Doob’s representation theorem

The definition of information contained in random variables may seem abstract.
We next state and prove a theorem, which offers a good interpretation for the
information contained in one real-valued random variable.

Theorem IV.5 (Doob’s representation theorem).
Let (Ω,F ,P) be a probability space and Y : Ω → R and Z : Ω → R two real
valued random variables on it. Then Z is σ(Y )-measurable2 if and only if there
exists a Borel function f : R→ R such that

Z = f(Y ).

Remark IV.6. The precise meaning of

Z = f(Y )

is that for all possible outcomes ω ∈ Ω we have

Z(ω) = f(Y (ω)).

In other words, keeping in mind that random variables are ultimately just functions on the
sample space Ω, the function Z : Ω→ R is the composition

Z = f ◦ Y
of functions Y : Ω→ R and f : R→ R

Ω
Y //

Z=f◦Y
33R

f // R .

Theorem IV.5 gives the following interpretation: to say that Z is measurable with
respect to the information contained in Y means that the value of Z could be
obtained from the value of Y by applying some deterministic function f .

In the proof we use the Monotone class theorem, which can be found in Appendix C.

Proof of Theorem IV.5. The “if” direction of the statement is easy. Namely, if we have Z = f ◦ Y
for some B/B-measurable function f : R → R, then since Y : Ω → R is by definition
σ(Y )/B-measurable, it follows from Proposition III.8 that the composition Z = f ◦ Y : Ω→ R
is σ(Y )/B-measurable. It therefore remains to prove the “only if” direction. We first prove
the “only if” direction assuming that Z is bounded, and afterwards extend to full generality.

bounded Z: Let us define H as the collection of all those bounded functions Z : Ω→ R which can
be written as Z = f ◦ Y for some bounded Borel function f . Our goal is to show that the
collection H contains all σ(Y )-measurable bounded functions.

Denote J = σ(Y ). We start by checking that at least the indicator IE of any event E ∈J
belongs to H . Recall the fact J = σ(Y ) =

{
Y −1(B)

∣∣B ∈ B
}

from Exercise IV.1: any

E ∈ J is of the form E = Y −1(B) for some B ∈ B. Therefore the indicator of E is the
function

IE(ω) = IY −1(B)(ω) =

{
1 if ω ∈ Y −1(B)

0 otherwise.
(IV.1)

In contrast, the indicator function of B ⊂ R is a function defined on R: in fact, IB : R→ R
is a bounded Borel function. We notice that

IB
(
Y (ω)

)
=

{
1 if Y (ω) ∈ B
0 otherwise.

(IV.2)

2More precisely, σ(Y )/B-measurable.
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Comparing (IV.1) and (IV.2) we see that

IE(ω) = IB
(
Y (ω)

)
.

This conclusion IE = IB ◦Y shows that the indicator of any E ∈J belongs to the collection
we are considering, IE ∈H .

We now show that H is a monotone class as defined in Appendix C (see Definition C.1),
i.e., it satisfies the three properties (MC-1), (MC-R), and (MC-↑).

The first of these properties is obvious: if we take f to be the constant function f(x) = 1
for all x ∈ R then Z = f ◦ Y is the constant random variable Z(ω) = f(Y (ω)) = 1 for all
ω ∈ Ω. Thus indeed the constant function 1 on Ω belongs to H . This is property (MC-1)
for H .

The second property is easy, too. If we have Z1, Z2 ∈H , then we can write Z1 = f1 ◦Y and
Z2 = f2◦Y for some bounded Borel-measurable functions f1, f2 : R→ R. Then for c1, c2 ∈ R
we have c1 Z1 + c2 Z2 = f ◦ Y , where f = c1 f1 + c2 f2 is a pointwise linear combination
function R → R, which is also bounded and Borel-measurable by Proposition III.13. This
is property (MC-R) for H .

The last property is checked as follows. Suppose that Zn ↑ Z as n→∞, and that Zn ∈H
for all n ∈ N, and that 0 ≤ Zn(ω) ≤ K for all ω ∈ Ω and some constant K < ∞. Then we
have Zn = fn ◦Y for some bounded Borel-measurable functions fn : R. We may assume that
0 ≤ fn ≤ K pointwise3. Now define f = lim supn fn. Then f : R → R is Borel measurable
by Proposition III.14, and it is also bounded: 0 ≤ f ≤ K. Moreover, from our assumptions
it now follows that

Z = lim
n→∞

Zn = lim
n→∞

fn ◦ Y = lim sup
n

fn ◦ Y = f ◦ Y.

We thus obtain that Z ∈H . This is property (MC-↑) for H .

We have shown that H is a monotone class which contains the indicator functions of all
sets E in the collection J = σ(Y ). The collection J = σ(Y ) is a σ-algebra and thus in
particular a π-system (Remark II.24). The Monotone class theorem (Theorem C.2) therefore
guarantees that H contains all bounded σ(Y )-measurable functions. In other words, every
bounded σ(Y )-measurable Z : Ω → R is of the form Z = f ◦ Y for some bounded Borel
function f : R→ R.

unbounded Z: Consider now the general case, where Z : Ω → R can be unbounded. In that case
we can apply the function

arctan: R→
(
− π

2
,
π

2

)
and get the bounded random variable

Z̃ = arctan ◦Z.
By the composition property, if Z is σ(Y )-measurable, then Z̃ is also (arctan is continuous

and therefore Borel). From the first step of the proof, we thus know that Z̃ = f̃ ◦ Y for

some bounded Borel function f̃ : R→ R. Then we have

Z = tan ◦Z̃ = tan ◦f̃ ◦ Y = f ◦ Y,

where f = tan ◦f̃ . This f is Borel measurable and the proof is complete. �

3If fn do not already satisfy this property, we may truncate them. Using the functions

f̃n(x) :=


0 when fn(x) < 0

fn(x) when 0 ≤ fn(x) ≤ K
K when K < fn(x)

instead, we still have Zn = f̃n ◦ Y .



Lecture V

Independence

In the previous lecture (Lecture IV) we saw that probability theory offers an impor-
tant interpretation of σ-algebras: they describe information. One of the first uses of
the notion of information pertains to probabilistic independence: we will generalize
the elementary notion of independence of events to the notion of independence of
information.

The intuitive interpretation of probabilistic independence should be familiar from
basic courses in probability and statistics, so we recall the idea only very briefly.
Suppose that A and B are two events, and assume also that P[B] > 0 so that the

conditional probability P[A|B] = P[A∩B]
P[B]

of the event A given the occurrence of B

can be defined. If the probabilities of the two events satisfy

P[A ∩B] = P[A] P[B],

then we get

P[A|B] =
P[A ∩B]

P[B]
=

P[A] P[B]

P[B]
= P[A],

i.e., the conditional probability of A given B is just the probability of A. We
interpret this as saying that the knowledge of the occurrence of B does not reveal
anything that could be used to improve our estimate about the occurrence of A, and
we therefore consider the event A independent of the event B.1

We start this lecture by introducing the abstract and general notion of probabilistic
independence, and we then show its relation to the more familiar elementary notion
which was also used in the interpretation above. After the definitions and basic
properties, we also discuss the first profound techniques related to independence:
the Borel-Cantelli lemmas.

V.1. Definition of independence

Throughout, let (Ω,F ,P) be a probability space.

Let (Gj)j∈J be a collection of σ-algebras, Gj ⊂ F for all j ∈ J . For each j, we think
of Gj representing some information (for example available to a person j). Whether
these informations, for different j, are independent of each other with respect to the
underlying probability P is captured by the following definition.

Definition V.1 (Independence of sigma-algebras).
The collection (Gj)j∈J of σ-algebras is independent if for any distinct j1, . . . , jn ∈

1 Since the condition P[A ∩ B] = P[A] P[B] is symmetric under interchange of A and B, we
also consider the event B independent of A. It is, in fact, better to use symmetric terminology
and say that events A and B are independent.

39
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J and any events Aj1 ∈ Gj1 , . . . , Ajn ∈ Gjn we have

P
[
Aj1 ∩ Aj2 ∩ · · · ∩ Ajn

]
= P

[
Aj1
]
P
[
Aj2
]
· · ·P

[
Ajn
]
. (V.1)

This is the abstract and general notion of probabilistic independence, on which
other notions of independence are founded. It is important to note that while the
collection of σ-algebras here may be infinite, the formula (V.1) is only ever required
for intersections of finitely many events.

To get from the abstract and general notion to a more concrete case, let now (Xj)j∈J
be a collection of random variables. We need to define what it means for these
random variables to be independent. For this purpose, we consider the σ-algebra
σ(Xj) generated by Xj, for each j ∈ J separately (see Definition IV.1).

Definition V.2 (Independence of random variables).
The collection (Xj)j∈J of random variables is independent if the collection(
σ(Xj)

)
j∈J of σ-algebras generated by them is independent in the sense of

Definition V.1.

Finally, let (Ej)j∈J be a collection of events, Ej ∈ F . To define what it means
for these events to be independent, we consider the indicator random variables
IEj : Ω→ R of the events Ej, for j ∈ J (see Equation (III.3)).

Definition V.3 (Independence of events).
The collection (Ej)j∈J of events is independent if the collection

(
IEj
)
j∈J of

the corresponding indicator random variables is independent in the sense of
Definition V.2.

Remark V.4 (The elementary notion of independence of events).
The σ-algebra generated by the indicator random variable IE : Ω→ R of an event E ⊂ Ω is

σ(IE) = {∅, E,Ec,Ω} .

Thus events (Ej)j∈J are independent if and only if the σ-algebras
( {
∅, Ej , Ec

j ,Ω
} )

j∈J are

independent. In view of Definition V.1, this amounts to the equalities

P
[
E?j1 ∩ E

?
j2 ∩ · · · ∩ E

?
jn

]
= P

[
E?j1
]
P
[
E?j2
]
· · ·P

[
E?jn

]
, (V.2)

where each E?jk stands for either Ejk or its complement Ec
jk

(note that including impossible
events ∅ in the intersection is unnecessary, since both sides of the equation would then vanish
automatically, and including sure events Ω just amounts to having fewer terms in both the
intersection and the product on the two sides of the equation).

For the sake of concreteness, consider now just two events, E1 and E2. If E1 and E2 are
independent, then as a special case of (V.2) we at least have the familiar defining equality

P[E1 ∩ E2] = P[E1] P[E2]. (V.3)

But also conversely, if (V.3) holds then one can derive the equations (V.2) involving possible
complements — the reader is invited to directly derive at least the equality P[E1 ∩ Ec

2 ] =
P[E1]P[Ec

2 ] from (V.3). Of course, case by case checking the equations (V.2) would be
impractical as well as inelegant, so we instead develop systematic tools in Section V.2 below.

Exercise V.1. Show that the equality P[E1 ∩ Ec
2 ] = P[E1]P[Ec

2 ] follows from (V.3).
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Exercise V.2 (Independence is preserved under measurable functions).
Let X and Y be two R-valued random variables defined on a common probability space
(Ω,F ,P).

(a) Show that if X and Y are independent, then f(X) and g(Y ) are independent for any
Borel-measurable functions f, g : R→ R.

(b) Show that if f(X) and g(Y ) are independent for all Borel-measurable functions f, g : R→ R,
then X and Y are independent.

Exercise V.3. Assume that X and Y are two R-valued random variables such that we have
P
[
X + Y = 42

]
= 1. Is it possible that X and Y are independent?

Exercise V.4 (Calculations with two independent geometrically distributed numbers).
Let X,Y : Ω→ N be two independent random variables with

P[X = j] = P[Y = j] =
1

2j
for all j ∈ N = {1, 2, . . .}.

(a) Show that P[Y > n] = 1
2n for any n ∈ N.

Calculate the following probabilities

(b): P[X = Y ] (c): P[min(X,Y ) ≤ k], where k ∈ N
(d): P[Y > X] (e): P[X > kY ], where k ∈ N
(f): P[X divides Y ]

Hint: The correct final results are among the following:

1

3
,

1

2k+1 − 1
, 1− 1

4k
,

∞∑
k=1

1

2k+1 − 1
=

∞∑
k=1

1

4k − 2k
.

Notation

We abbreviate independence by the symbol ⊥⊥. We thus denote:

(Gj)j∈J ⊥⊥ if the collection (Gj)j∈J of σ-algebras is independent
(Xj)j∈J ⊥⊥ if the collection (Xj)j∈J of random variables is independent
(Ej)j∈J ⊥⊥ if the collection (Ej)j∈J of events is independent.

In the case of enumerated (countable) collections, we use the notation:

G1,G2, . . . ⊥⊥ if the collection (Gj)j∈N of σ-algebras is independent
X1, X2, . . . ⊥⊥ if the collection (Xj)j∈N of random variables is independent
E1, E2, . . . ⊥⊥ if the collection (Ej)j∈N of events is independent.

In the case of collections of just two members, we use notation:

G1 ⊥⊥ G2 if the collection (Gj)j∈{1,2} of σ-algebras is independent
X1 ⊥⊥ X2 if the collection (Xj)j∈{1,2} of random variables is independent
E1 ⊥⊥ E2 if the collection (Ej)j∈{1,2} of events is independent.

Exercise V.5 (Pairwise independence does not imply independence).
Construct an example in which three σ-algebras G1, G2, G3 are pairwise independent,

G1 ⊥⊥ G2, G1 ⊥⊥ G3, G2 ⊥⊥ G3,

but the collection
(
Gj
)
j∈{1,2,3} of all three is not independent.
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V.2. Verifying independence

To check independence, one usually does not want to work directly with the general
definition, but rather use an easier sufficient condition.

Proposition V.5 (A sufficient condition for independence).
Suppose that I1 and I2 are two π-systems on Ω and let G1 = σ(I1) and
G2 = σ(I2) be the σ-algebras generated by them. Then the following conditions
are equivalent:

(i) G1 ⊥⊥ G2

(ii) For all I1 ∈ I1 and I2 ∈ I2, we have P[I1 ∩ I2] = P[I1] P[I2].

Proof. Clearly condition (i) implies (ii), because I1 ⊂ σ(I1) = G1 and I2 ⊂ σ(I2) = G2. σ-
algebras It remains to show that (ii) implies (i). Let us therefore assume (ii). According to
Definition V.1, we must prove that then

P[E1 ∩ E2] = P[E1] P[E2]

holds for all E1 ∈ G1, E2 ∈ G2. We do this in two steps: first assuming that E1 is in the
π-system I1, and then for a general E1 ∈ G1.

step 1: Let I1 ∈ I1. In this first step we seek to prove that

P[I1 ∩ E2] = P[I1] P[E2] (V.4)

holds for all E2 ∈ G2. If P[I1] = 0, then equations (V.4) hold trivially, because both
sides vanish. We may therefore assume that P[I1] > 0. Then we define a new probability

measure P̃2 on (Ω,G2) by the formula

P̃2[E2] =
P[I1 ∩ E2]

P[I1]
for E2 ∈ G2 (V.5)

(this is indeed a probability measure by Exercise II.1). From assumption (ii), it follows that

the two probability measures P and P̃2 coincide on the π-system I2: if I2 ∈ I2 then

P̃2[I2] =
P[I1 ∩ I2]

P[I1]

(ii)
=

P[I1] P[I2]

P[I1]
= P[I2].

Dynkin’s identification theorem (Theorem II.26) thus implies that they coincide on the entire

σ-algebra G2 generated by this π-system, i.e. P̃2[E2] = P[E2] for all E2 ∈ G2. This shows
that

P[E2] = P̃2[E2] =
P[I1 ∩ E2]

P[I1]
,

which upon multiplying by P[I1] gives the desired equality (V.4).

step 2: Let E2 ∈ G2. In this last step we seek to prove, with a method analogous to step 1, that

P[E1 ∩ E2] = P[E1] P[E2] (V.6)

holds for all E1 ∈ G1. This will conclude the proof. We may assume that P[E2] > 0, because

otherwise both sides of (V.6) vanish. Then we again define a new probability measure P̃1,
this time on (Ω,G1), by the formula

P̃1[E1] =
P[E1 ∩ E2]

P[E2]
for E1 ∈ G1. (V.7)

By step 1, the two probability measures P and P̃1 coincide on the π-system I1. From
Dynkin’s identification theorem (Theorem II.26) it thus follows that they coincide on the
σ-algebra G1 generated by this π-system. This shows that for all E1 ∈ G1 we have

P[E1] = P̃1[E1] =
P[E1 ∩ E2]

P[E2]
.
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Upon multiplying by P[E2] we get the desired equality (V.6), which shows that the σ-
algebras G1 and G2 are independent. This establishes the implication (ii) ⇒ (i), and con-
cludes the proof. �

A typical example application of this is the following (familiar and) practical crite-
rion for the independence of two random numbers using their cumulative distribution
functions.

Corollary V.6 (Independence using cumulative distribution functions).
Suppose that X1, X2 : Ω → R are two random variables. Then we have X1 ⊥⊥
X2 if and only if

P
[
X1 ≤ x1, X2 ≤ x2

]
= P

[
X1 ≤ x1

]
P
[
X2 ≤ x2

]
(V.8)

for all x1, x2 ∈ R.

Proof. Let J (R) =
{

(−∞, x]
∣∣ x ∈ R

}
be the π-system on R as in Example II.25. Let

I1 = X−1
1

(
J (R)

)
=

{{
ω ∈ Ω

∣∣ X1(ω) ≤ x
} ∣∣∣∣ x ∈ R

}
.

Then I1 is a π-system on Ω which generates σ(X1) (see Exercise IV.2). Similarly I2 =
X−1

2

(
J (R)

)
is a π-system on Ω which generates σ(X2). The assumption (V.8) exactly says

that P[A1 ∩ A2] = P[A1] P[A2] for all A1 ∈ I1 and A2 ∈ I2. The statement therefore
follows from Proposition V.5 �

Similar statements hold for finite collections of π-systems and finite collections of
random numbers. To indicate how to deal with more than two σ-algebras, consider
the following exercise.

Exercise V.6 (Independence of three sigma algebras).
Let G1,G2,G3 ⊂ F be sigma-algebras on Ω. Assume that Gk is generated by a π-system Ik

which contains Ω.

(a) Show that G1,G2,G3 are independent if and only if

P
[
I1 ∩ I2 ∩ I3

]
= P[I1] P[I2] P[I3]

for all I1 ∈ I1, I2 ∈ I2, I3 ∈ I3.
(b) Why did we here require that Ik contains Ω?

Hint: Consider, e.g., the finite set Ω = {1, 2, . . . , 8} and the discrete uniform probability mea-

sure P on it, and three π-systems I1, I2, I3 each consisting of a single event, suitably chosen.

V.3. Borel – Cantelli lemmas

Given a sequence E1, E2, . . . ∈ F of events we occasionally care about whether
infinitely many of them occur, or whether only finitely many of them occur. Borel –
Cantelli lemmas are examples of what are called 0-1 laws in probability theory —
they state that under some mild conditions that are often relatively simple to verify,
the probability that we are interested in is trivial: either 0 or 1.

Occurrence infinitely often and occurrence eventually

We use the following definitions for a sequence E1, E2, . . . ∈ F of events:
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• “En occurs infinitely often”, abbreviated “En i.o.”, is the event

“En i.o.” =
⋂
m∈N

⋃
n≥m

En = lim sup
n

En

=
{
ω ∈ Ω

∣∣ ω ∈ En for infinitely many indices n
}
.

• “En occurs eventually”, abbreviated “En ev.”, is the event

“En ev.” =
⋃
m∈N

⋂
n≥m

En = lim inf
n

En

=
{
ω ∈ Ω

∣∣ ω ∈ En for all except finitely many n
}
.

These two are related by taking complements: by De Morgan’s laws, we have( ⋂
m∈N

⋃
n≥m

En

)c
=
⋃
m∈N

⋂
n≥m

Ec
n, i.e.,(

“En occurs infinitely often”
)c

= “Ec
n occurs eventually”.

Exercise V.7 (Indicators and upper and lower limits).
Consider a sequence E1, E2, . . . ⊂ Ω of subsets. Show that for all ω ∈ Ω we have

lim sup
n

IEn(ω) = Ilim supEn(ω) and lim inf
n

IEn(ω) = Ilim inf En(ω).

Use this to show that

lim inf
n

En ⊂ lim sup
n

En.

The two Borel – Cantelli lemmas

The first Borel – Cantelli lemma says that whenever the probabilities of the events En
decay fast enough, it is (almost surely) impossible for the events to occur infinitely
often.

Lemma V.7 (Borel–Cantelli lemma: convergence part).
Suppose that E1, E2, . . . ∈ F are such that

∑∞
n=1 P[En] < +∞. Then we have

P
[
“En occurs infinitely often”

]
= 0.

Proof. Denote Gm =
⋃∞
n=mEn, so that the event E = lim supnEn of interest is the decreasing limit

Gm ↓ E as m→∞. By monotone convergence for probability measures, Theorem II.22, we
have

P
[
E
]

= lim
m→∞

P
[
Gm
]
.

Now we can use the union bound, Theorem II.20, to estimate

0 ≤ P
[
Gm
]

= P
[ ∞⋃
n=m

En

]
≤
∞∑
n=m

P[En].

Since the series
∑
n P[En] is convergent, its tail goes to zero:

∑∞
n=m P[En]→ 0 as m→∞.

This shows that limm→∞ P[Gm] = 0 and thus P[E] = 0. �

The second Borel–Cantelli lemma says that if the probabilities of the events En do
not decay fast and if the events are in addition independent, then the events must
(almost surely) occur infinitely often.
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Lemma V.8 (Borel – Cantelli lemma: divergence part).
Suppose that E1, E2, . . . ∈ F are independent and

∑∞
n=1 P[En] = +∞. Then

we have
P
[
“En occurs infinitely often”

]
= 1.

Proof. Instead of the event E =
⋂
m∈N

⋃
n≥mEn of interest, consider first its complement Ec =⋃

m∈N
⋂
n≥mE

c
n. Denote the members in this union by Fm =

⋂
n≥mE

c
n. The event Fm is

an intersection — but in order to use independence we first need to arrange things to finite

intersections. To achieve this, define Fm,` =
⋂`
n=mE

c
n and note that these finite intersections

decrease to the infinite intersection Fm,` ↓ Fm as `→∞. Now by independence we have

P
[
Fm,`

]
= P

[ ⋂̀
n=m

Ec
n

]
=
∏̀
n=m

P
[
Ec
n

]
.

Denote pn = P[En] and use the estimate 1− pn ≤ e−pn to get

P
[
Fm,`

]
=
∏̀
n=m

(1− pn) ≤
∏̀
n=m

e−pn = exp
(
−
∑̀
n=m

pn

)
.

By the assumption
∑
n pn = +∞ we have exp

(
−
∑`
n=m pn

)
→ 0 as `→∞. Therefore from

Fm,` ↓ Fm and monotone convergence for probability measures, Theorem II.22, we get

P
[
Fm
]

= lim
`→∞

P
[
Fm,`

]
= 0.

Now for the complement Ec =
⋃
m Fm use the union bound, Theorem II.20, to get

P
[
Ec
]

= P
[ ∞⋃
m=1

Fm
]
≤
∞∑
m=1

P
[
Fm
]

=

∞∑
m=1

0 = 0.

This result for the complement is what we wanted to show about E:

P
[
E
]

= 1− P
[
Ec
]

= 1− 0 = 1.

�

Exercise V.8 (Independence assumption is needed in Lemma V.8).
Find a sequence E1, E2, . . . ∈ F of events (do not try independent) such that we have∑∞
n=1 P[En] = +∞, but P

[
“En occurs infinitely often”

]
6= 1.

Example V.9 (Records).
Consider an annual sports contest, in which one keeps track of the winner’s scores for
different years as well as the record score of all past years.

Suppose that the winner’s score for year n is a real-valued random variable Xn, and suppose
that X1, X2, . . . are independent and identically distributed — and moreover that the cu-
mulative distribution function of Xn is continuous. (These assumptions are not completely
unreasonable!)

Consider the event

En =
{
Xn > max{X1, . . . , Xn−1}

}
that a new record is made in the contest of year n. We leave it as an exercise to the reader
to prove that P[En] = 1

n and that E1, E2, . . . are independent.

Then, since the harmonic series diverges
∑
n P[En] =

∑
n

1
n = +∞, the divergence part

of Borel – Cantelli lemmas implies that P[En infinitely often] = 1. In other words: almost
surely new records are made infinitely many times.

Consider then the event Fn = En ∩ En+1 that records are broken in the consecutive
years n and n + 1. By what we know of E1, E2, . . ., we get P[Fn] = 1

n(n+1) , and thus∑
n P[Fn] =

∑
n

1
n2+n < +∞. Now the convergence part of Borel – Cantelli lemmas implies

that P[Fn infinitely often] = 0. In other words: almost surely there are only finitely many
times that new records are made in consecutive years.
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Exercise V.9 (Decimal digits of a uniform random number).
Let P be the uniform probability measure on the unit interval [0, 1] (cf. Example II.12).
Consider the digits Dk(ω), k ∈ N, of the decimal representation of a number ω ∈ [0, 1],
so that ω =

∑∞
k=1Dk(ω) 10−k. For this exercise you can consider it known (think about

it anyway! ) that the digits D1, D2, . . . are simple random variables (on the sample space
Ω = [0, 1]), and that they are independent.

Let Zk be the run length of zeroes starting from the k:th digit:

• Zk = 0 if the k:th digit is not zero, Dk 6= 0;
• Zk = m if Dk = Dk+1 = · · · = Dk+m−1 = 0 and Dk+m 6= 0.

(a) Show that P
[
Zk = m

]
= 9

10m+1 for all m ∈ Z≥0.

(b) Fix m ∈ Z≥0. Show that P
[
Zk = m for infinitely many k

]
= 1.

(c) Show that P
[
Zk = k for infinitely many k

]
= 0.



Lecture VI

Events of the infinite horizon

Consider a sequence of random variables. The topic of this lecture is:

What information about the sequence is not sensitive to the values
of any finite number of individual members of the sequence?

Which events can be decided and which random variables are de-
termined by such information?

Although it might at first appear surprising, there are in fact many interesting events
and random variables which are not affected by any finite number of individual
values. We will give a number of examples.

We will moreover return to profound consequences of independence, and ask:

Assuming moreover that the sequence of random variables is inde-
pendent, what can be said about the probabilities of events that
are not sensitive to any finite number of individual values?

Pertaining to the last question, we will prove Kolmogorov’s 0-1 law which states
that under the independence assumption, any event which is not sensitive to finitely
many individual values has probability either zero or one, and any random variable
which is not affected by finitely many individual values is almost surely constant.
This probabilistic fact underlies some surprising phenomena, in particular related
to phase transitions in physical systems.

VI.1. Definition of the tail σ-algebra

Throughout, let (Ω,F ,P) be a probability space.

Let X1, X2, X3, . . . be a sequence of random variables. Denote first of all by

X := σ(X1, X2, . . .) = σ
(
(Xn)n∈N

)
(VI.1)

the σ-algebra generated by the collection (Xn)n∈N of random variables constituting
the sequence (recall Definition IV.1). It should be interpreted as the information
contained in the entire sequence.

We will also consider information contained in various subsets of the collection of
random variables in the sequence. Specifically,

Xk := σ(X1, X2, . . . , Xk) = σ
(
(Xn)n=1,...,k

)
(VI.2)

describes the information contained in the in the first k members of the sequence,
and

Tk := σ(Xk+1, Xk+2, . . .) = σ
(
(Xn)n>k

)
(VI.3)

47
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describes the information contained in the sequence without its first k members.
In other words, Tk is the information in the sequence which is not affected by the
first k values.

Our main interest lies in

T∞ :=
⋂
k∈N

Tk. (VI.4)

As an intersection of the σ-algebras Tk, also T∞ is a σ-algebra by Lemma I.8.
It is called the tail σ-algebra of the sequence X1, X2, . . .. Since T∞ contains less
information than any Tk, k ∈ N, it describes the information which is not affected
by any finite number of changes in the sequence. The corresponding events E ∈ T∞
are called tail events .

We start with examples of all of these different σ-algebras. For the examples, it is
important to keep in mind that information in the first k members increases with k,

X1 ⊂X2 ⊂X3 ⊂ · · · ⊂Xk ⊂Xk+1 ⊂ · · · ⊂X ,

whereas information without the first k members decreases with k

T∞ ⊂ · · · ⊂ Tk+1 ⊂ Tk ⊂ · · · ⊂ T3 ⊂ T2 ⊂ T1 ⊂X ,

and of course all of these are contained in the information X about the entire
sequence (which in turn is contained in complete information F on our probability
space).

Example VI.1 (Examples of events and random variables related to a sequence).
Suppose for concreteness that the sequence consists of real valued random variables, i.e.,

X1, X2, . . . ∈ mF

are F -measurable functions Ω→ R.

As a warm-up, note that by definition of Xn = σ(X1, . . . , Xn), for any n ≤ ` we have

Xn ∈ mXn ⊂ mX` ⊂ mX .

Because linear combinations of measurable functions are measurable by Proposition III.13,
we get thus, for example, the following measurability of (finite) averages

X1 + · · ·+X`

`
∈ mX` ⊂ mX . (VI.5)

Also because upper and lower limits of measurable functions are measurable (Proposi-
tion III.14), we get the following

lim inf
n

Xn ∈ mX and lim sup
n

Xn ∈ mX . (VI.6)

We claim that the random variables (VI.6) are, in fact, measurable even with respect to the
tail σ-algebra T∞. For this, observe first that we can write, for any k ∈ N,

lim inf
n

Xn = sup
m∈N

(
inf
n≥m

Xn

)
= sup
m>k

(
inf
n≥m

Xn

)
,

because infn≥mXn is increasing in m (infumum over smaller collections), so omitting finitely
terms corresponding to m = 1, 2, . . . , k does not affect the supremum. Now infn≥mXn is the
infimum of the countable collection of random variables (Xn)n≥m, which are by construction
measurable with respect to Tk = σ(Xk+1, Xk+2, . . .) when m > k. Proposition III.14 then
first of all implies infn≥mXn ∈ mTk for m > k, and the same proposition applied again
to the supremum of these gives lim infnXn = supm>k

(
infn≥mXn

)
∈ mTk. Since this

holds for any k, and the tail σ-algebra is defined as the intersection T∞ :=
⋂
k Tk, we get

lim infnXn ∈ mT∞. The limsup is handled similarly, and we conclude

lim inf
n

Xn ∈ mT∞ and lim sup
n

Xn ∈ mT∞. (VI.7)
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Provided that the limit limn→∞Xn exists, it coincides with these, and is also T∞-measurable.

We can use the above observations to check that the event of existence of the limit

E =
{
ω ∈ Ω

∣∣∣ the limit lim
n→∞

Xn(ω) exists
}

is a tail event, E ∈ T∞.1 Indeed, the limit limn→∞Xn does not exist if and only if the
upper and lower limits are different, which happens if and only if we can find some rational
number q ∈ Q such that lim infnXn < q < lim supnXn. The event E of existence of limit
is therefore

E =

( ⋃
q∈Q

({
lim inf

n
Xn < q

}
∩
{

lim sup
n

Xn > q
}))c

, (VI.8)

where we are only using finite intersections, countable unions, and complements starting from
the sets

{
lim infnXn < q

}
and

{
lim supnXn > q

}
, which belong to the tail σ-algebra T∞

by (VI.7). Thus we indeed have E ∈ T∞.

A slightly less obvious example concerns the limit of averages (VI.5) as the number ` of
terms tends to infinity,

lim
`→∞

X1 + · · ·+X`

`
.

The limit may or may not exist, so let us instead consider, e.g., lim sup`→∞
X1+···+X`

` . The
key observation is that for fixed k, we have

lim
`→∞

X1 + · · ·+Xk

`
= 0

(the numerator remains constant as `→∞ while the denominator tends to infinity). Using
this, we get

lim sup
`→∞

X1 + · · ·+X`

`
= lim sup

`→∞

(X1 + · · ·+Xk) + (Xk+1 + · · ·+X`)

`

= 0 + lim sup
`→∞

Xk+1 + · · ·+X`

`
.

The random variables (Xn)n>k are by construction measurable with respect to Tk =

σ(Xk+1, Xk+2, . . .), so their linear combination Xk+1+···+X`
` is also Tk-measurable according

to Proposition III.13. By Proposition III.14 we then deduce that that lim sup`→∞
X1+···+X`

` =

lim sup`→∞
Xk+1+···+X`

` is Tk-measurable. Since this holds for any k, and the tail σ-algebra
is the intersection T∞ :=

⋂
k Tk, we conclude

lim sup
`

X1 + · · ·+X`

`
∈ mT∞.

Like before, it follows that the existence of the limit of averages is a tail event{
ω ∈ Ω

∣∣∣∣ the limit lim
`→∞

X1(ω) + · · ·+X`(ω)

`
exists

}
∈ T∞,

and provided the limit exists, it is measurable with respect to the tail σ-algebra T∞.

In particular, the example shows that there are some interesting events in the tail
σ-algebra T∞. The following exercise contains a few more examples.

Exercise VI.1 (Tail events).
Let X1, X2, X3, . . . be a sequence of random numbers (i.e., R-valued random variables)

1If the sequence X1, X2, . . . is bounded, then there is a slick way to check this. Form the
difference D = lim supnXn − lim infnXn, which is T∞-measurable as a linear combination (use
Proposition III.13). The limit exists if and only if the difference is zero, D = 0. In other words,
the event E is the preimage E = D−1({0}) ∈ T∞ (since {0} ∈ B and D ∈ mT∞).
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defined on a probability space (Ω,F ,P). Investigate which of the following events belong
to the tail σ-algebra T∞.

(a):
{
ω ∈ Ω

∣∣∣ the series

∞∑
n=1

Xn(ω) converges
}

(b):
{
ω ∈ Ω

∣∣∣ ∞∑
n=1

Xn(ω) ≤ −42
}

(c):
{
ω ∈ Ω

∣∣∣ the sequence X1, X2, . . . is bounded
}

(d):
{
ω ∈ Ω

∣∣∣ ∀ ` ∈ N ∃n ∈ N such that Xn(ω) = Xn+1(ω) = · · · = Xn+`(ω)
}

= {there exists arbitrarily long repetitions in the sequence X1, X2, . . .}

VI.2. Kolmogorov’s 0-1 law

If we assume that the sequence is independent, we get a remarkable result about
the probabilities of tail events.

Theorem VI.2 (Kolmogorov’s 0-1 law).
Suppose that X1, X2, . . . is a sequence of independent random variables. Then
the following hold:

(a) For any tail event E ∈ T∞ we have either

P[E] = 1 or P[E] = 0.

(b) Any R-valued random variable T which is measurable with respect to the
tail σ-algebra T∞ is almost surely constant, i.e., for some c ∈ R we have

P
[
T = c

]
= 1.

The proof strategy is almost as surprising as the statement: we will show that the
information in the tail is independent of itself, T∞ ⊥⊥ T∞.

Proof of Theorem VI.2. We will show that T∞ ⊥⊥ T∞. The assertions (a) and (b) can then be
concluded rather easily as follows.

For (a), suppose that E ∈ T∞. Then by the independence property T∞ ⊥⊥ T∞ we have

P
[
E ∩ E

]
= P[E] P[E].

But in view of the obvious fact E ∩E = E, this gives P[E] = P[E]2. The only two solutions
of this quadratic equation are 0 and 1, so we conclude P[E] ∈ {0, 1}.

For (b), suppose that T ∈ mT∞. Then for any x ∈ R we have

{T ≤ x} = T−1
(
(−∞, x]

)
∈ T∞,

so by part (a) we have

P
[
T ≤ x

]
∈ {0, 1} .

This shows that the cumulative distribution function of T never takes any other values
except 0 and 1. If we define

c := inf
{
x ∈ R

∣∣ P[T ≤ x] = 1
}
,

then by right continuity of cumulative distribution functions (Proposition II.30) we have
P[T ≤ c] = 1 and P[T < c] = 0. This gives

P
[
T = c

]
= P

[
T ≤ c

]
− P

[
T < c

]
= 1,
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i.e., T = c almost surely as claimed in (b).

The proof will thus be complete once we have shown that T∞ ⊥⊥ T∞. We will do this in a
number of steps.

step 1, Xk ⊥⊥ Tk: We claim that the two σ-algebras Xk and Tk are independent. We will verify
their independence using two π-systems which generate these σ-algebras.

Let J denote the collection of events of the form

A =
{
ω ∈ Ω

∣∣∣ X1(ω) ∈ B1, X2(ω) ∈ B2, . . . , Xk(ω) ∈ Bk
}
⊂ Ω, (VI.9)

where B1, B2, . . . , Bk ∈ B.

Then J is a π-system, which generates the first of our σ-algebras, σ(J ) = Xk (we leave
it as an exercise2 to the reader to verify this).

Similarly, let J ′ denote the collection of events of the form

A′ =
{
ω ∈ Ω

∣∣∣ Xk+1(ω) ∈ Bk+1, Xk+2(ω) ∈ Bk+2, . . . , Xk+r(ω) ∈ Bk+r

}
⊂ Ω, (VI.10)

where r ∈ N and Bk+1, Bk+2, . . . , Bk+r ∈ B.

Then J ′ is a π-system, which generates the second of our σ-algebras, σ(J ′) = Tk (we
again leave it as an exercise to the reader to verify this).

Consider now A ∈J and A′ ∈J ′ as in (VI.9) and (VI.10). Note that by independence of
X1, X2, . . . we have

P
[
A
]

= P
[
X1 ∈ B1, . . . , Xk ∈ Bk

]
=

k∏
j=1

P
[
Xj ∈ Bj

]
P
[
A′
]

= P
[
Xk+1 ∈ Bk+1, . . . , Xk+r ∈ Bk+r

]
=

k+r∏
j=k+1

P
[
Xj ∈ Bj

]
.

The probability of the intersection A ∩A′ is similarly computed using independence,

P
[
A ∩A′

]
= P

[
X1 ∈ B1, . . . , Xk ∈ Bk, Xk+1 ∈ Bk+1, . . . , Xk+r ∈ Bk+r

]
=

k+r∏
j=1

P
[
Xj ∈ Bj

]
.

These expressions show that P
[
A ∩ A′

]
= P

[
A
]
P
[
A′
]
. Since the π-systems J and J ′

generate the σ-algebras Xk and Tk, it follows from Proposition V.5 that Xk and Tk are
independent.

step 2, Xk ⊥⊥ T∞: In step 1 we showed Xk ⊥⊥ Tk. But since we have T∞ ⊂ Tk, we a fortiori have
also Xk ⊥⊥ T∞ (there are now fewer sets for which the condition of Definition V.1 needs to
be verified!).

step 3, X ⊥⊥ T∞: We claim that the two σ-algebras X and T∞ are independent. We will again
verify their independence using π-systems.

Consider the collection U =
⋃
k∈N Xk. We claim that U is a π-system which generates X

(note that U is the union of σ-algebras, but U is generally not a σ-algebra itself).

To check that U is a π-system, suppose that A1, A2 ∈ U . Then since U is defined as the
union of Xk, k ∈ N, we have A1 ∈ Xk1 and A2 ∈ Xk2 for some k1, k2 ∈ N. Recall that
the sequence of σ-algebras in the union is increasing, X1 ⊂X2 ⊂ · · · . Therefore by setting
k0 = max {k1, k2}, we have A1, A2 ∈Xk0 . Since Xk0 is itself a σ-algebra, we thus have also
A1 ∩ A2 ∈ Xk0 . Finally, since we have Xk0 ⊂

⋃
k∈N Xk = U , we get A1 ∩ A2 ∈ U , which

shows that U is a π-system.

2As a hint for this exercise, it is worth noting that step 3 contains the details of a similar
argument in a slightly more complicated situation.
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Let us then check that U generates X , i.e., σ(U ) = X . We do this by showing inclusions
in both directions. Note first that for any n ∈ N we have Xn ∈ mXn directly from the
definition, and since Xn ⊂

⋃
k∈N Xk = U ⊂ σ(U ), we also have Xn ∈ mσ(U ). Thus

σ(U ) is a σ-algebra with respect to which each Xn is measurable, and by definition X =
σ
(
(Xk)k∈N

)
is the smallest such σ-algebra, so we get X ⊂ σ(U ). On the other hand, for

each k ∈ N we have Xk ⊂ X so also U ⊂ X , and since σ(U ) is the smallest σ-algebra
with this property, we get σ(U ) ⊂X . These two inclusions give the equality σ(U ) = X .

Now we know that U is a π-system which generates X . We use T∞ itself as a π-system
which generates T∞, i.e., σ(T∞) = T∞ (recall that any σ-algebra is also a π-system). Let
A ∈ U and E ∈ T∞. We have A ∈ Xk for some k ∈ N, because of the definition of U as
a union. In step 2 we showed that Xk ⊥⊥ T∞, so we get P[A ∩ E] = P[A] P[E]. It therefore
follows from Proposition V.5 that X and T∞ are independent.

final step, T∞ ⊥⊥ T∞: In step 3 we showed X ⊥⊥ T∞. But since we have T∞ ⊂ X , we a fortiori
have also T∞ ⊥⊥ T∞ (there is less to verify!). This concludes the proof. �

Part (b) of Kolmogorov’s 0-1 law is stated in Theorem above for real-valued random
variables measurable with respect to the tail σ-algebra T∞. This choice was made
for the sake of concreteness — you may verify that the same conclusion holds much
more generally.

Exercise VI.2. Let X be a complete separable metric space. Assume that a random variable
T : Ω → X is T∞/B(X)-measurable, where T∞ is the tail σ-algebra of a sequence of inde-
pendent random variables X1, X2, . . .. Prove that T is almost surely constant, i.e., there
exists a point x ∈ X such that P[T = x] = 1.

A few interesting examples

Various random series

Example VI.3 (Random series with independent terms).
Suppose that X1, X2, . . . are independent R-valued random variables. Consider the random
series formed from the sequence,

∞∑
n=1

Xn.

Then the event that this series converges,

E =

{
ω ∈ Ω

∣∣∣∣ ∞∑
n=1

Xn(ω) converges

}
,

belongs to the tail σ-algebra, E ∈ T∞. Since the terms Xn were assumed independent,
Kolmogorov’s 0-1 law states that P[E] ∈ {0, 1}, i.e., either the series

∑∞
n=1Xn converges

almost surely or it diverges almost surely. The theorem does not tell which of these two
extremes occurs.

The following example is a simple but interesting special case of random series in
Example VI.3. It in particular shows that both of the two extremes in the example
are indeed possible.

Example VI.4 (Series with randomly assigned signs).
Let a1, a2, . . . ≥ 0 be a sequence of non-negative real numbers and let S1, S2, . . . be a sequence
of independent and identically distributed {±1}-valued random variables with

P
[
Sn = +1

]
=

1

2
and P

[
Sn = −1

]
=

1

2
.
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Consider the following series of an’s with random signs (Sn = ±1),

∞∑
n=1

an Sn. (VI.11)

This is a series of the type considered in Example VI.3, with terms Xn = an Sn. Therefore
the series (VI.11) either converges almost surely or diverges almost surely. It depends on
the given sequence (an)n∈N, which of these happens.

Note first that the series (VI.11) can only converge if its terms at least tend to zero. The
absolute values of the terms are |an Sn| = an, so the terms tend to zero if and only if the
given sequence (an)n∈N satisfies limn→∞ an = 0. In particular, if we take an = 1 for all n
(or anything else which does not tend to zero), then series (VI.11) diverges almost surely.

On the other hand, if the series
∑∞
n=1 an converges, then the series (VI.11) is always abso-

lutely convergent, whatever the random signs. In particular, if we take an = n−2 for n ∈ N
(or anything else which constitutes a convergent series), then series (VI.11) converges almost
surely.

The interesting borderline cases for random series of type (VI.11) are when an → 0 as
n → ∞, but we have

∑∞
n=1 an = ∞. An example of this is an = n−1 for n ∈ N. Then

Kolmogorov’s 0-1 law still says that we either have almost sure convergence or divergence,
but which one is it now?

Another variant of random series is power series with random coefficients. These
also have important applications, although we will only use them for the purpose of
examples.

Example VI.5 (Random power series).
Let Y0, Y1, Y2, . . . be a sequence of independent random variables. The power series

F (z) =

∞∑
n=0

Yn z
n (VI.12)

with these coefficients defines a random function F of a real (or complex) variable z. For any
fixed value of z ∈ R (or z ∈ C), the series (VI.12) is essentially a special case of Example VI.3,
with terms Xn = Yn z

n (the only difference is that starting the indexing from n = 0 is more
natural for power series).

We know from the theory of power series that the series (VI.12) has some radius of conver-
gence R such that

(VI.12) is convergent for |z| < R and (VI.12) is divergent for |z| > R.

Since the coefficients of the series are random, it seems that the radius of convergence R
should be random, too. In fact, the Cauchy–Hadamard formula in the theory of power series
tells us that R can be written in terms of the coefficients as

R =
1

lim supn
n
√
|Yn|

. (VI.13)

Note that the function y 7→ n
√
|y| is continuous R→ R, and in particular Borel-measurable

(by Corollary III.10), so n
√
|Yn| is a (measurable) random variable (by Proposition III.8).

Then also the denominator, lim supn
n
√
|Yn|, is a random variable (by Proposition III.14).

Finally, taking the reciprocal s 7→ 1
s is continuous [0,∞]→ [0,∞], so we see that the radius

of convergence R of the random power series (VI.12) is indeed a random variable!

However, the radius of convergence R in (VI.13) is measurable with respect to the tail σ-
algebra T∞ (the limsup is insensitive to finite number of changes in the coefficients). There-
fore, having assumed independence of the coefficients, we get from Kolmogorov’s 0-1 law
that R is almost surely equal to some constant c. In conclusion, the radius of convergence
of this random power series is in fact essentially deterministic (non-random)!



54 VI. EVENTS OF THE INFINITE HORIZON

Random walks

Example VI.6 (Escape probability of asymmetric simple random walk).
Let θ ∈ [0, 1] be a parameter, and let X1, X2, . . . be a sequence of independent and identically
distributed {±1}-valued random variables with

P
[
Xn = +1

]
= θ and P

[
Xn = −1

]
= 1− θ.

The argument in Example VI.4 shows that the infinite series
∑∞
n=1Xn diverges almost surely

(we had θ = 1
2 , but the same argument works for any θ). In this example we consider a

different but related question.

We think of Xn as the n:th step of a random walker: Xn = +1 is interpreted as a step
forward and Xn = −1 as a step backwards, and the parameter θ gives the probability of a
forward step. If the walker starts from the origin, then her position after the first s steps is

Ws :=

s∑
n=1

Xn.

Let us consider the question of whether the random walker eventually advances arbitrarily
much: this is described by the event{

ω ∈ Ω

∣∣∣∣ sup
s
Ws(ω) = +∞

}
that the sequence W1,W2, . . . of walker’s positions is not bounded from above. We leave it
to the reader to check that this event {supsWs = +∞} belongs to the tail σ-algebra T∞.3

Having assumed the independence of the steps X1, X2, . . ., it follows from Kolmogorov’s
0-1 law that the probability of advancing arbitrarily much is either zero or one:

P
[

sup
s
Ws = +∞

]
∈ {0, 1} .

In other words, either the walker almost surely advances arbitrarily much, or she almost
surely does not. The theorem does not, however, tell which of these two options is true.
The answer turns out to depend on the parameter θ: one can shown that we have

P
[

sup
s
Ws = +∞

]
= 1 if and only if θ ≥ 1

2
.

It is natural to refine the question of advancement of the walker slightly. By including also
considerations of lim supsWs and lim infsWs, the reader can show that also{

lim
s→∞

Ws = +∞
}

and
{

lim
s→∞

Ws = −∞
}

are tail events. The former event describes the walker escaping towards +∞, and the latter
describes the the walker escaping towards −∞. Concerning these, Kolmogorov’s 0-1 law says
that either the walker almost surely escapes towards +∞ (resp. −∞), or the probability of
such escape is zero. Which is the case again depends on θ. One can shown that

P
[

lim
s→∞

Ws = +∞
]

= 1 if and only if θ >
1

2
.

whereas symmetrically

P
[

lim
s→∞

Ws = −∞
]

= 1 if and only if θ <
1

2
.

This seems to leave just one question: where on earth does that walker go if θ = 1
2?4

3It is important to note that we still talk about the tail σ-algebra of the sequence X1, X2, . . .
of steps, not the tail σ-algebra of the sequence W1,W2, . . . of random walk positions.

4The answer is: all over the place! Namely, at θ = 1
2 we in fact have

P
[

lim sup
s→∞

Ws = +∞ and lim inf
s→∞

Ws = −∞
]

= 1,

so the walker almost surely advances arbitrarily far in both directions and meanwhile returns to
the origin infinitely often as well.



Lecture VII

Integration theory

Let (S,S , µ) be a measure space. The goal of this lecture is to define, for all
reasonable functions f : S → R, the integral∫

f dµ

of the function f with respect to the measure µ — denoted, when we want to
emphasize the space S and the variable s ∈ S, also by∫

S

f(s) dµ(s).

This general theory of integration was originally conceived of by Henri Lebesgue.
The theory is much more flexible than integration in the sense of Riemann, and it
moreover leads to some remarkably powerful tools.

One of our main motivations for integration in probability theory is to get a precise
mathematical definition of the expected value, which we will address in more detail
in the next lecture (Lecture VIII). There are, however, also other equally important
uses of the construction — special cases include:

Summation: Integration with respect to the counting measure (Example II.10)
is just summation, ∫

S

f(s) dµ#(s) =
∑
s∈S

f(s).

From the general theory we develop for integrals, we will in particular get
a general and precise definition of summation and many useful tools for
calculating with sums.

Riemann integral and generalization: For real-valued functions f on the
real line R, integration with respect to the Lebesgue measure Λ (Exam-
ple II.12) generalizes1 the familiar Riemann integral. For this case, we
therefore use also the very familiar notation∫

R
f(x) dΛ(x) =

∫ ∞
−∞

f(x) dx.

Expected value: The expected value E[X] of a real valued random vari-
able X will be defined as the integral of the function X : Ω → R with
respect to the probability measure P on (Ω,F ),

E
[
X
]

:=

∫
Ω

X(ω) dP(ω).

1To be precise, for any Riemann-integrable function f : R→ R such that also |f | is Riemann-
integrable, the Riemann integral of f agrees with the integral of f with respect to the Lebesgue
measure Λ. In principle both integrals are defined for somewhat more general functions f , but the
Lebesgue integral is without a doubt the more fruitful generalization.

55



56 VII. INTEGRATION THEORY

The construction of the integral will proceed by increasing the complexity of the
allowed functions step by step:

(1) indicator functions
(2) non-negative simple functions
(3) non-negative measurable functions
(4) all integrable functions.

Many fundamental results about integration are likewise proved step by step — this
proof strategy is affectionately referred to as the “standard machine”.

For these steps, recall also the notations

mS = the set of S -measurable functions S → [−∞,+∞]

mS + = the set of S -measurable functions S → [0,+∞]

sS = the set of simple functions S → R
sS + = the set of simple functions S → [0,+∞)

In order to clearly distinguish between the (in principle) different definitions in each
stage, during this lecture we use different notation for the integrals in the different
stages as follows:∫ �

— the integral for non-negative simple functions (step 2)∫ +
— the integral for non-negative measurable functions (step 3)∫
— the integral for all integrable functions (step 4).

It will be shown in Lemmas VII.5 and VII.13, however, that the more general def-
initions coincide with the earlier ones, so in later lectures there will be no need to
make these distinctions, and we can safely only use the notation

∫
.

Besides the construction, we prove some basic properties of the integral. In partic-
ular we will show linearity2 ∫

(cf) dµ = c

∫
f dµ∫

(f1 + f2) dµ =

∫
f1 dµ+

∫
f2 dµ

and monotonicity

f ≤ g =⇒
∫
f dµ ≤

∫
g dµ,

which in fact must be verified separately at each step of the construction, i.e., for

the integrals
∫ �

,
∫ +

, and
∫

.

Finally, in Section VII.4 we establish powerful general convergence theorems for
integrals.

2In the end, the scalar c is allowed to be an arbitrary real number. During the steps which
address integrals of non-negative functions, however, it will of course only be meaningful to allow
non-negative scalars.
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The approximation lemma

Especially when going from step (2) of the construction to step (3), i.e., from non-
negative simple functions to all non-negative measurable functions, it will be impor-
tant to keep in mind the following approximation result from Lecture III.

Lemma (Lemma III.18). For any non-negative measurable function

f ∈ mS +

there exists a sequence3

f1, f2, f3, . . . ∈ sS +

of non-negative simple functions increasing pointwise to f , i.e.,

fn(s) ↑ f(s) for all s ∈ S.

VII.1. Integral for non-negative simple functions

Definition of integral of non-negative simple functions

For a subset A ⊂ S, the indicator function IA takes the value 1 on A and 0 elsewhere,

IA(s) =

{
1 if s ∈ A
0 if s /∈ A.

If A ∈ S , then we want to define the integral of such a function simply as the
measure of the set A, ∫ �

IA dµ := µ[A]. (VII.1)

This is step 1 in our definition of the integral. Note that already in this case it is
possible for the integral to become infinite if µ[A] = +∞.

Any non-negative simple function h ∈ sS + can be written as

h =
n∑
j=1

aj IAj ,

where a1, . . . , an are non-negative coefficients and A1, . . . , An are measurable sets. To
achieve linearity of the integral for simple functions, our only option is the following
definition.

Definition VII.1 (Integral of a non-negative simple function).
For h =

∑n
j=1 aj IAj with a1, . . . , an ∈ [0,+∞) and A1, . . . , An ∈ S , define∫ �

h dµ :=
n∑
j=1

aj µ[Aj]. (VII.2)

3 One concrete way of constructing the approximating sequence is to set fn = ςn ◦ f , where
ςn : [0,+∞]→ [0, n] is the n:th staircase function with steps of size 2−n and truncation at level n —
see Equation (III.5) for definition and Figure III.2 for illustration.
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A priori, this definition depends on the choices made in the expression of h as a
linear combination of indicators, so we should verify well-definedness.

Exercise VII.1 (Well-definedness of the integral of non-negative simple functions).
Show that if h ∈ sS + can be written in two ways,

h =

n∑
j=1

aj IAj and h =

n′∑
k=1

a′k IA′k ,

as a non-negative linear combination of indicator functions, then we have

n∑
j=1

aj µ[Aj ] =

n′∑
k=1

a′k µ[A′k].

Conclude that the integral of h is well-defined by (VII.2).

Properties of integral of non-negative simple functions

Let us then verify the basic properties of the integral defined in (VII.3). These will
be used already in the next step.

Lemma VII.2 (Linearity of the integral for simple functions).

(a) If h ∈ sS + and c ≥ 0, then ch ∈ sS + and∫ �

(ch) dµ = c

∫ �

h dµ.

(b) If h, g ∈ sS +, then h+ g ∈ sS + and∫ �

(h+ g) dµ =

∫ �

h dµ+

∫ �

g dµ.

Proof. Both assertions are derived from Definition VII.1 relying on its well-definedness (Exer-
cise VII.1), which permits us to use whichever decomposition to linear combination of indi-
cators we find the most convenient.

proof of (a): Write h ∈ sS + as a linear combination of indicators with non-negative coefficients,
h =

∑n
j=1 aj IAj , with aj ≥ 0 and Aj ∈ S for j = 1, . . . , n. Then we have

ch = c

n∑
j=1

aj IAj =

n∑
j=1

c aj IAj .

Therefore, according to (VII.2), the integral is

∫ �

(ch) dµ =

n∑
j=1

c ajµ[Aj ] = c

n∑
j=1

ajµ[Aj ] = c

∫ �

h dµ.

This proves the assertion (a).

proof of (b): Write h ∈ sS + and g ∈ sS + as linear combinations of indicators with non-negative
coefficients, h =

∑n
j=1 aj IAj and g =

∑m
k=1 bk IBk . Then we have

h+ g =

n∑
j=1

aj IAj +

m∑
k=1

bk IBk .
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Therefore, according to (VII.2), the integral is∫ �

(h+ g) dµ =

n∑
j=1

aj µ[Aj ] +

m∑
k=1

bk µ[Bk] =

∫ �

h dµ+

∫ �

g dµ.

This proves the assertion (b). �

Lemma VII.3 (Monotonicity of the integral for simple functions).
Suppose that h, g ∈ sS + and h ≤ g pointwise. Then we have∫ �

h dµ ≤
∫ �

g dµ.

Proof. We can first of all write

h =

n∑
j=1

ajIAj

with a1, . . . , an the finitely many different values of h and Aj = h−1({aj}) the sets where
this value is taken. Similarly we can write

g =
m∑
k=1

bkIBk

with b1, . . . , bm the finitely many different values of g and Bk = g−1({bk}). The intersections
Aj ∩Bk are the sets where simultaneously f takes the value aj and g takes the value bk —
we can use them as refinements, and write the alternative expressions

h =

n∑
j=1

m∑
k=1

aj IAj∩Bk and g =

n∑
j=1

m∑
k=1

bk IAj∩Bk ,

which have the advantage that the same indicators appear in both. Observe that the as-
sumption h ≤ g implies that aj ≤ bk whenever Aj ∩ Bk 6= ∅. On the other hand, whenever
Aj ∩Bk = ∅ we of course have µ[Aj ∩Bk] = 0, so the desired conclusion∫ �

h dµ =

n∑
j=1

m∑
k=1

aj µ[Aj ∩Bk] ≤
n∑
j=1

m∑
k=1

bk µ[Aj ∩Bk] =

∫ �

g dµ.

follows by comparing the non-zero terms in the sums. �

VII.2. Integral for non-negative measurable functions

Definition of integral of non-negative measurable functions

To preserve monotonicity, the integral of a nonnegative function f should be at
least as large as the integral of any simple function h ≤ f below it. The following
definition is thus motivated by preserving monotonicity without unnecessarily giving
up anything extra.

Definition VII.4 (Integral of a non-negative measurable function).
For a non-negative measurable function f ∈ mS + we define∫ +

f dµ := sup
h∈sS +

0≤h≤f

∫ �

h dµ. (VII.3)
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Note that it is possible for the integral defined by the above supremum to become
infinite — even for finite measures for which the integrals of all simple functions are
finite.

We start by checking that the new more general definition (VII.3) of integral agrees
with the earlier one (VII.2) whenever both are defined.

Lemma VII.5 (No conflict between the two first definitions of integral).
For any non-negative simple function f ∈ sS + we have∫ �

f dµ =

∫ +

f dµ.

Proof. Assume that f ∈ sS +.

For any h ∈ sS + such that h ≤ f we have by monotonicity, Lemma VII.3,∫ �

h dµ ≤
∫ �

f dµ.

By taking the supremum over such h as in the definition (VII.3), we get∫ +

f dµ = sup
h∈sS +

0≤h≤f

∫ �

hdµ ≤
∫ �

f dµ.

To prove the converse inequality, just consider h = f in the supremum (VII.3), to get∫ +

f dµ = sup
h∈sS +

0≤h≤f

∫ �

hdµ ≥
∫ �

f dµ.

�

Properties of integral of non-negative measurable functions

The key properties of integrals continue to hold. Let us first verify monotonicity.

Proposition VII.6 (Monotonicity of the integral for non-negative functions).
Suppose that f, g ∈ mS + and f ≤ g pointwise. Then we have∫ +

f dµ ≤
∫ +

g dµ.

Proof. Whenever h ∈ sS + is such that h ≤ f , we also have h ≤ g, so the supremum in the
definition of the integral of g is over a larger collection than the supremum in the definition
of the integral of f . We get∫ +

f dµ = sup
h∈sS +

0≤h≤f

∫ �

hdµ ≤ sup
h∈sS +

0≤h≤g

∫ �

hdµ =

∫ +

g dµ.

�

As a consequence, we get that the only way that a positive function can have van-
ishing integral is for the function to be equal to zero almost everywhere (i.e. except
in a set of measure zero).
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Proposition VII.7 (No nontrivial non-negative function has vanishing integral).
If f ∈ mS + and ∫ +

f dµ = 0

then

µ
[ {
s ∈ S

∣∣ f(s) > 0
} ]

= 0.

Proof. For n ∈ N, define

An =

{
s ∈ S

∣∣∣ f(s) ≥ 1

n

}
= f−1

([ 1

n
,+∞

])
∈ S .

We can then express the set of interest as

A =
{
s ∈ S

∣∣∣ f(s) > 0
}

=

∞⋃
n=1

An.

Consider the non-negative simple function h = 1
n IAn . By construction of An, we have h ≤ f ,

and we can therefore estimate the supremum that defines the integral of f from below by∫ +

f dµ ≥
∫ � 1

n
IAn dµ =

1

n
µ[An].

Using the assumption that the integral of f vanishes, we get

0 ≤ µ[An] ≤ n
∫ +

f dµ = 0,

so µ[An] = 0. Finally, by the countable subadditivity (II.10) of Lemma II.19 (i.e., “the
union bound”) we get the conclusion

µ[A] = µ
[ ∞⋃
n=1

An

]
≤
∞∑
n=1

µ[An] =

∞∑
n=1

0 = 0.

�

The converse to Proposition VII.7 also holds.

Exercise VII.2 (Almost everywhere vanishing functions have vanishing integrals).
Check directly from Definition VII.4 that if f ∈ mS + and

µ
[ {
s ∈ S

∣∣ f(s) > 0
} ]

= 0,

then we have ∫ +

f dµ = 0.

At this stage, yet another fundamentally important property of integration arises,
concerning the behavior of integrals under pointwise monotone approximation in the
integrands (i.e., the functions to be integrated). The result, Monotone convergence
theorem (MCT), is at the same time

• “really all there is to integration theory”4

• a very practical tool for calculations.

4This is a quote from David Williams, [Wil91, Section 5.3]. One aspect of Williams’ message is
certainly to stress the importance of the MCT. Another aspect might be to point out that besides
the MCT, all other steps in the construction of integral and derivation of its basic properties
are rather intuitive and straightforward. For this latter reason we have chosen to postpone the
somewhat lengthy proof of the Monotone convergence theorem to Appendix D, so that it does not
interrupt the flow of the rest of the steps.
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Theorem VII.8 (Monotone convergence theorem).
If f1, f2, . . . ∈ mS + and fn ↑ f as n→∞, then we have

∫ +

fn dµ ↑
∫ +

f dµ as n→∞.

The proof is given in Appendix D.

Recall that by Lemma III.18, any non-negative measurable function f ∈ mS + can
be approximated by simple functions f1, f2, . . . ∈ sS + in a pointwise increasing
way, fn ↑ f as n → ∞. Together with the observation of Lemma VII.5, Monotone
convergence theorem thus gives the expression

∫ +

f dµ = lim
n→∞

∫ �

fn dµ

for the integral of f as an increasing limit of integrals (VII.2) of simple functions.
This should reassure the reader that integrals, despite their slightly abstract defini-
tion, are rather innocent constructions, after all.

It is now easy to verify that also linearity continues to hold.

Proposition VII.9 (Linearity of the integral for non-negative functions).

(a) If f ∈ mS + and c ≥ 0, then cf ∈ mS + and

∫ +

(cf) dµ = c

∫ +

f dµ.

(b) If f, g ∈ mS +, then f + g ∈ mS + and

∫ +

(f + g) dµ =

∫ +

f dµ+

∫ +

g dµ.

Proof. Both parts can be easily verified using the Monotone convergence theorem5 and the corre-
sponding properties of integrals of simple functions.

Let us only prove part (b) — the proof of part (a) is similar. So let f, g ∈ mS +. As in
Lemma III.18, pick sequences f1, f2, . . . ∈ sS + and g1, g2, . . . ∈ sS + of simple functions
such that fn ↑ f and gn ↑ g as n→∞. Then by linearity of limits, we have also fn+gn ↑ f+g
as n→∞. Now apply the Monotone convergence theorem (Theorem VII.8) to each of these
three monotone approximations, and use also the linearity of integral for simple functions

5The careful reader wary of circular reasoning will now inspect that the proof of the Mono-

tone convergence theorem in Appendix D does not rely on linearity of
∫ +

, but instead uses only

properties of
∫ �

and the definition of
∫ +

.



VII.3. INTEGRAL FOR INTEGRABLE FUNCTIONS 63

(Lemma VII.2), to get∫ +

(f + g) dµ

= lim
n→∞

∫ �

(fn + gn) dµ (by MCT and fn + gn ↑ f + g)

= lim
n→∞

(∫ �

fn dµ+

∫ �

gn dµ

)
(by Lemma VII.2)

= lim
n→∞

∫ �

fn dµ+ lim
n→∞

∫ �

gn dµ (by linearity of limits)

=

∫ +

f dµ+

∫ +

g dµ (by MCT and fn ↑ f and gn ↑ g).

�

VII.3. Integral for integrable functions

For an arbitrary measurable function f ∈ mS , define two non-negative functions
f+, f− : S → [0,+∞] by

f+(s) = max {f(s), 0} and f−(s) = max {−f(s), 0} . (VII.4)

Then we have f+, f− ∈ mS + by Proposition III.14, and we can write

f = f+ − f− and |f | = f+ + f−.

We call f+ the positive part and f− the negative part of f .

Definition VII.10 (Integrable function).
We say that a function f ∈ mS is integrable with respect to the measure µ
and denote f ∈ L1(µ) if ∫ +

|f | dµ < +∞.

Remark VII.11 (Equivalent condition for integrability of a function).

Since |f | = f+ + f− and the integral of non-negative functions is additive,
∫ + |f |dµ =∫ +

f+ dµ+
∫ +

f− dµ, a measurable function is integrable if and only if∫ +

f+ dµ < +∞ and

∫ +

f− dµ < +∞.

Definition of integral of integrable functions

In view of the decomposition f = f+ − f−, our final definition of the integral is
unsurprising.

Definition VII.12 (Integral of an integrable function).
For f ∈ L1(µ) we define the integral as∫

f dµ =

∫ +

f+ dµ−
∫ +

f− dµ, (VII.5)

where f+ and f− are the positive and negative parts of the function f .
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By Remark VII.11 above, the two terms in formula (VII.5) are finite, so the expres-
sion is well defined.

For non-negative functions f ∈ mS + the new definition of integral coincides with
the earlier one.

Lemma VII.13 (No conflict between the two last definitions of integral).
For any non-negative integrable function f ∈ mS + ∩ L1(µ) we have∫

f dµ =

∫ +

f dµ.

Proof. For a non-negative function f ∈ mS + we have f+ = f and f− = 0. Therefore the agreement
of the two integrals is obvious from the definition (VII.5). �

Properties of integral of integrable functions

Now that the functions involved may have both positive and negative signs, esti-
mating integrals by the following triangle inequality becomes important.

Theorem VII.14 (Triangle inequality for integrals).
For any integrable function f ∈ L1(µ) we have∣∣∣ ∫ f dµ

∣∣∣ ≤ ∫ |f | dµ.
Proof. Observe first that the right hand side is∫

|f | dµ =

∫ +

|f | dµ =

∫ +

(f+ + f−) dµ =

∫ +

f+ dµ+

∫ +

f− dµ.

We will prove
∫
f dµ ≤

∫
|f |dµ and −

∫
f dµ ≤

∫
|f |dµ, which together imply the assertion∣∣ ∫ f dµ

∣∣ ≤ ∫ |f |dµ.

By (VII.5) and the non-negativity of integral
∫
f− dµ of the non-negative function f−, we

have ∫
f dµ =

∫ +

f+ dµ−
∫ +

f− dµ

≤
∫ +

f+ dµ+

∫ +

f− dµ =

∫
|f | dµ.

Similarly, we have

−
∫
f dµ = −

∫ +

f+ dµ+

∫ +

f− dµ

≤
∫ +

f+ dµ+

∫ +

f− dµ =

∫
|f | dµ.

�

In particular, in proving linearity, we use the triangle inequality to check that the
sum of integrable functions is integrable in the first place.

Theorem VII.15 (Linearity of the integral).
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(a) For any f ∈ L1(µ) and c ∈ R we have cf ∈ L1(µ) and∫
cf dµ = c

∫
f dµ.

(b) For any f, g ∈ L1(µ) we have f + g ∈ L1(µ) and∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof of part (a). If c ≥ 0 then we have (cf)+ = cf+ and (cf)− = cf−. Integrability of cf follows
easily by Remark VII.11, since∫ +

(cf)+ dµ =

∫ +

cf+ dµ = c

∫ +

f+ dµ︸ ︷︷ ︸
<+∞

< +∞

and similarly
∫ +

(cf)− dµ < +∞. The asserted formula is also a direct consequence of the

definition (VII.5) of
∫

, and linearity of
∫ +

(Proposition VII.9),∫ +

cf dµ =

∫ +

cf+ dµ−
∫ +

cf− dµ = c
(∫ +

f+ dµ−
∫ +

f− dµ
)

= c

∫
f dµ.

If c < 0 then we have (cf)+ = −cf− and (cf)− = −cf+, and one can proceed similarly.

Proof of part (b). Note that |f + g| ≤ |f |+ |g|. If f, g ∈ L1(µ), we thus have∫ +

|f + g| dµ ≤
∫ + (

|f |+ |g|
)

dµ =

∫ +

|f | dµ+

∫ +

|g| dµ < +∞,

and therefore f+g ∈ L1(µ). The formula for the integral of f+g can be proven by carefully
considering which possibilities contribute to the positive and negative parts of f + g. �

Also monotonicity continues to hold.

Theorem VII.16 (Monotonicity of the integral).
If f, g ∈ L1(µ) and f ≤ g, then we have∫

f dµ ≤
∫
g dµ.

Proof. If we have the pointwise inequality f ≤ g, then the positive and negative parts of these
functions satisfy f+ ≤ g+ and f− ≥ g−. It therefore follows from the defining formula (VII.5)

of
∫

, and monotonicity of
∫ +

(Proposition VII.6), that∫
f dµ =

∫ +

f+ dµ−
∫ +

f− dµ

≤
∫ +

g+ dµ−
∫ +

g− dµ =

∫
g dµ.

�

VII.4. Convergence theorems for integrals

Finally, we establish some of the powerful standard tools of measure theory, which
address when it is legitimate to interchange the order of a limit and an integra-
tion. Recalling that integration contains as special cases also expected values and
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summation, we thus ask under what conditions we have

lim
n→∞

∫
fn(s) dµ(s)

?
=

∫ (
lim
n→∞

fn(s)
)

dµ(s)

lim
n→∞

∞∑
k=0

a
(n)
k

?
=

∞∑
k=0

(
lim
n→∞

a
(n)
k

)
lim
n→∞

E
[
Xn

] ?
= E

[
lim
n→∞

Xn

]
.

In particular, derivatives are limits of difference quotients, so the results can be
applied to justifying the interchange of differentiation and integral, sum, or expected
value, i.e.

d

dλ

∫
fn(s;λ) dµ(s)

?
=

∫
d

dλ
fn(s;λ) dµ(s)

d

dλ

∞∑
k=0

ak(λ)
?
=

∞∑
k=0

( d

dλ
ak(λ)

)
d

dλ
E
[
f(Xn;λ)

] ?
= E

[ d

dλ
f(Xn;λ)

]
.

To fully appreciate the positive results we will derive, it is advisable to first think
about the ways the conclusion could fail.

Exercise VII.3 (Interchanging limit and integration is not always possible).

(a) Consider the Lebesgue measure Λ on R. For n ∈ N, define fn : R→ R by

fn(x) =

{
n if 0 < x ≤ 1

n

0 otherwise.

Calculate the following

lim
n→∞

fn,

∫
R
fn dΛ,

∫
R

(
lim
n→∞

fn
)

dΛ, lim
n→∞

∫
R
fn dΛ.

(b) Repeat the calculations of part (a) for the functions
√
fn and f2

n, instead.
(c) Consider Z with the counting measure µ#. For n ∈ N, define gn : Z→ R by

gn(k) =

{
1 if k = n

0 if k 6= n.

Calculate the following

lim
n→∞

gn,

∫
Z
gn dµ#,

∫
Z

(
lim
n→∞

gn
)

dµ#, lim
n→∞

∫
Z
gn dµ#.

We will obtain several results about what conditions are sufficient to permit changing
limits and integration. Besides

(MCT) Monotone convergence theorem (Theorem VII.8)

another such result of great importance is

(DCT) Dominated convergence theorem (Theorem VII.19)

For expected values, there is a very practical special case of the Dominated conver-
gence theorem:

(BCT) Bounded convergence theorem (Corollary VII.21)
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The Monotone convergence theorem was already introduced as a tool in step (3) of
the construction. The proof of the Dominated convergence theorem relies on it, and
another intermediate result that is occasionally useful on its own right as well:

Fatou’s Lemma (Lemma VII.17)

Fatou’s lemma

Fatou’s lemma is a general convergence result for non-negative integrals, which does
not even require the limits to exists! It instead addresses lower limits which always
exist. A minor drawback is that the conclusion is merely an inequality in one
direction.

Lemma VII.17 (Fatou’s lemma).
For any sequence f1, f2, . . . ∈ mS + of non-negative measurable functions, we
have ∫ (

lim inf
n

fn
)

dµ ≤ lim inf
n

∫
fn dµ. (VII.6)

Proof. Define g = lim infn fn. For k ∈ N, define also

gk := inf
n≥k

fn.

Then we have gk ∈ mS + (by Proposition III.14), and gk ↑ g as k →∞ by construction. By
the Monotone convergence theorem, we therefore have∫

gk dµ ↑
∫
g dµ as k →∞.

We have fn ≥ gk for any n ≥ k, so monotonicity of integral gives
∫
fn dµ ≥

∫
gk dµ for

n ≥ k, and thus also

inf
n≥k

∫
fn dµ ≥

∫
gk dµ.

In this inequality, take the limit as k →∞ to obtain

lim inf
n

∫
fn dµ ≥ lim

k→∞

∫
gk dµ =

∫
g dµ,

which is the asserted inequality. �

Exercise VII.4 (Strict inequality in Fatou’s lemma).
Find an example of a sequence of non-negative functions for which there is a strict inequality
in Fatou’s lemma, (VII.6).

Under suitable additional conditions, we get a result about upper limits of non-
negative integrals as well.

Lemma VII.18 (Reverse Fatou’s lemma).
Suppose that f1, f2, . . . ∈ mS + is a sequence of non-negative measurable func-
tions such that there exists a non-negative measurable function g ∈ mS +

which uniformly bounds the sequence, fn ≤ g for all n ∈ N, and which is itself
integrable,

∫
g dµ < +∞. Then we have

lim sup
n

∫
fn dµ ≤

∫ (
lim sup

n
fn
)

dµ. (VII.7)
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Proof. Apply Fatou’s lemma to the sequence of functions g − fn, n ∈ N, and cancel the finite
number

∫
g dµ from both sides. �

Dominated convergence theorem

Arguably the most practical general convergence result is Lebesgue’s dominated
convergence theorem: it states that pointwise convergence and uniform boundedness
of integrands by an integrable function are sufficient to permit taking the limit inside
the integral.

Theorem VII.19 (Dominated convergence theorem).
Suppose that f1, f2, . . . ∈ mS is a sequence of measurable functions such that
there exists a non-negative measurable function g ∈ mS + which uniformly
bounds the absolute values of the sequence, |fn| ≤ g for all n ∈ N, and which
is itself integrable,

∫
g dµ < +∞. Then if the pointwise limit f = limn→∞ fn

exists, we have

lim
n→∞

∫
|fn − f | dµ = 0 (VII.8)

and lim
n→∞

∫
fn dµ =

∫
f dµ. (VII.9)

Proof. Since |fn| ≤ g for all n ∈ N, and fn → f as n → ∞, we also have |f | ≤ g. Therefore the
triangle inequality gives

|fn − f | ≤ |fn|+ |f | ≤ 2 g.

We have
∫

2g < +∞ by integrability of g, so reverse Fatou’s lemma can be applied to the
sequence of functions |fn − f |, n ∈ N. Together with the assumed pointwise convergence
limn→∞ |fn − f | = 0, the reverse Fatou’s lemma gives

lim sup
n

∫
|fn − f | dµ ≤

∫ (
lim sup

n
|fn − f |

)
dµ =

∫
0 dµ = 0,

which proves the first assertion (VII.8).

Then use linearity and triangle inequality for integrals to get∣∣∣ ∫ fn dµ−
∫
f dµ

∣∣∣ =
∣∣∣ ∫ (fn − f) dµ

∣∣∣ ≤ ∫
|fn − f |dµ.

The right hand side tends to zero as n → ∞ by the first part, (VII.8). This proves the
second assertion (VII.9). �

Bounded convergence theorem

For finite measures (see Definition II.9) — and thus probability measures, in partic-
ular — there is a very easy and practical special case of the Dominated convergence
theorem, known as the Bounded convergence theorem. The underlying reason for
it, as well as many other simplifications in finite measure spaces, is the following.

Lemma VII.20 (Constant functions are integrable on finite measure spaces).
Suppose that (S,S , µ) is a finite measure space. Let c ∈ R be a constant, and
let g : S → R be the constant function g(s) = c for all s ∈ S. Then g ∈ L1(µ).
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Proof. The constant function g(s) = c is in particular a simple function, g = c IS , so we have∫ +

|g|dµ =

∫ �

|c|dµ = |c| µ[S]︸︷︷︸
<+∞

< +∞.

�

In particular, constant functions are legitimate choices for the dominating function g
in the Dominated convergence theorem, Theorem VII.19. This immediately yields
the following.

Corollary VII.21 (Bounded convergence theorem).
Suppose that (S,S , µ) is a finite measure space and f1, f2, . . . ∈ mS is a
bounded sequence6 of measurable functions such that the pointwise limit func-
tion f = limn→∞ fn exists. Then we have

lim
n→∞

∫
fn dµ =

∫
f dµ.

VII.5. Integrals over subsets and restriction of measures

Let (S,S , µ) be a measure space.

We adopt the following notation for integrals over subsets : if f : S → R is a function
and if R ⊂ S is a measurable subset, R ∈ S , then the integral of f over R is defined
as ∫

R

f(s) dµ(s) :=

∫
S

IR(s) f(s) dµ(s) (VII.10)

whenever either IR f ≥ 0 or IR f ∈ L1(µ).

A clear justification for the above convention is obtained in the following exercise.

Exercise VII.5 (Restriction of a measure to a subset).
Let (S,S , µ) is a measure space and R ⊂ S a measurable subset, R ∈ S .

(a) Let S ′ consist of those A ⊂ R such that A = B ∩R for some B ∈ S , that is,

S ′ :=
{
B ∩R

∣∣ B ∈ S
}
.

Show that S ′ is a σ-algebra on R.
(b) When A = B ∩R for some B ∈ S , set

µ′[A] := µ[B ∩R].

Show that µ′ is a measure on the measurable space (R,S ′).
(c) For any function f : S → R, denote by f |R : R→ R the restriction of f to R. Prove that

we have ∫
R

f |R dµ′ =

∫
S

IR f dµ,

for (1) indicator functions f , (2) non-negative simple functions f , (3) non-negative mea-
surable functions f , and finally for (4) all measurable functions f such that f |R ∈ L1(µ′).

6This means that there exists some c ∈ [0,+∞) such that |fn(s)| ≤ c for all s ∈ S and n ∈ N.
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VII.6. Riemann integral vs. Lebesgue integral

The reader can now verify that the Riemann integral (familiar from undergraduate
calculus) and Lebesgue integral coincide in the following setups.

Exercise VII.6 (Riemann integral and Lebesgue integral on closed intervals).
Consider a closed interval [a, b] ⊂ R. Suppose that f : [a, b] → R is a continuous function.
Show that ∫ b

a

f(x) dx =

∫
[a,b]

f(x) dΛ(x),

where the right hand side denotes the integral of f with respect to the Lebesgue measure Λ
restricted to [a, b] ⊂ R, and the left hand side denotes the Riemann integral of f .
Hint: The Riemann integral is defined by the condition that the upper and lower Riemann sums

associated to subdivisions of the interval [a, b] tend to the same limit as the meshes of the subdivisions

become finer. First show that these upper and lower Riemann sums associated to a subdivision are

equal to the integrals of certain simple functions. Then use monotonicity to compare the Lebesgue

integral of f to these.

Exercise VII.7 (Improper Riemann integrals and Lebesgue integral).

(a) Suppose that f : [a, b)→ R is continuous. Show that if
∫

[a,b)
|f |dΛ < +∞, then we have

the following equality of the improper Riemann integral and the Lebesgue integral:∫ b

a

f(x) dx := lim
ε↓0

∫ b−ε

a

f(x) dx =

∫
[a,b)

f(x) dΛ(x).

(b) Suppose that f : R → R is continuous. Show that if
∫
R |f |dΛ < +∞, then we have the

following equality of the improper Riemann integral and the Lebesgue integral:∫ +∞

−∞
f(x) dx := lim

r↑+∞

∫ r

−r
f(x) dx =

∫
R
f(x) dΛ(x).

Hint: Exercise VII.6 and Dominated convergence theorem.

Remark VII.22 (On the relationship between Riemann-integral and Lebesgue integral).

• There are plenty of functions for which the Riemann integral does not exist, while the
Lebesgue integral is well-defined. A simple example is the indicator function IQ∩[a,b]

of the rational numbers on the interval. The Lebesgue integrals
∫
IQ∩[a,b] dΛ = 0 and∫

I[a,b]\Q dΛ = b − a reflect the fact that the countable set Q ∩ [a, b] is negligible, in a
measure-theoretic sense, compared to its complement [a, b] \ Q (which, in particular, is
uncountable). The Riemann integral fails to account for this “evident” size difference.

• Pointwise limits of Riemann integrable functions need not be Riemann integrable, so one
could not hope to have the general and powerful convergence theorems of Section VII.4
for the Riemann integral.7

• The coincidence of Riemann integral and Lebesgue integral for well-behaved functions
allows us to use the familiar techniques such as the fundamental theorem of calculus,
integration by parts, etc., without the need to prove them again.

• Given how common integration on the real axis is, it is convenient to have a concise
notation for it. By virtue of the coincidence of the two notions of integration on R for
all well-behaved functions, with almost no risk of confusion we can use the notation

dx := dΛ(x)

for integration with respect to Lebesgue measure Λ.

7Besides the generality (at once we constructed, e.g., integrals in all dimensions, expected val-
ues, infinite sums, . . . ), arguably the most significant advantage of the integration theory developed
in this chapter is indeed the convergence theorems.



Lecture VIII

Expected values

In this lecture we begin examining the role and use of expected values in probability
theory.

Let (Ω,F ,P) be a probability space. We will use the notation E for expected values.
The expected value of a real-valued random variable X : Ω → R is just the integral
with respect to the probability measure P,

E
[
X
]

:=

∫
Ω

X(ω) dP(ω).

Let us summarize how it is constructed step by step for increasingly general random
variables X : Ω→ R as in the previous lecture (Lecture VII):

(1) If X = IA for an event A ∈ F , then we set E[X] = P[A].
(2) If X =

∑n
j=1 ajIAj is simple1, then we set E[X] =

∑n
j=1 ajP[Aj].

(3) If X is non-negative, then we set

E[X] = sup
H∈sF+

0≤H≤X

E[H].

(4) If X is integrable, i.e., E[X+] < +∞ and E[X−] < +∞, then we set

E[X] = E[X+]− E[X−].

Since expected value is by definition a special case of integral, the basic properties
of integrals lead to the corresponding basic properties of expected values:

Linearity: (Proposition VII.9 and Theorem VII.15)
For either X, Y ∈ mF + (two non-negative random variables), or for X, Y ∈
L1(P) (two integrable random variables), we have

E
[
X + Y

]
= E

[
X
]

+ E
[
Y
]
.

For either X ∈ mF + and c ≥ 0, or for X ∈ L1(P) and c ∈ R, we have

E
[
cX
]

= c E
[
X
]
.

Monotonicity: (Proposition VII.6 and Theorem VII.16)
For either X, Y ∈ mF + (two non-negative random variables) or for X, Y ∈
L1(P) (two integrable random variables), we have

X ≤ Y =⇒ E
[
X
]
≤ E

[
Y
]

1In Section VII.1 we were careful to only integrate simple functions which are non-negative,
in order to avoid undefined expressions of the form +∞ −∞. For expected values, because of
finiteness P[Ω] = 1 < +∞ of the total mass of a probability measure, this never causes problems,
so formula (VII.2) can be directly taken as a definition of the expected value of any simple function
(random variable).

71
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Triangle inequality: (Theorem VII.14)
For X ∈ L1(P), we have∣∣∣E[X] ∣∣∣ ≤ E

[
|X|
]
.

Besides these basic properties, also the powerful convergence theorems of Section VII.4
continue hold for expected values.

VIII.1. Expected values in terms of laws

Recall from Definition III.6 that the law of a random variable X : Ω → R (or the
distribution of X) is the probability measure PX on R given by

PX [B] = P
[
X ∈ B

]
for B ∈ B.

We next show how the expected value of g(X) can be calculated as an integral with
respect to the law PX .

Theorem VIII.1 (Expected values in terms of laws).
Let X : Ω→ R be a random variable with law PX , and let g : R→ R be a Borel
function. Then we have the equivalence of the following integrability properties

g(X) ∈ L1(P) ⇐⇒ g ∈ L1(PX).

If either (then both) of the above integrability properties holds, then we have

E
[
g(X)

]
=

∫
R
g(x) dPX(x).

Proof. The proof follows the “standard machine”, i.e., we verify the statement for (1) indicator
functions, (2) simple functions, (3) non-negative measurable functions, and finally (4) all
measurable functions g.

step 1: Consider an indicator function g = IB of a Borel set B ∈ B. Observe, as in (IV.1)
and (IV.2), that IB(X(ω)) = IX−1(B)(ω) for all ω ∈ Ω. Thus we have

E
[
IB(X)

]
= E

[
IX−1(B)

]
(because IB ◦X = IX−1(B))

= P
[
X−1(B)

]
(by step 1 of def. of E)

= PX [B] (by def. of PX)

=

∫
IB dPX . (by step 1 of def. of integral)

This shows that E[g(X)] =
∫
g dPX for g = IB .

step 2: Consider a simple Borel function g ∈ sB+. Write g =
∑n
j=1 ajIBj . We have

E
[ n∑
j=1

aj IBj (X)
]

=

n∑
j=1

aj E
[
IBj (X)

]
(by linearity of E)

=

n∑
j=1

aj

∫
IBj dPX (by step 1)

=

∫ ( n∑
j=1

aj IBj
)

dPX (by linearity of integral).

This shows that E[g(X)] =
∫
g dPX for g ∈ sB+.
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step 3: Consider a non-negative Borel function g ∈ mB+. Take a monotone increasing pointwise
approximation gn ↑ g as n → ∞ by non-negative simple Borel functions gn ∈ sB+. We
then also have gn(X) ↑ g(X), and gn(X) ∈ sF+ are non-negative simple random variables.
Using Monotone convergence theorem (Theorem VII.8) both for P and for PX , we get

E
[
g(X)

]
= lim

n→∞
E
[
gn(X)

]
(by MCT for P)

= lim
n→∞

∫
gn dPX (by step 2)

=

∫
g dPX . (by MCT for PX).

step 4: Consider a Borel function g ∈ mB, and let g+, g− ∈ mB+ be its positive and negative
parts. The positive and negative parts of the random variable g(X) = g ◦X are (g(X))+ =
g+ ◦X ∈ mF+ and (g(X))− = g− ◦X ∈ mF+. By step 3 we thus have

E
[(
g(X)

)
+

]
= E

[
g+(X)

]
=

∫
g+ dPX

and E
[(
g(X)

)
−

]
= E

[
g−(X)

]
=

∫
g− dPX .

Therefore we first of all have the equivalent conditions

E
[(
g(X)

)
+

]
< +∞ ⇐⇒

∫
g+ dPX < +∞

and E
[(
g(X)

)
−

]
< +∞ ⇐⇒

∫
g− dPX < +∞,

which by Remark VII.11 shows the equivalence g(X) ∈ L1(P) ⇔ g ∈ L1(PX). Moreover,
when this integrability holds, step 4 of the definition of the integrals gives

E
[
g(X)

]
= E

[(
g(X)

)
+

]
− E

[(
g(X)

)
−

]
and

∫
g dPX =

∫
g+ dPX −

∫
g− dPX .

These coincide by the above equalities, which finishes the proof. �

Exercise VIII.1 (Discrete random numbers).
A random variable is discrete if its range A = X(Ω) is finite or countably infinite. The
probability mass function of a discrete random variable X is defined by pX(x) = P

[
X = x

]
.

Prove that any discrete real-valued random variable satisfies:

(a) E
[
h(X)

]
=
∑
x∈A h(x) pX(x) for all Borel functions h : R→ [0,∞).

(b) h(X) ∈ L1(Ω,F ,P) if and only if
∑
x∈A |h(x)| pX(x) <∞.

(c) Explain why the formula in (a) is true for all h ∈ L1(R,B, PX).

Hint: Recall the argument in the proof of Theorem VIII.1.

Exercise VIII.2 (Almost sure equality).
Let X and Y be real-valued random variables that are equal almost surely, that is,

P
[
X = Y

]
= 1.

(a) In order to make sure that P[X = Y ] is a meaningful probability, explain first why the
set
{
ω ∈ Ω

∣∣ X(ω) = Y (ω)
}

is measurable.
(b) Prove that the laws of X and Y are the same, and conclude that we in particular have

E[X] = E[Y ] (whenever the expected values exist).
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Probability densities of continuous distributions

Definition VIII.2 (Probability density of a continuous distribution).
Let X ∈ mF be a real valued random variable. If there exists a Borel function

fX : R→ [0,+∞)

such that2

PX [B] := P
[
X ∈ B

]
=

∫
B

fX(x) dx (VIII.1)

for all B ∈ B, then we say that X has a continuous distribution (or a contin-
uous law), and we say that fX is a density function of X.

Example VIII.3 (Gaussian distribution).
Let m ∈ R and s > 0. A random variable X is said to have a gaussian distribution with
mean m and variance s2 if its distribution is continuous and

fX(x) =
1√

2π s2
exp

(
− 1

2 s2
(x−m)2

)
is a density function of X.

Gaussian distributions are also called normal distributions, and the particular case of zero
mean m = 0 and unit variance s2 = 1 is called the standard normal distribution.

Example VIII.4 (Exponential distribution).
Let λ > 0. A random variable X is said to have an exponential distribution with parameter
λ if its distribution is continuous and

fX(x) =

{
λ e−λx for x ≥ 0

0 for x < 0

is a density function of X.

Exercise VIII.3 (Random numbers with continuous distribution).
Assume that X has a continuous law with a density function fX .

(a) Show that X is integrable if and only if
∫
R |x| fX(x) dx <∞.

(b) If X is integrable, show that expectation of X is given by

E
[
X
]

=

∫
R
x fX(x) dx.

(c) If X is integrable with expected value m := E[X], show that the variance of X can be
computed as

Var(X) := E
[
(X − E[X])2

]
=

∫
R

(x−m)2 fX(x) dx.

(d) Can a random variable with continuous law have more than one density function?

Hint: Remember the hint for Exercise VIII.1, and seek a unified argument leading to (a) and (b) —

perhaps even (c).

Exercise VIII.4 (Expected value and variance of an exponential random variable).
Assume that a random variable X has an exponential distribution with parameter λ (see
Example VIII.4). Use the previous exercise to calculate the expected value E[X] and the
variance Var(X) of X.

2The right hand side of (VIII.1) is an integral over the subset B ⊂ R in the sense of (VII.10),∫
B

fX(x) dx :=

∫
R
fX(x) IB(x) dΛ(x).
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Exercise VIII.5 (The absolute value of a random number).
Let Y = |X| where X is a real-valued random variable.

(a) Prove that Y is a random variable.
(b) Assume that we know the cumulative distribution function FX(x) = P[X ≤ x] of X.

What is the cumulative distribution function of Y ?
(c) Assume that X has continuous distribution with a density function fX(x). Does Y also

have a continuous distribution in this case? If yes, write down an expression for a density
function fY of Y in terms of fX . If not, explain why not.

VIII.2. Applications of convergence theorems for expected values

In this section we look at a few consequences of the convergence theorems in various
aspects of probability theory.

Expected values of random series with non-negative terms

Let us observe that a non-negative random variable can only have finite expected
value if the random variable is almost surely finite.3

Lemma VIII.5 (Finite expected value implies almost sure finiteness).
If X ∈ mF + is a non-negative random variable such that E[X] < +∞, then
we have X < +∞ almost surely, i.e., P

[
X < +∞

]
= 1.

Proof. Let A =
{
ω ∈ Ω

∣∣ X(ω) = +∞
}

be the event that the random variable X takes an infinite
value. Then for any n ∈ N we obviously have X ≥ n IA, so by monotonicity of expected
values we get

n P[A] = E
[
n IA

]
≤ E

[
X
]
.

Dividing this by n, we get P[A] ≤ 1
n E[X]. By assumption X has finite expected value,

E
[
X
]
< +∞, so by letting n → ∞ we get P[A] ≤ 0. This shows that P[A] = 0, so passing

to the complement we prove the claim

P
[
X < +∞

]
= P

[
Ac
]

= 1− P[A] = 1− 0 = 1.

�

Next we note that in a random sum with non-negative terms, we are allowed to
interchange the order of summation and expected value.

Lemma VIII.6 (Expected value of a series of non-negative random terms).
Suppose that X1, X2, . . . ∈ mF + is a sequence of non-negative random vari-
ables. Consider the random infinite series

∑∞
k=1 Xk. Then we have

E
[ ∞∑
k=1

Xk

]
=
∞∑
k=1

E
[
Xk

]
.

3A similar conclusion holds for integrals generally, not just expected values. We leave it to the
reader to precisely formulate the statement and see that the proof carries through.
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Proof. By definition, these infinite sums are the limits of their finite partial sums, in particular
∞∑
k=1

Xk(ω) = lim
n→∞

n∑
k=1

Xk(ω) for all ω ∈ Ω.

By non-negativity of the terms, the sequence of partial sums is increasing, i.e.,
n∑
k=1

Xk(ω) ↑
∞∑
k=1

Xk(ω) as n→∞, for all ω ∈ Ω.

In this pointwise increasing approximation, we can apply the Monotone convergence theo-
rem (MCT), and get

E
[ ∞∑
k=1

Xk

]
= E

[
lim
n→∞

n∑
k=1

Xk

]
(by definition of infinite sum)

= lim
n→∞

E
[ n∑
k=1

Xk

]
(by MCT)

= lim
n→∞

n∑
k=1

E
[
Xk

]
(by linearity of expected value)

=

∞∑
k=1

E
[
Xk

]
. (by definition of infinite sum)

The assertion is thus proven. �

We can combine the above observations to obtain a sufficient condition for almost
sure convergence of random series with non-negative terms.

Proposition VIII.7 (Guaranteeing almost sure convergence of a random series).
Suppose that X1, X2, . . . ∈ mF + is a sequence of non-negative random vari-
ables. Suppose moreover that we have

∞∑
k=1

E
[
Xk

]
< +∞.

Then we have almost surely
∑∞

k=1Xk < +∞ and almost surely Xk → 0 as
k →∞, i.e.,

P
[ ∞∑
k=1

Xk < +∞
]

= 1 and P
[

lim
k→∞

Xk = 0
]

= 1.

Proof. Note that the convergence
∑∞
k=1Xk < +∞ of the series implies that its terms tend to zero,

limk→∞Xk = 0, so for the corresponding events we have{
ω ∈ Ω

∣∣∣∣ ∞∑
k=1

Xk(ω) < +∞

}
⊂
{
ω ∈ Ω

∣∣∣∣ lim
k→∞

Xk(ω) = 0

}
and for their probabilities therefore

P
[ ∞∑
k=1

Xk < +∞
]
≤ P

[
lim
k→∞

Xk = 0
]
.

It therefore suffices to show that the probability on the left hand side is equal to one. By
Lemma VIII.6 and the assumption of convergence of the series of expected values, we get

E
[ ∞∑
k=1

Xk

]
=

∞∑
k=1

E
[
Xk

]
< +∞.
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Lemma VIII.5 therefore implies what we claimed,

1 = P
[ ∞∑
k=1

Xk < +∞
]
≤ P

[
lim
k→∞

Xk = 0
]
.

�

Indicators of events, in particular, are non-negative random variables. The first
Borel – Cantelli lemma can thus be seen as consequence of the above observations.

Lemma (Borel–Cantelli lemma: convergence part, Lemma V.7).
Suppose that E1, E2, . . . ∈ F are such that

∑∞
k=1 P[Ek] < +∞. Then we have

P
[
“Ek occurs infinitely often”

]
= 0.

Proof. Consider the indicators IEk of the events Ek, k = 1, 2, . . .. Note that the random series

N :=

∞∑
k=1

IEk

counts the (random) number N of events in the sequence E1, E2, . . ., which occur. By
assumption, we have

∞∑
k=1

E
[
IEk
]

=

∞∑
k=1

P[Ek] < +∞.

Therefore by Proposition VIII.7 we in particular have that P[N < +∞] = 1, i.e., almost
surely only finitely many of the events in the sequence E1, E2, . . . occur. The complementary
event is that infinitely many of the events occur, so we have

P
[
“Ek occurs infinitely often”

]
= P

[
N = +∞

]
= 1− P

[
N < +∞

]
= 1− 1 = 0.

This finishes our alternative proof of the first Borel–Cantelli lemma. �

Differentiation inside expected values

As an application of the Dominated convergence theorem, the reader can verify that
exchanging the order of expected values and differentiation is permitted for example
in the following situation.

Exercise VIII.6 (Differentiation inside expectation).
Let (Ω,F ,P) be a probability space and X : Ω → R a random variable. Suppose that
h : R × (a, b) → R is a continuous function, (x, λ) 7→ h(x, λ). Assume that the partial
derivative with respect to the second variable, ∂

∂λh : R × (a, b) → R, is also continuous.

Assume moreover, that for some integrable random variable Y ∈ L1(Ω,F ,P) we have

for all λ ∈ (a, b) and ω ∈ Ω :
∣∣∣( ∂
∂λ
h
)

(X(ω), λ)
∣∣∣ ≤ Y (ω).

(a) Show that for any λ, λ′ ∈ (a, b) with λ 6= λ′ we have |h(X,λ′)−h(X,λ)
λ′−λ | ≤ Y .

Hint: Write h(x, λ2) − h(x, λ1) =
∫ λ2

λ1
( ∂
∂λ
h)(x, λ) dλ, and recall the triangle inequality for

integrals.

(b) Show that

d

dλ
E
[
h(X,λ)

]
= E

[( ∂
∂λ
h
)
(X,λ)

]
.

Hint: When λn → λ, consider 1
λn−λ

(
E
[
h(X,λn)

]
− E

[
h(X,λ)

])
. Use part (a) and dominated

convergence.
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Differentiation inside expected value is in particular often used for various generating
functions.

Exercise VIII.7 (Differentiating the moment generating function).
Define the moment generating function of X : Ω → R by MX(λ) := E

[
eλX

]
. Assume that

E
[
eε|X|

]
<∞ for some ε > 0.

(a) Show that M ′X(0) = E[X].
Hint: Find a way to apply Exercise VIII.6, perhaps by first showing that for |λ| < ε one has

|xeλx| ≤ Ceε|x|.
(d) Explain, without detailed calculations, why M ′′X(0) = E[X2]. Find also a similar formula

for E[Xn] for all n ∈ N.

VIII.3. Space of p-integrable random variables

Let X : Ω → R̂ be a random variable. Recall that we say that X is integrable and
write X ∈ L1(P) if

E
[
|X|
]
< +∞.

The following generalization is encountered very often.

Definition VIII.8 (p-integrability).
Let p > 0. We say that a random variable X is p-integrable and denote
X ∈ Lp(P) if

E
[
|X|p

]
< +∞. (VIII.2)

In probability spaces, p-integrability implies r-integrability for any r ≤ p, as we
will show in the next lemma. This is used in particular to conclude that if it is
meaningful to talk about the moment E[Xp] of order p, it is also meaningful to
talk about all lower order moments E[Xr]. Let us emphasize that in very common
measure spaces of infinite total mass, p-integrability does not imply integrability of
lower order, so the lemma is specific to probability theory.

Lemma VIII.9 (Finiteness of lower order moments).
Let 0 < r < p. Suppose that X ∈ Lp(P). Then we have X ∈ Lr(P), and
moreover

E
[
|X|r

]
≤ 1 + E

[
|X|p

]
.

Proof. Since 0 < r < p, we have that |x|r < |x|p whenever |x| > 1, and |x|r ≤ 1 whenever |x| ≤ 1.
Define the event

A =
{
ω ∈ Ω

∣∣∣ |X(ω)| > 1
}
.

Then we have the pointwise estimate

|X(ω)|r ≤ IAc(ω) + IA(ω) |X(ω)|p

≤ 1 + |X(ω)|p.
By monotonicity and linearity of the expected value, this gives

E
[
|X|r

]
≤ E

[
1 + |X|p

]
≤ 1 + E

[
|X|p

]
.

Both asserted results follow from this. �
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The space Lp(P) of all p-integrable random variables is a vector space.

Lemma VIII.10 (p-integrable random variables form a vector space).
Let p ≥ 0. Then we have the following.

(a) If X ∈ Lp(P) and a ∈ R, then aX ∈ Lp(P).
(b) If X, Y ∈ Lp(P), then X + Y ∈ Lp(P) and

E
[
|X + Y |p

]
≤ 2p

(
E
[
|X|p

]
+ E
[
|Y |p

])
(VIII.3)

Proof. Part (a) is clear, since E
[
|aX|p

]
= |a|p E

[
|X|p

]
. It therefore only remains to prove (b).

For any x, y ∈ R note that

|x+ y| ≤ |x|+ |y| ≤ 2 max {|x|, |y|} .

The mapping t 7→ tp is increasing [0,∞)→ [0,∞), so applying it to the above gives

|x+ y|p ≤ 2p max {|x|p, |y|p} .

This of course implies also

|x+ y|p ≤ 2p
(
|x|p + |y|p

)
.

Applying this inequality pointwise to the values of the random variables X and Y gives

|X(ω) + Y (ω)|p ≤ 2p
(
|X(ω)|p + |Y (ω)|p

)
for all ω ∈ Ω.

Taking expected values and using monotonicity and linearity, we get

E
[
|X + Y |p

]
≤ 2p

(
E
[
|X|p

]
+ E

[
|Y |p

])
,

and the assertions of part (b) follow. �

Since a constant random variable c is p-integrable for any p > 0, the vector space
property in particular has the following consequence.

Corollary VIII.11 (Adding a constant preserves p-integrability).
If X ∈ Lp(P) and c ∈ R is a constant, then also X + c ∈ Lp(P).

The estimates in Lemma VIII.9 were rather crude. The following very often useful
inequality is one way to improve them.

Exercise VIII.8 (Jensen’s inequality).
Suppose that I ⊂ R is an interval and φ : I → R is a convex function, i.e., a function such
that for any x, y ∈ I and λ ∈ (0, 1) we have

φ
(
λx+ (1− λ) y

)
≤ λ φ(x) + (1− λ) φ(y).

Suppose moreover that X : Ω→ I is a random variable with values on the interval I.

(a) Show that for any z ∈ I there exists a number d ∈ R such that φ(x) ≥ φ(z) + (x− z) d.
Hint: Consider the left and right derivatives of φ at z.

(b) Show that if X is a random variable with values in I ⊂ R, and both X and φ(X) are
integrable, then we have

φ
(
E[X]

)
≤ E

[
φ(X)

]
.

Hint: Choose z = E[X] and apply part (a) together with monotonicity and linearlity of expected

values.
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Exercise VIII.9 (The p-norm controls lower norms).
Suppose that X ∈ Lp(P) for some p > 0. Let 0 < r < p. Using Exercise VIII.8, show that(

E
[
|X|r

])1/r

≤
(
E
[
|X|p

])1/p

,



Lecture IX

Product spaces and Fubini’s theorem

Imagine observing two random phenomena simultaneously. The set of possible out-
comes then is a Cartesian product, it consists of pairs

Ω1 × Ω2 =
{

(ω1, ω2)
∣∣ ω1 ∈ Ω1, ω2 ∈ Ω2

}
,

whose two components are outcomes of the two phenomena.

Example IX.1 (Two coin tosses).
For one coin toss the sample space is {H,T}, representing the possible outcomes “heads”
and “tails”. For two coin tosses the sample space is

{H,T} × {H,T} =
{

(H,H), (H,T), (T,H), (T,T)
}
.

In this lecture we treat measures on such Cartesian product spaces. We construct
in particular:

• the product σ-algebra on a Cartesian product of measurable spaces
• the product measure on a Cartesian product of (σ-finite) measure spaces.

One of the results of great practical importance is Fubini’s Theorem (Theorem IX.9):
for two measure spaces (S1,S1, µ1) and (S2,S2, µ2) and a function f : S1×S2 → R,
under reasonable conditions the change of order of integration formula∫

S1

(∫
S2

f(s1, s2) dµ2(s2)
)

dµ1(s1) =

∫
S2

(∫
S1

f(s1, s2) dµ1(s1)
)

dµ2(s2)

holds. Recalling that expected values and summation are special cases of integration,
this implies (under reasonable assumptions) formulas such as∫ ( ∞∑

k=1

fk(s)
)

dµ(s) =
∞∑
k=1

∫
fk(s) dµ(s),

E
[ ∞∑
k=1

Xk

]
=

∞∑
k=1

E
[
Xk

]
,

etc.

Key tool: Monotone class theorem

In this lecture, we will repeatedly use the Monotone class theorem (Theorem C.2
from Appendix C). Let us recall its statement, and introduce convenient notation
for it.

81
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We denote as before

mS — the set of S -measurable functions S → [−∞,+∞]

sS — the set of simple functions S → R

and in addition the set of bounded measurable functions will be denoted by

bS :=
{
f ∈ mS

∣∣∣ |f | ≤ C for some C ∈ R
}
.

We also continue to use the superscript + for the sets of non-negative functions of
the corresponding types,

mS + :=
{
f ∈ mS

∣∣∣ f ≥ 0
}

sS + :=
{
f ∈ sS

∣∣∣ f ≥ 0
}

bS + :=
{
f ∈ bS

∣∣∣ f ≥ 0
}
.

According to Definition C.1, a collection H of functions S → R is said to be a
monotone class if:

(MC-1) The constant function 1 belongs to H .
(MC-R) The class H is a vector space over R.
(MC-↑) If f1, f2, . . . ∈H is an increasing sequence of non-negative functions in H

such that the pointwise limit fn ↑ f is a bounded function f , then f ∈H .

The statement of the Monotone Class Theorem is the following.

Theorem (Monotone class theorem, Theorem C.2).
Let H be a monotone class of bounded functions from S to R and let J be a
π-system on S such that σ(J ) = S . Suppose that

IA ∈H for every A ∈J .

Then we have

bS ⊂H .

IX.1. Product sigma algebra

Let (S1,S1) and (S2,S2) be two measurable spaces. As the first step, we have to
equip the Cartesian product

S1 × S2 =
{

(s1, s2)
∣∣ s1 ∈ S1, s2 ∈ S2

}
with a σ-algebra. We think of the coordinate projections

pr1 : S1 × S2 → S1 pr1(s1, s2) = s1

pr2 : S1 × S2 → S2 pr2(s1, s2) = s2

as fundamental, and require that they must be measurable functions to (S1,S1) and
(S2,S2), respectively.
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Definition IX.2 (Product sigma algebra).
The product σ-algebra S1 ⊗S2 on S1 × S2 is the σ-algebra generated by the
functions pr1 and pr2, i.e., the smallest σ-algebra on S1 × S2 with respect to
which pr1 : S1 × S2 → S1 and pr2 : S1 × S2 → S2 are measurable.

The following lemma says that Cartesian products of measurable sets are S1⊗S2-
measurable, and that S1 ⊗S2 is the smallest σ-algebra with that property.

pr2

pr1

S2

S1

A2

A1

A1 ×A2

S1 × S2

Lemma IX.3 (A pi system for the product sigma algebra).
The collection

I =
{
A1 × A2

∣∣ A1 ∈ S1, A2 ∈ S2

}
(IX.1)

is a π-system on S1 × S2, and we have S1 ⊗S2 = σ(I ).

Exercise IX.1. Prove Lemma IX.3.

The Euclidean plane is just the Cartesian product R2 = R × R of two copies of
the real axis. Does that mean that we have equipped the plane with two different
σ-algebras: its Borel σ-algebra (generated by open subsets of the plane), and its
product σ-algebra (generated by projections from the plane to the two axes)? In
principle yes — but. . .

Exercise IX.2 (The two natural σ-algebras on the plane are the same).
Let B be the Borel σ-algebra on the real line R, and B(R2) the Borel σ-algebra on the
plane R2. Show that

B ⊗B = B(R2).

Hint: A set A ⊂ Rn is open if and only if it can be written as a countable union of open boxes of

the form (a1, b1)× · · · × (an, bn) with ai, bi being rational numbers.
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Freezing one coordinate

Our first use of the Monotone Class Theorem is to show that with any function
f : S1 × S2 → R which is measurable with respect to the product σ-algebra, keep-
ing one of the two coordinates fixed and letting the other vary defines measurable
functions S1 → R and S2 → R.

Lemma IX.4 (Freezing a coordinate preserves measurability).
Let H denote the class of functions f : S1×S2 → R such that f ∈ b(S1 ⊗S2)
and

∀s1 ∈ S1 s2 7→ f(s1, s2) is S2-measurable S2 → R
∀s2 ∈ S2 s1 7→ f(s1, s2) is S1-measurable S1 → R.

Then we have H = b(S1 ⊗S2).

Proof. By definition of H we have H ⊂ b(S1 ⊗S2), so we must show H ⊃ b(S1 ⊗S2).

Clearly the class H satisfies (MC-1), (MC-R), and (MC-↑). We will show that H contains
the indicator functions of all sets in the π-system I of Lemma IX.3. Since σ(I ) = S1⊗S2,
the Monotone Class Theorem then allows us to conclude that H ⊃ b(S1 ⊗S2).

So suppose that A1 ∈ S1 and A2 ∈ S2, and consider the indicator function

IA1×A2
: S1 × S2 → R

of the set A1 ×A2 ⊂ S1 × S2. We have

IA1×A2(s1, s2) = IA1(s1) IA2(s2),

so if s1 ∈ A1, the function s2 7→ IA1×A2
(s1, s2) is the indicator IA2

of the set A2 ⊂ S2, and if
s1 /∈ A1, it is zero. In either case, s2 7→ IA1×A2(s1, s2) is S2-measurable S2 → R. Similarly
one shows that s1 7→ IA1×A2(s1, s2) is S1-measurable S1 → R, for any s2 ∈ S2. This shows
that the indicator functions of all sets in the π-system I of Lemma IX.3 are in the class H .
This finishes the proof. �

IX.2. Product measure

Let (S1,S1, µ1) and (S2,S2, µ2) be two measure spaces. Our next goal is to construct
a product measure, denoted by µ1⊗µ2, on the measurable space (S1×S2,S1⊗S2).

First, in Section IX.2.1 we do that in the case when the measures are finite, and
then in Section IX.2.2 we relax the assumption of finiteness to σ-finiteness.

IX.2.1. Product of two finite measures

We now consider the case that (S1,S1, µ1) and (S2,S2, µ2) are two finite measure
spaces, i.e., we assume that the total masses of the two measures are finite

µ1[S1] < +∞ and µ2[S2] < +∞.
This assumption will be used frequently below to conclude that a function which is
bounded and measurable is necessarily integrable (recall Lemma VII.20).

Suppose that f : S1 × S2 → R is a bounded S1 ⊗ S2-measurable function, i.e.,
f ∈ b(S1 ⊗S2). The functions s2 7→ f(s1, s2) and s1 7→ f(s1, s2) are clearly also
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bounded, and they are measurable by Lemma IX.4. Thus they are integrable, and
we can define the functions

Jf1(s1) :=

∫
S2

f(s1, s2) dµ2(s2) (IX.2)

Jf2(s2) :=

∫
S1

f(s1, s2) dµ1(s1). (IX.3)

The next lemma shows that these integrals over one of the variables define mea-
surable functions. Moreover, it essentially establishes the conclusion of Fubini’s
theorem in the particular case of bounded measurable functions on finite measure
spaces.

Lemma IX.5 (Fubini’s theorem for bounded functions).
Let (S1,S1, µ1) and (S2,S2, µ2) be two finite measure spaces, and let f ∈ b(S1 ⊗S2).
We then have the following:

(i) The function s1 7→ Jf1(s1) in (IX.2) is bounded and S1-measurable S1 → R.

(ii) The function s2 7→ Jf2(s2) in (IX.3) is bounded and S2-measurable S2 → R.
(iii) We have the equality∫

S1

Jf1(s1) dµ1(s1) =

∫
S2

Jf2(s2) dµ2(s2).

Proof. Let H be the collection of functions f ∈ b(S1 ⊗S2) for which (i), (ii), and (iii) hold. We
must show H = b(S1 ⊗S2), and we will again do this using the Monotone Class Theorem.

We first claim that for any A1 ∈ S1 and A2 ∈ S2, the indicator IA1×A2 : S1 × S2 → R is
in the collection H . Recall that IA1×A2

(s1, s2) = IA1
(s1) IA2

(s2), fix s1 ∈ S1, and integrate
over the variable s2 to get

J
IA1×A2
1 (s1) =

∫
S2

IA1
(s1) IA2

(s2) dµ2(s2)

= IA1
(s1)

∫
S2

IA2
(s2) dµ2(s2)

= µ2[A2] IA1
(s1).

As a constant multiple of an indicator of the measurable setA1, the function s1 7→ J
IA1×A2
1 (s1)

is S1-measurable and bounded, i.e., (i) holds for IA1×A2 . Similarly one shows that

J
IA1×A2
2 (s2) = µ1[A1] IA2

(s2),

and concludes that s2 7→ J
IA1×A2
2 (s2) is S2-measurable and bounded, i.e., (ii) holds for

IA1×A2
. For (iii), calculate∫

S1

J
IA1×A2
1 (s1) dµ1(s1) =

∫
S1

µ2[A2] IA1(s1) dµ1(s1)

= µ2[A2]

∫
S1

IA1(s1) dµ1(s1)

= µ2[A2] µ1[A1],

and similarly ∫
S2

J
IA1×A2
2 (s2) dµ2(s2) = µ1[A1] µ2[A2].

These two integrals coincide, so we get that also (iii) holds for IA1×A2 , and thus IA1×A2 ∈H .

It remains to prove that H is a monotone class. Properties (MC-1) and (MC-R) are
easy to verify. For property (MC-↑), suppose that f1, f2, . . . ∈ H are non-negative and
fn(s1, s2) ↑ f(s1, s2) for all (s1, s2) ∈ S1 × S2, where f : S1 × S2 → R is bounded. Then for
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any s1 ∈ S1, the functions s2 7→ fn(s1, s2) increase pointwise to s2 7→ f(s1, s2) as n → ∞,
so by Monotone convergence theorem we get∫

S2

fn(s1, s2) dµ2(s2) ↑
∫
S2

f(s1, s2) dµ2(s2),

i.e., Jfn1 (s1) ↑ Jf1 (s1). Since fn ∈H , the functions s1 7→ Jfn1 (s1) are S1-measurable, and as

their pointwise limit also the function s1 7→ Jf1 (s1) must therefore be. Moreover, since f is

bounded and the measure µ2 is finite, the function s1 7→ Jf1 (s1) is bounded, so property (i)

holds for f . Similarly one shows that Jfn2 (s2) ↑ Jf2 (s2) for any s2 ∈ S2, and property (ii) for
f follows. Finally, use the Monotone convergence theorem twice (once for µ1 and once for
µ2) to calculate∫

S1

Jf1 (s1) dµ1(s1) = lim
n→∞

∫
S1

Jfn1 (s1) dµ1(s1) (Jfn1 ↑ J
f
1 and MCT for µ1)

= lim
n→∞

∫
S2

Jfn2 (s2) dµ2(s2) (property (iii) for fn ∈H )

=

∫
S2

Jf2 (s2) dµ2(s2). (Jfn2 ↑ J
f
2 and MCT for µ2)

The equality above proves property (iii) for f , and shows that f ∈H , therefore establishing
(MC-↑) and showing that H is indeed a monotone class. This finishes the proof. �

Property (iii) of the previous lemma shows that the two formulas below are equal,
and the following definition is therefore unambiguous.

Definition IX.6 (Product measure).
Let (S1,S1, µ1) and (S2,S2, µ2) be two finite measure spaces. The product
measure µ1 ⊗ µ2 on S1 × S2 is defined by

(µ1 ⊗ µ2)[B] =

∫
S1

(∫
S2

IB(s1, s2) dµ2(s2)
)

dµ1(s1) (IX.4)

=

∫
S2

(∫
S1

IB(s1, s2) dµ1(s1)
)

dµ2(s2)

for any B ∈ S1 ⊗S2.

This formula indeed gives rise to a measure on the product space, as we verify next.

Lemma IX.7 (The product measure is a measure).
Let (S1,S1, µ1) and (S2,S2, µ2) be two finite measure spaces, and define µ1⊗µ2

by formula (IX.4). Then µ1 ⊗ µ2 is a measure on (S1 × S2,S1 ⊗S2).

Proof. The defining formula (IX.4) only involves integrals of non-negative functions, so clearly
(µ1 ⊗ µ2)[B] ∈ [0,+∞] for any B ∈ S1 ⊗S2. We must check the two defining properties of
a measure.

The indicator of the empty set ∅ ⊂ S1 × S2 is the zero function, I∅(s1, s2) = 0. The integral
of the zero function is zero, so from (IX.4) we directly get (µ1 ⊗ µ2)[∅] = 0.

Suppose that B1, B2, . . . ∈ S1 ⊗ S2 are disjoint, and let B :=
⋃
k∈NBk. Consider also

the finite unions Un = B1 ∪ · · · ∪ Bn for n ∈ N, to get an increasing sequence U1 ⊂
U2 ⊂ · · · of S1 ⊗S2-measurable sets increasing to

⋃
n∈N Un = B. By disjointness we have

IUn =
∑n
k=1 IBk . We first use this to calculate (µ1 ⊗ µ2)[Un] from (IX.4), using linearity of
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integration,

(µ1 ⊗ µ2)[Un] =

∫
S1

(∫
S2

IUn(s1, s2) dµ2(s2)
)

dµ1(s1)

=

∫
S1

(∫
S2

( n∑
k=1

IBk(s1, s2)
)

dµ2(s2)
)

dµ1(s1)

=

n∑
k=1

(∫
S1

(∫
S2

IBk(s1, s2) dµ2(s2)
)

dµ1(s1)

)
=

n∑
k=1

(µ1 ⊗ µ2)[Bk].

On the other hand, the indicators of the increasing sequence Un of sets increase pointwise
to the indicator of the limit set B, i.e., IUn ↑ IB . We can use this to calculate (µ1 ⊗ µ2)[B]
from (IX.4), using Monotone convergence theorems (first for µ2 and then for µ1),

(µ1 ⊗ µ2)[B] =

∫
S1

(∫
S2

IB(s1, s2) dµ2(s2)
)

dµ1(s1)

=

∫
S1

(∫
S2

lim
n→∞

IUn(s1, s2) dµ2(s2)
)

dµ1(s1)

=

∫
S1

(
lim
n→∞

∫
S2

IUn(s1, s2) dµ2(s2)
)

dµ1(s1) (MCT for µ2)

= lim
n→∞

∫
S1

(∫
S2

IUn(s1, s2) dµ2(s2)
)

dµ1(s1) (MCT for µ1)

= lim
n→∞

(µ1 ⊗ µ2)[Un].

Combining these two calculations, we have shown that

(µ1 ⊗ µ2)
[ ⋃
k∈N

Bk
]

= (µ1 ⊗ µ2)[B] = lim
n→∞

(µ1 ⊗ µ2)[Un]

= lim
n→∞

n∑
k=1

(µ1 ⊗ µ2)[Bk] =

∞∑
k=1

(µ1 ⊗ µ2)[Bk],

which is the countable additivity property for µ1 ⊗ µ2. �

It took some work to construct the product measure, but to characterize it is very
easy:

Lemma IX.8 (A characterization of the product measure).
Let (S1,S1, µ1) and (S2,S2, µ2) be two finite measure spaces. Then the product
measure µ1 ⊗ µ2 is the unique measure ν on (S1 × S2,S1 ⊗S2) such that for
all A1 ∈ S1 and A2 ∈ S2 we have

ν[A1 × A2] = µ1[A1] µ2[A2].

Proof. An easy calculation (done already in the proof of Lemma IX.5) starting from the defini-
tion (IX.4) of the product measure gives

(µ1 ⊗ µ2)[A1 ×A2] = µ1[A1] µ2[A2].

Thus µ1 ⊗ µ2 indeed satisfies the asserted formula.

Now if ν is another measure on (S1 × S2,S1 ⊗S2) for which the formula holds, then ν and
µ1⊗µ2 coincide on all sets of the π-system (IX.1), I =

{
A1 ×A2

∣∣ A1 ∈ S1, A2 ∈ S2

}
. In

particular the total masses are equal, ν[S1×S1] = (µ1⊗µ2)[S1×S1]. We can divide each by
this finite total mass to get two probability measures, which agree on the π-system I . Since
σ(I ) = S1 ⊗ S2, Dynkin’s identification theorem then guarantees that these probability
measures on (S1 × S2,S1 ⊗S2) are equal. Multiplying the total mass back, we conclude
that ν = µ1 ⊗ µ2. This shows the uniqueness of a measure satisfying the formula. �

Now we state and prove the main result about product measures.
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Theorem IX.9 (Fubini’s theorem).
For a function f : S1×S2 → [−∞,+∞], consider the following three integrals:∫

S1×S2

f d(µ1 ⊗ µ2) (IX.5)∫
S1

(∫
S2

f(s1, s2) dµ2(s2)
)

dµ1(s1) (IX.6)∫
S2

(∫
S1

f(s1, s2) dµ1(s1)
)

dµ2(s2). (IX.7)

We have:

(a) If f is non-negative and measurable, f ∈ m(S1 ⊗S2)+, then the integrals
(IX.5), (IX.6), and (IX.7) are all in [0,+∞], and they are all equal.

(b) If f is integrable, f ∈ L1(µ1 ⊗ µ2), then the integrals (IX.5), (IX.6), and
(IX.7) are all in R, and they are all equal.

Proof of part (a): We first claim that for all f ∈ b(S1 ⊗S2), then the integrals (IX.5), (IX.6),
and (IX.7) are all equal as real numbers. The equality of the last two was in fact shown
in part (iii) of Lemma IX.5, and here one proceeds similarly. Consider the collection H of
functions f ∈ b(S1 ⊗S2) for which we have (i), (ii), and

(iii’) The integrals (IX.5), (IX.6), and (IX.7) are all equal as real numbers.

With minor modifications to the proof of Lemma IX.5, one can prove that this collection
H is a monotone class and contains indicators IA1×A2 of sets A1 × A2, and therefore
H = b(S1 ⊗S2).

It in particular follows, because simple functions are necessarily bounded, that all non-
negative simple functions satisfy (iii’). For a given non-negative measurable f ∈ m(S1 ⊗S2)

+

we choose a pointwise increasing approximation fn ↑ f by non-negative simple functions
fn ∈ s(S1 ⊗S2)

+
. By (iii’), for these approximating functions we have the equalities∫

S1×S2

fn d(µ1 ⊗ µ2) =

∫
S1

(∫
S2

fn(s1, s2) dµ2(s2)
)

dµ1(s1)

=

∫
S2

(∫
S1

fn(s1, s2) dµ1(s1)
)

dµ2(s2).

We show that these three increase to (IX.5), (IX.6), and (IX.7) for f , respectively, and the
assertion (a) then follows. For the first, just use Monotone convergence theorem for the
product measure µ1 ⊗ µ2∫

S1×S2

fn d(µ1 ⊗ µ2) ↑
∫
S1×S2

f d(µ1 ⊗ µ2).

Let us consider the second integral in the limit n → ∞. Use first Monotone convergence
theorem for µ2 to get∫

S2

fn(s1, s2) dµ2(s2) ↑
∫
S2

f(s1, s2) dµ2(s2),

which in particular shows that the inner integral in (IX.6) defines a non-negative measurable
function of the variable s1, as a pointwise limit of non-negative measurable functions. Use
next the Monotone convergence theorem for µ1 together with the previous result to get∫

S1

(∫
S2

fn(s1, s2) dµ2(s2)
)

dµ1(s1) ↑
∫
S1

(∫
S2

f(s1, s2) dµ2(s2)
)

dµ1(s1).

The third one is shown similarly, with Monotone convergence theorem for µ1 first and then
for µ2. This finishes the proof of (a).
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Proof of part (b): Suppose that f ∈ L1(µ1 ⊗ µ2), i.e., that f is S1 ⊗S2-measurable and∫
S1×S2

|f | d(µ1 ⊗ µ2) < +∞.

Write f = f+ − f−, where f+, f− ∈ m(S1 ⊗S2)
+

are the positive and negative parts of f .
From integrability of f , it follows that we have∫

S1×S2

f+ d(µ1 ⊗ µ2) < +∞ and

∫
S1×S2

f− d(µ1 ⊗ µ2) < +∞.

We can then apply part (a) to f+ to get that all of the following integrals finite and equal∫
S1×S2

f+ d(µ1 ⊗ µ2) =

∫
S1

(∫
S2

f+(s1, s2) dµ2(s2)︸ ︷︷ ︸
=:J

f+
1 (s1)

)
dµ1(s1)

=

∫
S2

(∫
S1

f+(s1, s2) dµ1(s1)︸ ︷︷ ︸
=:J

f+
2 (s2)

)
dµ2(s2),

and similarly for f−. In particular this implies that for µ1-almost every s1 we have that

J
f+
1 (s1) < +∞ and J

f−
1 (s1) < +∞. Noting that the positive and negative parts of Jf1 are

(Jf1 )+ = J
f+
1 and (Jf1 )− = J

f−
1 , we furthermore see that Jf1 ∈ L1(µ1). Similarly we get

Jf2 ∈ L1(µ2). Then comparing the definition of the integral (IX.5)∫
S1×S2

f d(µ1 ⊗ µ2) =

∫
S1×S2

f+ d(µ1 ⊗ µ2)−
∫
S1×S2

f− d(µ1 ⊗ µ2)

with the definitions of the double integrals (IX.6) and (IX.7) in terms of the positive and
negative parts, the asserted equalities follow. �

Remark IX.10. In part (b) of Theorem IX.9 we assumed the integrability f ∈ L1(µ1 ⊗ µ2) with
respect to the product measure µ1⊗µ2. By part (a), however, this integrability follows if f
is measurable and either one of the double integrals∫

S1

(∫
S2

|f(s1, s2)| dµ2(s2)
)

dµ1(s1) or

∫
S2

(∫
S1

|f(s1, s2)| dµ1(s1)
)

dµ2(s2)

of the absolute value are finite.

IX.2.2. Product of two sigma finite measures

In Section IX.2.1 we constructed the product measure assuming that the two mea-
sures we started with were finite. Our next goal is to relax the assumption of
finiteness. Let us, however, start by pointing out that it is necessary to make some
assumptions in order to build a theory powerful enough to allow interchanging order
of integrations. The following exercise contains a counterexample to the validity of
such interchange property.

Exercise IX.3 (It is not always possible to change the order of integrations).
Consider the following two measure spaces (S1,S1, µ1) and (S2,S2, µ2). The underlying
set for both is the unit interval,

S1 = [0, 1] and S2 = [0, 1],

the σ-algebra for both is the Borel σ-algebra

S1 = B([0, 1]) and S2 = B([0, 1])

of the interval. The first measure is taken to be the restriction of the Lebesgue measure

µ1 = Λ (µ1[(a, b)] = b− a)
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to the interval, and the second measure is taken to be the counting measure

µ2 = µ# (µ2[B] = #B)

on the interval. Define the function f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
1 if x = y

0 if x 6= y.

(a) Verify that that f is a non-negative function, which is S1 ⊗S2-measurable.
(b) Calculate both∫

[0,1]

(∫
[0,1]

f(x, y) dµ#(y)
)

dΛ(x) and

∫
[0,1]

(∫
[0,1]

f(x, y) dΛ(x)
)

dµ#(y)

and compare the results.

Definition IX.11 (Sigma finite measures and measure spaces).
Let (S,S , µ) be a measure space. We say that the measure space is σ-finite
or that the measure µ is σ-finite if there exists a sequence A1, A2, . . . ∈ S of
measurable sets which together cover the entire space, S =

⋃∞
n=1An, and each

has finite measure, µ[An] < +∞ for all n ∈ N.

Example IX.12 (The Lebesgue measure is sigma finite).
The real axis with the Lebesgue measure (R,B,Λ) is a σ-finite measure space. An example
of a sequence of finite measure sets which covers the real axis is An = [−n,+n], for n ∈ N.

Example IX.13 (The d-dimensional Lebesgue measure is sigma finite).
The d-dimensional Euclidean space with the d-dimensional Lebesgue measure (Rd,B(Rd),Λd)
is a σ-finite measure space. An example of a sequence of finite measure sets which covers
the real axis is balls An =

{
x ∈ Rd

∣∣ ‖x‖ ≤ n} of radii n centered at the origin, for n ∈ N.

The following (counter-)example underlies the problem encountered in Exercise IX.3.

Example IX.14 (The counting measure is sigma finite only on countable sets).
The counting measure µ# on (S,S ) is σ-finite if and only if S is a countable set. (Recall
that the countable union of finite sets is countable!)

Remark IX.15 (Sigma finiteness with disjoint pieces of finite measure).
If (S,S , µ) is a σ-finite measure space, then it is possible to choose disjoint measurable

sets A′1, A
′
2, . . . ∈ S which cover the entire space

⋃∞
n=1A

′
n = S and each has finite measure

µ[A′n] < +∞ for all n ∈ N. Indeed, if A1, A2, . . . form a sequence as in Definition IX.11,
then it suffices to set A′n := An \ (A1 ∪ · · · ∪An−1) to achieve disjointness.

Suppose that (S1,S1, µ1) and (S2,S2, µ2) are two σ-finite measure spaces, and that

A
(1)
1 , A

(1)
2 , . . . ∈ S1 and A

(2)
1 , A

(2)
2 , . . . ∈ S2 are their disjoint coverings by finite

measure pieces,

S1 =
∞⋃
n=1

A(1)
n , S2 =

∞⋃
n=1

A(2)
n

µ1

[
A(1)
n

]
< +∞ , µ2

[
A(2)
n

]
< +∞ ∀n ∈ N.

For any n,m ∈ N, the truncation µ
(n)
1 of µ1 to A

(1)
n ⊂ S1 and the truncation µ

(m)
2

of µ2 to A
(2)
m ⊂ S2 are two finite measures (see Exercise II.1), so we know from
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Section IX.2.1 how to construct on the product measure

µ
(n)
1 ⊗ µ

(m)
2 .

The product of the two σ-finite measures can then be defined as the countable sum
of these pieces,

(µ1 ⊗ µ2)[B] :=
∑
n,m∈N

(
µ

(n)
1 ⊗ µ

(m)
2

)
[B].

We leave it as an exercise to the reader to check that this definition does not depend

on the chosen pieces A
(i)
n .1 Fubini’s theorem continues to hold for products of σ-

finite measures. The proof can be done by splitting to the countably many pieces

A
(1)
n × A(2)

m ⊂ S1 × S2 of finite measure.

1Hint: The formula (µ1⊗µ2)[A1×A2] = µ1[A1]µ2[A2] holds for any sets A1 ∈ S1, A2 ∈ S2 of
finite measure, and Dynkin’s identification theorem can then be used to characterize the restrictions
of the product measure to any pieces of finite measure.





Lecture X

Probability on product spaces

In this lecture we look at some of the uses of product sigma algebras, product
measures, and Fubini’s theorem.

We will in particular consider random vectors and joint distributions of random
variables.

X.1. Joint laws

Let (Ω,F ,P) be a probability space. Recall from Definition III.6 that, in general,
the law of a random variable X : Ω→ S is the probability measure on (S,S ) given
by

PX [B] = P
[
X ∈ B

]
.

As an example, for a real valued random variable X : Ω → R, the law PX is a
probability measure on (R,B). To appreciate its role, recall from Theorem VIII.1
that for Borel functions h : R→ R we have

E
[
h(X)

]
=

∫
R
h(x) dPX(x),

whenever h(X) ∈ L1(P) or equivalently h ∈ L1(PX). Below we generalize the
considerations to several real valued random variables.

Definition of the joint law of two real random variables

Consider then two real valued random variables X and Y defined on the same
probability space (Ω,F ,P).

Definition X.1 (Joint law).
For X : Ω→ R and Y : Ω→ R, the joint law (or joint distribution) of X and
Y is the probability measure on (R2,B(R2)) given by

PX,Y [A] = P
[
(X, Y ) ∈ A

]
.

Remark X.2 (Joint law as the law of a random vector).
The pair (X,Y ) is a “random vector” in R2 — or more precisely

Z : Ω→ R2

ω 7→ Z(ω) =
(
X(ω), Y (ω)

)
is. Indeed, we check that Z : Ω → R2 is F/B(R2)-measurable, and thus really a random
variable with values in R2. To check this measurability, note first that for any B1, B2 ∈ B,

93
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we have

Z−1(B1 ×B2) =
{
ω ∈ Ω

∣∣∣ Z(ω) ∈ B1 ×B2

}
=
{
ω ∈ Ω

∣∣∣ X(ω) ∈ B1, Y (ω) ∈ B2

}
= X−1(B1) ∩ Y −1(B2)

which is an event in F by the measurability of X and Y . The collection

J =
{
B1 ×B2

∣∣ B1, B2 ∈ B
}

generates B⊗B = B(R2) by Lemma IX.3 and Exercise IX.2, so this observation is sufficient
for the measurability of Z : Ω→ R2 according to Lemma III.9.

The joint law PX,Y of X and Y is thus nothing but the law PZ of the random vector
Z = (X,Y ).

Analogously to Theorem VIII.1, for a Borel function h : R2 → R one can write the
expected value of h(X, Y ) in terms of the law PX,Y as

E
[
h(X, Y )

]
=

∫
R2

h(x, y) dPX,Y (x, y), (X.1)

provided that h(X, Y ) ∈ L1(P) or equivalently h ∈ L1(PX,Y ). We leave the detailed
verification of this to the reader.1

Lemma X.3 (Characterization of joint law).
The law PX,Y is uniquely characterized by the property that

PX,Y [B1 ×B2] = P
[
(X, Y ) ∈ B1 ×B2

]
for all B1, B2 ∈ B.

Proof. Recall that the collection J of sets of the form B1 × B2 ⊂ R2 is a π-system which gen-
erates the product σ-algebra B ⊗ B (Lemma IX.3). By Dynkin’s identification theorem
(Theorem II.26), the probability measure PX,Y is uniquely characterized by its restriction
to a generating π-system, so the assertion follows. �

The following example of joint laws is relevant to discrete time Markov processes on
very general state spaces.

Exercise X.1 (Transition probability kernels).
Let K be a transition probability kernel on (S,S ), i.e., a mapping S×S → [0,+∞) denoted
by (s,A) 7→ Ks[A] such that

• for any A ∈ S , the mapping s 7→ Ks[A] is S -measurable S → [0,+∞)
• for any s ∈ S, the mapping A 7→ Ks[A] is a probability measure on (S,S ).

Let µ be a probability measure on (S,S ).

(a) Define µK by

(µK)[A] =

∫
S

Ks[A] dµ(s), for A ∈ S .

Show that µK is a probability measure on (S,S ).

1The idea is similar to Theorem VIII.1, but for this case, using the Monotone class theorem
may be more convenient.
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(b) Define, for S ⊗S -measurable subsets B ⊂ S × S

ν[B] =

∫
S

(∫
S

IB(s1, s2) dKs1(s2)

)
dµ(s1).

Show that ν is a probability measure on (S × S,S ⊗S ).
(c) Let X = (X1, X2) be a random “vector” in S×S with distribution PX = ν given by (b).

Show that the distributions PX1
and PX2

of its components X1 and X2 are µ and µK,
respectively.

Note: (X1, X2) can be viewed as the first two values of a discrete time Markov process with initial

distribution µ and transition kernel K (a measure valued generalization of transition matrix) on the

state space S. The distribution of any number of first steps of the Markov process can be defined by

generalizing the above construction. The existence of the whole Markov process can then be deduced

from straightforward abstract extension theorems.

The notion of joint law of n real valued random variables is a straightforward gener-
alization — and it is nothing but the law of the n-dimensional random vector whose
components are the real valued random variables.

Joint densities

Recall from (VIII.1) that a real valued random variable X : Ω → R is said to have
a continuous distribution, if there is a Borel-measurable function fX : R→ [0,+∞]
such that we have

PX [B] = P
[
X ∈ B

]
=

∫
B

fX dΛ for all B ∈ B. (X.2)

In the above formula and below we use the convention (VII.10) for integrals over
subsets. The function fX is called the probability density of (the law of) X.

The Lebesgue measure Λ2 on R2 is the product measure Λ2 = Λ⊗Λ of two Lebesgue
measures on R. It corresponds to the “area measure”, as it is for example determined
by the measures

Λ2
[
(a1, b1)× (a2, b2)

]
= (b1 − a1) (b2 − a2)

of rectangles with a1 ≤ b1, a2 ≤ b2.

Two random variables X : Ω → R and Y : Ω → R are said to have a joint density
fX,Y : R2 → [0,+∞] if we have

PX,Y [A] = P
[
(X, Y ) ∈ A

]
=

∫
A

fX,Y dΛ2 for all A ∈ B(R2). (X.3)

The notion of joint density of more than two random variables is a straightforward
generalization.

Proposition X.4 (Marginal densities from joint density).
If X and Y have a joint density fX,Y : R2 → [0,+∞], then X has density
fX : R→ [0,+∞] given by

fX(x) =

∫
R
fX,Y (x, y) dΛ(y)
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and Y has density fY : R→ [0,+∞] given by

fY (y) =

∫
R
fX,Y (x, y) dΛ(x).

Proof. We prove this using Fubini’s theorem, Theorem IX.9.

Define fX by the formula in the statement. We have to verify that it is a density for X. Let
B ∈ B. Write

PX [B] = P
[
X ∈ B

]
= P

[
X ∈ B and Y ∈ R

]
= P

[
(X,Y ) ∈ B × R

]
and then use the fact that fX,Y is a joint density to write this as

PX [B] =

∫
B×R

fX,Y dΛ2 =

∫
R2

IB×R fX,Y dΛ2.

Now observe that that IB×R(x, y) = IB(x) and recall that Λ2 = Λ⊗Λ is a product measure,
and use Fubini’s theorem to get

PX [B] =

∫
R2

IB(x) fX,Y (x, y) d(Λ⊗ Λ)(x, y)

=

∫
R

(∫
R
IB(x) fX,Y (x, y) dΛ(y)

)
dΛ(x).

The inner integral here is∫
R
IB(x) fX,Y (x, y) dΛ(y) = IB(x)

∫
R
fX,Y (x, y) dΛ(y) = IB(x) fX(x).

Therefore, we have obtained

PX [B] =

∫
R
IB(x) fX(x) dΛ(x) =

∫
B

fX(x) dΛ(x),

which shows that fX is a density for X.

The claim about the density of Y is proven similarly. �

In summary, Proposition X.4 says that the existence of a joint density for a random
vector guarantees the existence of probability densities for its components (called
marginal densities). The converse does not hold, in general.

Example X.5 (Marginal densities do not guarantee existence of joint density).
Let X be a real valued random variable with continuous distribution and density fX : R→
[0,+∞]. Define a two-dimensional random vector Z = (X,X) whose two components are
equal. Then both components have continuous distribution with density fX . The joint
law PX,X , however, is supported on the line

{
(x, y)

∣∣x = y
}
⊂ R2, which has measure zero

(under the 2-dimensional Lebesgue measure Λ2). From this, it is easy to see that there can
not exist a joint density for Z = (X,X).

Of course not all probability distributions have densities. The following exercise
concerns a very simple probability distribution in the d-dimensional Euclidean space.

Exercise X.2 (Dirac measure on Rd).
The Dirac measure at a point a ∈ Rd is defined by

δa[A] =

{
1 if a ∈ A,
0 otherwise.

(a) Show that δa is a probability measure on (Rd,B(Rd)).
(b) Show that any Borel function f : Rd → R is δa-integrable (meaning that

∫
Rd |f(x)|dδa(x) <

+∞), and compute the integral
∫
Rd f(x) dδa(x).
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Consider now the case d = 1, and fix a ∈ R.

(c) Does the measure δa have a probability density function, i.e., a Borel function g : Rn →
[0,+∞] such that δa[A] =

∫
R IA(x) g(x) dx for all A ∈ B? If yes, find out an expression

for it. If not, explain why.

X.2. Variances and covariances of square integrable random variables

Variances are important statistics of distributions of real valued random variables,
and covariances are important statistics of the joint distributions of pairs of random
variables. In order for these to be well-defined, we need the second moments of the
random variables to exist.

The general notion of p-integrability was introduced in Definition VIII.8. For the
present purposes, we are concerned with the particular case p = 2. A random
variable X ∈ L2(P) is said to be square integrable — we recall that this means the
following finiteness of second moment

E
[
X2
]
< +∞.

By Lemma VIII.10 we have the vector space property of square integrable ran-
dom variables: if X, Y ∈ L2(P) and a, b ∈ R, then also aX + bY ∈ L2(P). By
Lemma VIII.9, square integrability implies in particular integrability, and thus
L2(P) ⊂ L1(P) is a vector subspace in the space of integrable random variables.

The following is a fundamentally important inequality for square integrable random
variables.

Theorem X.6 (Cauchy-Schwarz inequality).
Suppose that X, Y ∈ L2(P) are two square integrable random variables. Then
the product XY is integrable, XY ∈ L1(P), and we have∣∣∣E[XY ] ∣∣∣ ≤√E

[
X2
]
E
[
Y 2
]
. (X.4)

Proof. For any two real numbers x, y ∈ R we have the following inequality

0 ≤ (x− y)2 = x2 − 2xy + y2.

By moving the cross-term to the other side and dividing by two we get xy ≤ 1
2x

2 + 1
2y

2. By

changing the sign of one of the numbers, we get also −xy ≤ 1
2x

2 + 1
2y

2. Together these give∣∣xy∣∣ ≤ 1

2
x2 +

1

2
y2.

Applying the above inequality to the values of the random variables X and Y , we get∣∣X(ω)Y (ω)
∣∣ ≤ 1

2
X(ω)2 +

1

2
Y (ω)2 for all ω ∈ Ω.

Taking the expected values and using monotonicity and linearity, as well as the assumption
X,Y ∈ L2(P), we deduce

E
[∣∣X Y

∣∣] ≤ 1

2
E
[
X2
]

+
1

2
E
[
Y 2
]
< +∞.

This shows that the product XY is indeed integrable, XY ∈ L1(P).
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Next observe that for any t ∈ R and any ω ∈ Ω we have 0 ≤
(
tX(ω) + Y (ω)

)2
. Taking

expected values and using linearity and monotonicity we get that

0 ≤ E
[(
tX + Y

)2]
= E

[
t2X2 + 2tXY + Y 2

]
= t2 E

[
X2
]

+ 2t E
[
XY

]
+ E

[
Y 2
]
.

This is a quadratic polynomial in t which never becomes negative, so it can have at most
one real root, and its discriminant is therefore either negative (if there are no roots) or zero
(if there is one root), i.e.,

4 E
[
XY

]2 − 4 E
[
X2
]
E
[
Y 2
]
≤ 0.

Moving the second term to the other side and dividing by 4 yields

E
[
XY

]2 ≤ E
[
X2
]
E
[
Y 2
]
. (X.5)

Taking the square roots then gives the asserted inequality. �

Corollary X.7 (Square of expected value vs. expected value of square).
If X ∈ L2(P), then we have also X ∈ L1(P) and

E
[
X
]2 ≤ E

[
X2
]
. (X.6)

Proof. Note that the constant random variable 1 is square integrable, 1 ∈ L2(P). The asserted
inequality is derived by applying the squared Cauchy-Schwarz inequality (X.5) to X and 1
as follows

E
[
X
]2

= E
[
X · 1

]2 (X.5)

≤ E
[
X2
]
E
[
12
]︸ ︷︷ ︸

=1

= E
[
X2
]
.

�

Suppose now that X, Y ∈ L2(P) are square integrable random variables. Since
we have L2(P) ⊂ L1(P) (Lemma VIII.9) the expected values E[X] and E[Y ] are
well-defined and finite. Moreover, since adding constants does not affect L2(P)
membership (Corollary VIII.11), we have also X − E[X] ∈ L2(P) and Y − E[Y ] ∈
L2(P). By Theorem X.6 then, we have (X − E[X])(Y − E[Y ]) ∈ L1(P). Therefore
the following definition makes sense.

Definition X.8 (Variance and covariance).
The variance of a square integrable random variable X ∈ L2(P) is

Var(X) = E
[(
X − E[X]

)2
]
.

The covariance of two square integrable random variables X, Y ∈ L2(P) is

Cov(X, Y ) = E
[(
X − E[X]

) (
Y − E[Y ]

)]
.

Proposition X.9 (Formulas for variance and covariance).
For X ∈ L2(P), we have

Var(X) = E
[
X2
]
− E
[
X
]2
. (X.7)

For X, Y ∈ L2(P), we have

Cov(X, Y ) = E
[
X Y

]
− E
[
X
]
E
[
Y
]
. (X.8)
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Proof. The first formula (X.7) is in fact a special case of the second (with Y = X), so it is enough
to prove (X.8). Denote mX = E[X] and mY = E[Y ]. Then calculate, by expanding and
using linearity of expected values,

Cov(X,Y ) = E
[(
X −mX

) (
Y −mY

)]
= E

[
XY −X mY −mX Y + mX mY

]
= E

[
XY

]
− E[X]︸︷︷︸

=mX

mY −mX E[Y ]︸︷︷︸
=mY

+ mX mY

= E
[
XY

]
−mX mY .

This is the asserted formula. �

X.3. Independence and products

Equivalent conditions for independence of random numbers

Let (Ω,F ,P) be a probability space, and X, Y : Ω → R two real valued random
variables on it. Denote the laws of X and Y by PX and PY , respectively, and the
joint law of X and Y by PX,Y .

Theorem X.10 (Independence in terms of laws).
For two real valued random variables X, Y : Ω → R, the following conditions
are equivalent:

(i) X and Y are independent (i.e., X ⊥⊥ Y )
(ii) PX,Y = PX ⊗ PY

(iii) for all x, y ∈ R we have P
[
X ≤ x, Y ≤ y

]
= P

[
X ≤ x

]
P
[
Y ≤ y

]
.

If moreover X and Y have a joint density fX,Y : R2 → [0,+∞], then (i), (ii),
and (iii) are also equivalent to

(iv) X and Y have densities fX and fY , respectively, such that fX,Y (x, y) =
fX(x) fY (y) for Λ2-almost all (x, y).

In the proof, we repeatedly use the characterization of the product measure based
on Lemma IX.8: if P and Q are two probability measures on R, then P ⊗Q is the
unique measure on R2 such that

(P ⊗Q)[B1 ×B2] = P [B1] Q[B2]

for all B1, B2 ∈ B.

Proof of Theorem X.10: The equivalence “(i) ⇔ (iii)” was already proven in Corollary V.6. We
prove the implications “(i) ⇒ (ii)” and “(ii) ⇒ (iii)” to establish the first assertion about
the equivalence of (i), (ii), and (iii). Then, under the additional hypothesis that X and Y
have a joint density fX,Y , we prove the implication “(ii) ⇒ (iv)” and leave it as an exercise
to prove “(iv) ⇒ (iii)”. The second assertion follows.

proof of “ (i) ⇔ (iii)”: Corollary V.6.
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proof of “ (i) ⇒ (ii)”: Suppose that we have independence X ⊥⊥ Y . Let B1, B2 ∈ B. Then we
have X−1(B1) ∈ σ(X) and Y −1(B2) ∈ σ(Y ), so independence can be used to calculate

PX,Y [B1 ×B2] = P
[
X−1(B1) ∩ Y −1(B2)

]
= P

[
X−1(B1)

]
P
[
Y −1(B2)

]
(because X ⊥⊥ Y )

= PX [B1] PY [B2].

By Lemma IX.8, the product measure PX⊗PY is the unique measure for which this formula
holds, so we conclude that indeed PX,Y = PX ⊗ PY .

proof of “ (ii) ⇒ (iii)”: Suppose that we have PX,Y = PX ⊗ PY . Let x, y ∈ R, and consider
B1 = (−∞, x] and B2 = (−∞, y]. Then we have

P
[
X ≤ x, Y ≤ y

]
= PX,Y

[
B1 ×B2

]
= PX

[
B1

]
PY
[
B2

]
(since PX,Y = PX ⊗ PY )

= P
[
X ≤ x

]
P
[
Y ≤ y

]
,

which is what we needed to show.

proof of “ (iv) ⇒ (iii)” assuming joint density: Exercise.

proof of “ (ii) ⇒ (iv)” assuming joint density: Suppose that PX,Y = PX ⊗ PY , and assume more-
over that there exists a joint density fX,Y : R2 → [0,+∞) for X and Y . Recall from
Proposition X.4 that X and Y then have densities

fX(x) =

∫
R
fX,Y (x, y) dΛ(y)

fY (y) =

∫
R
fX,Y (x, y) dΛ(x).

Define a new measure µ on R2 by the formula

µ[A] :=

∫
A

fX(x) fY (y) dΛ2(x, y) for all A ∈ B(R2) = B ⊗B.

By Fubini’s theorem with the positive measurable function (x, y) 7→ fX(x) fY (y) in this
integral, for any B1, B2 ∈ B we get

µ[B1 ×B2] =

∫
B1×B2

fX(x) fY (y) dΛ2(x, y)

=

∫
B2

fY (y)
(∫

B1

fX(x) dΛ(x)︸ ︷︷ ︸
=PX [B1]

)
dΛ(y) (Fubini)

= PX [B1]

∫
B2

fY (y) dΛ(y)

= PX [B1] PY [B2].

Again, by Lemma IX.8 the product measure PX ⊗ PY is the only measure for which this
formula holds, so we get µ = PX ⊗ PY . But by assumption also PX,Y = PX ⊗ PY . This
shows that PX,Y = µ, which by the construction of µ shows that (x, y) 7→ fX(x) fY (y) is
a joint density of X and Y . Since also fX,Y is a joint density of X and Y , we must have
fX,Y (x, y) = fX(x) fY (y) for Λ2-almost all points (x, y) ∈ R2. �

Exercise X.3 (Disintegration of independent random variables).
Let X and Y be independent real valued random variables with laws PX and PY . Let
h : R2 → R be Borel function.

(a) Prove that

E
[
|h(X,Y )|

]
=

∫
R
E
[
|h(x, Y )|

]
dPX(x) =

∫
R
E
[
|h(X, y)|

]
dPY (y).
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(b) Prove that when E
[
|h(X,Y )|

]
<∞,

E
[
h(X,Y )

]
=

∫
R
E
[
h(x, Y )

]
dPX(x) =

∫
R
E
[
h(X, y)

]
dPY (y).

Hint: You may start from (X.1). Then keep in mind product measure and Fubini’s theorem.

Exercise X.4 (Product of two uniformly distributed numbers).
Let U1 and U2 be independent uniformly distributed random variables on [0, 1], so that both
have the function I[0,1] as their probability density function. Define X = U1 U2.

(a) Calculate the cumulative distribution function FX(x) = P
[
X ≤ x

]
.

(b) What is the distribution PX [B] = P
[
X ∈ B

]
of X?

(c) Does X have a probability density function? If yes, find out an expression for it. If not,
explain why.

Independence and expected value of product

Theorem X.11 (Expected value of product of independent random variables).
Suppose that X, Y : Ω → R are two independent random variables which are
integrable, X, Y ∈ L1(P). Then also their product is integrable, XY ∈ L1(P),
and we have

E
[
XY

]
= E

[
X
]
E
[
Y
]
. (X.9)

Proof. We prove the statement using the “standard machine”, i.e., successively for (1): indicators,
(2): simple random variables, (3): non-negative random variables, and (4): all integrable
random variables.

step 1 (indicator random variables): If X = IA and Y = IB , then XY = IA∩B . In this case we
have

E
[
XY

]
= E

[
IA∩B

]
= P[A ∩B].

and

E[X] E[Y ] = E[IA] E[IB ] = P[A] P[B].

Of course A = X−1({1}) and B = Y −1({1}), so by the assumed independence of X and
Y , we have P[A ∩ B] = P[A] P[B]. This shows that (X.9) holds for independent indicator
random variables.

step 2 (simple random variables): Suppose that X,Y ∈ sF are simple random variables. Write

X =

n∑
i=1

ai IAi and Y =

m∑
j=1

bj IBj

where a1, . . . , an are the distinct non-zero values of X, and b1, . . . , bm are the distinct non-
zero values of Y , and Ai = X−1({ai}) and Bj = Y −1({bj}). Independence of X and Y
shows that Ai ⊥⊥ Bj , and thus also IAi ⊥⊥ IBj . Now calculate, using linearity and the result
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of step 0,

E
[
XY

]
= E

[ n∑
i=1

m∑
j=1

ai bj IAi IBj
]

=

n∑
i=1

m∑
j=1

aibj E
[
IAiIBj

]
=

n∑
i=1

m∑
j=1

aibj E[IAi ] E[IBj ] (by step 1)

= E
[ n∑
i=1

aiIAi
]
E
[ m∑
j=1

bjIBj
]

= E[X] E[Y ].

This shows that (X.9) holds for independent simple random variables.

step 3 (non-negative random variables): Assume that X and Y are non-negative random variables.
Let ςn : [0,+∞] → [0, n] be the n:th staircase function, and define the simple functions
Xn = ςn ◦X and Yn = ςn ◦ Y . Then independence of X and Y implies the independence of
Xn and Yn also, by Exercise V.2. Moreover, by construction we have the pointwise increasing
approximations, Xn ↑ X and Yn ↑ Y , and also XnYn ↑ XY . Monotone convergence theorem
implies that as n→∞, we have E[Xn] ↑ E[X], E[Yn] ↑ E[Y ], and E[Xn Yn] ↑ E[XY ]. On the
other hand, by step 2, we have

E
[
Xn Yn

]
= E[Xn] E[Yn].

In the limit n→∞ we now get (X.9) for independent non-negative random variables.

step 4 (integrable random variables): Consider finally general integrable random variables X,Y ∈
L1(P). Split these to positive and negative parts, X = X+ − X− and Y = Y+ − Y−,
with X+, X−, Y+, Y− non-negative. We have X+ = max {X, 0} etc., so by Exercise V.2,
independence of X and Y implies also the independences X+ ⊥⊥ Y+, X+ ⊥⊥ Y−, X− ⊥⊥ Y+,
and X− ⊥⊥ Y−. Then we calculate

E
[
X Y

]
= E

[(
X+ −X−

) (
Y+ − Y−

)]
= E

[
X+Y+

]
− E

[
X+Y−

]
− E

[
X−Y+

]
+ E

[
X−Y−

]
= E[X+]E[Y+]− E[X+]E[Y−]− E[X−]E[Y+] + E[X−]E[Y−] (by step 3)

=
(
E[X+]− E[X−]

) (
E[Y+]− E[Y−]

)
= E[X] E[Y ].

This finishes the proof. �

Proposition X.12 (Variance is additive for independent random variables).
If X, Y ∈ L2(P) are independent, then we have

Cov(X, Y ) = 0 (X.10)

and

Var(X + Y ) = Var(X) + Var(Y ) (X.11)

Proof. By independence and Theorem X.11, we have E
[
XY

]
= E[X]E[Y ]. Using formula (X.8)

then immediately shows that the covariance vanishes, Cov(X,Y ) = 0.

Then calculate the variance of X + Y using formula (X.7),

Var(X + Y ) = E
[
(X + Y )2

]
− E

[
X + Y

]2
= E

[
X2 + 2XY + Y 2

]
−
(
E[X] + E[Y ]

)2
= E[X2] + 2 E[XY ] + E[Y 2]− E[X]2 − 2 E[X] E[Y ]− E[Y ]2.
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Using again the consequence E
[
XY

]
= E[X]E[Y ] of independence, we have a cancellation,

and we get

Var(X + Y ) = E[X2] + E[Y 2]− E[X]2 − E[Y ]2.

This leads to (X.11), if we just recall formula (X.7) for the variances of X and Y . �

Exercise X.5 (Additivity of variance for independent random variables).
Suppose that X1, . . . , Xn are independent. Show that then Var(

∑n
k=1Xk) =

∑n
k=1 Var(Xk).

Show also, by finding a counterexample, that the formula does not hold in general without
the assumption of independence.

X.4. A formula for the expected value

We finish this lecture by a straightforward, yet often practical use of the Fubini’s
theorem in a probabilistic setup. It gives a formula for the expected value of a
non-negative random variable in terms of its cumulative distribution function.

Proposition X.13 (Expected value in terms of c.d.f.).
Let X : Ω → [0,+∞) be a non-negative random number. Let FX : R → [0, 1]
be its cumulative distribution function

FX(x) = P
[
X ≤ x

]
.

Then we have

E
[
X
]

=

∫ ∞
0

(
1− FX(x)

)
dx.

Proof. Consider the product space

Ω× [0,+∞),

equipped with the product σ-algebra F ⊗B([0,+∞)) and with the product measure P⊗Λ
of the probability measure P on the sample space Ω and the Lebesgue measure Λ restricted
to the non-negative real axis [0,+∞).

Define a subset

A :=
{

(ω, t)
∣∣∣ t < X(ω)

}
⊂ Ω× [0,+∞).
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This subset is measurable2, A ∈ F ⊗B([0,+∞)), so its indicator is a non-negative measur-

able function IA ∈ m
(
F ⊗B([0,+∞))

)+
concretely given by

IA(ω, t) =

{
1 if t < X(ω)

0 if t ≥ X(ω).

By Fubini’s theorem, Theorem IX.9, it does not matter in which order we integrate the two
variables of this function:∫ ∞

0

(∫
Ω

IA(ω, t) dP(ω)
)

dt =

∫
Ω

(∫ ∞
0

IA(ω, t) dt
)

dP(ω). (X.12)

The rest of the proof consists of calculating both of the above expressions separately.

Let us start from the left-hand side of (X.12). The inner integal is calculated as∫
Ω

IA(ω, t) dP(ω) =

∫
Ω

I{t<X} dP = P
[
t < X

]
= 1− P

[
t ≥ X

]
= 1− F (t).

The double integral on the left-hand side of (X.12) is therefore∫ ∞
0

(
1− F (t)

)
dt. (X.13)

Consider then the right-hand side of (X.12). The inner integal is calculated as∫ ∞
0

IA(ω, t) dt =

∫ ∞
0

I[0,X(ω)) dt = Λ
[
[0, X(ω))

]
= X(ω).

The double integral on the right-hand side of (X.12) is therefore∫
Ω

X(ω) dP(ω) = E
[
X
]
. (X.14)

By (X.12), the results (X.13) and (X.14) are equal, which proves the assertion. �

Variations of the idea above are very commonly used. As another example of the
same idea, the following two exercises characterize the p-integrability of a non-
negative random variable using its cumulative distribution function.

Exercise X.6 (Moments with cumulative distribution function).
Let X be a non-negative random variable, and let F (x) = P[X ≤ x] be its cumulative
distribution function. Prove that for p ≥ 1 we have

E
[
Xp
]

= p

∫ ∞
0

tp−1
(
1− F (t)

)
dt

Hint: Try using as few of the following hints as possible:

(1) Find a function f : [0,∞)→ [0,∞) such that for any x ≥ 0 one has xp =
∫ x
0
f(t) dt.

(2) Then we have X(ω)p =
∫X(ω)

0
f(t) dt for any ω ∈ Ω.

2 Briefly, the measurability follows from writing A as the preimage A = g−1
(
(0,+∞)

)
of the

Borel set (0,+∞) under the function g : Ω × [0,+∞) → R defined as g = X ◦ pr1 − pr2, which is
F ⊗B-measurable. Let us, however, spell out the details below.

Observe first that

(ω, t) 7→ ω and (ω, t) 7→ t

are measurable with respect to the product σ-algebra F⊗B directly according to Definition IX.2 —
they are exactly the projections pr1 and pr2 from Ω×[0,+∞) to the two factors. Further composing
the former of these with the measurable function X : Ω → [0,+∞) gives that (ω, t) 7→ X(ω) is
also F ⊗B-measurable. Then as a linear combination of these measurable functions, the function
given by g(ω, t) = X(ω)− t is F ⊗B-measurable. Now we can recognize

A =
{

(ω, t)
∣∣∣ X(ω) > t

}
=
{

(ω, t)
∣∣∣ g(ω, t) > 0

}
= g−1

(
(0,+∞)

)
.
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(3) Now write the expected value of Xp as

E
[
Xp] = E

[ ∫ X(ω)

0

f(t) dt

]
,

and try to apply Fubini’s theorem — but can you handle the random upper limit of the integral?
(4) Note that you could have alternatively written xp =

∫ x
0
f(t) dt =

∫∞
0

I[0,x)(t) f(t) dt, and the
upper limit would not have posed any problems.

Exercise X.7 (Asymptotics of c.d.f. and p-integrability).
For a given p ≥ 1, we say that a non-negative random variable X is p-integrable and write
X ∈ Lp if and only if the random variable |X|p is integrable.

Assume that for some α > 0 the cumulative distribution function F of X satisfies

lim
x→∞

(
xα
(
1− F (x)

))
= c > 0.

Prove that X ∈ Lp if and only if p < α.
Hint: Use the previous exercise.





Lecture XI

Probabilistic notions of convergence

Very often in stochastics, we want to assert that some sequence of random variables
tends to a limit in a suitable probabilistic sense.

Some examples of such contexts could be:

• convergence of averages X1+···+Xn
n

as n→∞
• convergence of states Xt of a stochastic process as time t increases describes

the long term behavior of the process
• limits of various random quantities as some parameter of the model tends

to an idealized value, e.g.,
– size of physical system→∞ in thermodynamics and statistical physics
– size of input data →∞ in randomized algorithms
– signal to noise ratio →∞ in communications.

In this lecture and the next we will treat two very famous and important convergence
results concerning sums of independent identically distributed real valued random
variables X1, X2, . . .:

(LLN): “Laws of large numbers”: Under what assumptions and in which
sense do the averages tend to the expected value

1

n

n∑
j=1

Xj −→ E[Xi] ?

(CLT): “Central limit theorems”: Under what assumptions and in which
sense do we have the normal approximation

1√
n

n∑
j=1

(
Xj − E[Xj]

)
−→ N(0, σ2) ?

XI.1. Notions of convergence in stochastics

For the rest of this section, assume that

X1, X2, X3, . . . and X are real-valued random variables.

Let us then introduce two important probabilistic notions of convergence.

Convergence almost surely

Under any possible outcome ω ∈ Ω, the realized values X1(ω), X2(ω), . . . of the
random variables form a sequence of real numbers. Therefore for a fixed ω, the

107
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meaning of the limit

lim
n→∞

Xn(ω) = X(ω) (XI.1)

is familiar from undergraduate calculus. Now recall that we can form the event

E =
{
ω ∈ Ω

∣∣∣ lim
n→∞

Xn(ω) = X(ω)
}

(XI.2)

consisting of those outcomes ω for which we have the limit (XI.1).

Pointwise convergence Xn → X means that (XI.1) holds for all outcomes, i.e.,
that E = Ω. As pointed out already in Example O.2, however, this is often too
much to ask for. Instead, it is meaningful to ask about the probability P[E] of the
event (XI.2). If this event occurs almost surely, then we talk about almost sure
limit.

Definition XI.1 (Convergence almost surely).
We say that Xn tends to X almost surely as n→∞, if

P
[

lim
n→∞

Xn = X
]

= 1.

In this case we denote Xn
a.s.−→ X.

This probabilistic notion of a limit should be intuitively easy to understand —
we are giving up pointwise convergence only on an exceptional event Ec which has
probability zero. Although we have thus relaxed the extremely stringent requirement
of pointwise convergence, this is still a very strong notion of convergence.

Convergence in probability

Occasionally the notion of almost sure convergence is still too much to hope for.
The following notion of convergence is less restrictive.

Definition XI.2 (Convergence in probability).
We say that Xn tends to X in probability as n→∞, if for all ε > 0 we have

lim
n→∞

P
[
|Xn −X| < ε

]
= 1. (XI.3)

In this case we denote Xn
P−→ X.

Remark XI.3. The limit (XI.3) is equivalent to the following limit of probabilities of complemen-
tary events

lim
n→∞

P
[
|Xn −X| ≥ ε

]
= 0. (XI.4)

Because there exist many techniques to upper bound probabilities, this latter formulation
is used more often in practice.

Comparison of the notions of convergence

To understand these notions and to appreciate their differences, it is instructive to
unravel the definition of the limit (XI.1) and the limit in the above definition, and
compare the notions:
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pointwise convergence: Xn → X as n→∞ if

∀ω ∈ Ω ∀ε > 0 ∃n0(ω, ε) ∈ N ∀n > n0(ω, ε) :

|Xn(ω)−X(ω)| < ε.

convergence almost surely: Xn
a.s.−→ X as n→∞ if

P
[{
ω ∈ Ω

∣∣∣ ∀ε > 0 ∃n0(ω, ε) ∈ N ∀n > n0(ω, ε) :

|Xn(ω)−X(ω)| < ε
}]

= 1.

convergence in probability: Xn
P−→ X as n→∞ if

∀ε > 0 ∀δ > 0 ∃n0(ε, δ) ∈ N ∀n > n0(ε, δ) :

P
[{

ω ∈ Ω
∣∣∣ |Xn(ω)−X(ω)| < ε

}]
> 1− δ.

We leave it as an exercise to the reader to verify that convergence almost surely is
indeed stronger than convergence in probability.

Exercise XI.1 (Convergence almost surely implies convergence in probability).

Let X1, X2, . . . be real valued random variables such that Xn
a.s.−→ X. Show that Xn

P−→ X.

The converse is not true in general: convergence in probability does not imply
almost sure convergence. However, it does imply almost sure convergence along
some subsequence, as the following exercise shows.

Exercise XI.2 (Convergence in probability implies convergence a.s. along a subsequence).

Assume that X1, X2, . . . are real valued random variables and Xn
P−→ X. Let (ak)k∈N and

(bk)k∈N be two sequences of positive real numbers such that ak ↓ 0 and
∑∞
k=1 bk < +∞ —

for example ak = 1
k and bk = 2−k.

(a) Show that there exists (nk)k∈N so that nk ∈ N for all k and n1 < n2 < · · · and

P
[
|Xnk −X| ≥ ak

]
≤ bk.

(b) With the sequence (nk)k∈N chosen as in part (a), show that

P
[
|Xnk −X| ≥ ak for infinitely many k

]
= 0.

(c) With the sequence (nk)k∈N chosen as in part (a), show that Xnk
a.s.−→ X as k →∞.

Hint: Recall a suitable Borel-Cantelli lemma.

Most notions of convergence behave well under continuous functions. The following
exercise concerns the case of convergence in probability.

Exercise XI.3 (Continuous transformations and convergence in probability).
Let X,X1, X2, . . . be real-valued random variables defined on a probability space (Ω,F ,P).

Suppose that Xn
P−→ X.

(a) For any uniformly continuous1 h : R→ R, show that we have h(Xn)
P−→ h(X).

1The conclusion is actually valid for any continuous h : R→ R. Can you prove that, too?
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(b) For any bounded2 uniformly continuous h : R→ R, show that we have

E
[
|h(Xn)− h(X)|

]
→ 0 and E

[
h(Xn)

]
→ E

[
h(X)

]
.

XI.2. Weak and strong laws of large numbers

Having introduced the notions of convergence of random variables, we now return
to laws of large numbers. In the rest of this lecture we will prove two versions of
laws of large numbers, which differ primarily by the notion of convergence used.

Theorem XI.4 (Weak law of large numbers with bounded second moments).
Let X1, X2, . . . be independent real valued random variables. Assume that for
some m ∈ R and K2 < +∞ we have

E
[
Xj

]
= m and E

[
X2
j

]
≤ K2 for all j ∈ N.

Then we have
1

n

(
X1 + · · ·+Xn

) P−→ m as n→∞.

Theorem XI.5 (Strong law of large numbers with bounded fourth moments).
Let X1, X2, . . . be independent real valued random variables. Assume that for
some m ∈ R and K4 < +∞ we have

E
[
Xj

]
= m and E

[
X4
j

]
≤ K4 for all j ∈ N.

Then we have
1

n

(
X1 + · · ·+Xn

) a.s.−→ m as n→∞.

Theorem XI.4 is called a weak law of large numbers , because it asserts the conver-
gence of the averages in the weaker sense of convergence in probability. Correspond-
ingly, Theorem XI.5 is called a strong law of large numbers , because it asserts the
convergence of the averages in the stronger sense of convergence almost surely. In
both statements, we have chosen to make assumptions on boundedness of suitable
moments, in order to simplify their proofs. Versions of weak and strong laws of
large numbers could be made with various different assumptions. In particular, in
Section XI.5 we present the statement of one of the most general formulations of
such results: Kolmogorov’s strong law of large numbers. Such improvements are
occasionally important, but the main objectives for the present lecture are simply
to appreciate the differences in the notions of convergence, and to get a flavor of
techniques that are used in proving laws of large numbers.

The following exercise requires some calculations, but it illustrates that weak and
strong laws of large numbers are valid under different assumptions.

Exercise XI.4 (A subtle sequence of averages).
Let X3, X4, . . . be independent random variables such that for k = 3, 4, . . . we have

P
[
Xk = 0

]
= 1− 1

k log(k)
and P

[
Xk = +k

]
=

1

2k log(k)
= P

[
Xk = −k

]
.

2 The conclusions are not valid without the assumption of boundedness. Can you give a
counterexample in that case?
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(a) Calculate the expected value and variance of Xk.
(b) Show that we have

∞∑
j=3

1

j log(j)
=∞ and

1

n2

n∑
j=3

j

log(j)
−→ 0 as n→∞.

Hint: Recall that the integral function of x 7→ 1
x log(x)

is x 7→ log(log(x)). Consider breaking

the second sum into two pieces, j ≤ bn and j > bn with a judiciously chosen bn, so that you can

easily estimate the pieces.

For n ≥ 3, define the average

An =
1

n− 2

n∑
k=3

Xk.

(c) Does the sequence (An)n=3,4,... of averages converge almost surely?
(d) Does the sequence (An)n=3,4,... of averages converge in probability?

Hint: For this part you can use Chebyshev’s inequality presented below, in Corollary XI.7.

XI.3. Proof of the weak law of large numbers

The weak law of large numbers, Theorem XI.4, follows easily from inequalities of
Markov and Chebyshev, which we present below.

Markov’s inequality and Chebyshev’s inequality

While almost obvious, the following observation is extremely useful.

Lemma XI.6 (Markov’s inequality).
If X : Ω→ R is a random variable, then for any a > 0 we have

P
[
|X| ≥ a

]
≤ 1

a
E
[
|X|
]
. (XI.5)

Proof. Let a > 0 and define the event

E =
{
ω ∈ Ω

∣∣∣ |X(ω)| ≥ a
}

= X−1
(
(−a, a)

c
).

For all ω ∈ Ω we then have

|X(ω)| ≥ a IE(ω),

so by monotonicity of expected value we get

E
[
|X|
]
≥ E

[
a IE

]
= aP

[
E
]
.

Dividing this by a gives the asserted inequality P
[
E
]
≤ 1

a E
[
|X|
]
. �

Markov’s inequality leads to the following upper bound for the probability of fluctu-
ations of a random variable X from its mean by more than a multiple of its standard
deviation.

Corollary XI.7 (Chebyshev’s inequality).
Suppose that X ∈ L2(P). Denote m := E[X] and s2 := Var(X) = E

[
(X −m)2

]
.



112 XI. PROBABILISTIC NOTIONS OF CONVERGENCE

Then for any c > 0 we have

P
[
|X −m| ≥ c

]
≤ s2

c2
. (XI.6)

Proof. Let Y = (X −m)2, so E
[
|Y |
]

= s2. Note that the event of interest can be written as

E =
{
ω ∈ Ω

∣∣∣ |X(ω)−m| ≥ c
}

=
{
ω ∈ Ω

∣∣∣ |Y (ω)| ≥ c2
}
.

The assertion follows by applying Markov’s inequality (XI.5) to Y with a = c2:

P
[
|Y | ≥ c2

]
≤ 1

c2
E
[
|Y |
]

=
s2

c2
.

�

Proving the weak law of large numbers with Chebyshev’s inequality

With Chebyshev’s inequality, it is easy to prove a weak law of large numbers.

Proof of Theorem XI.4. Let Sn =
∑n
j=1Xj and Yn = 1

n Sn. We want to show Yn
P−→ m. Note

that by linearity of expected value we have

E
[
Sn
]

=

n∑
j=1

E
[
Xj

]︸ ︷︷ ︸
=m

= nm and E
[
Yn
]

=
1

n
E
[
Sn
]

=
1

n
nm = m.

Note also that by assumption E
[
X2
j

]
≤ K2 we get a bound on variance,

Var(Xj) = E
[
X2
j

]
− E

[
Xj

]2
≤ E

[
X2
j

]
≤ K2.

By independence we have (see Proposition X.12 and Exercise X.5)

Var(Sn) =

n∑
j=1

Var(Xj)︸ ︷︷ ︸
≤K2

≤ nK2 and Var(Yn) = Var
( 1

n
Sn
)

=
1

n2
Var(Sn) ≤ K2

n
.

Therefore, applying Chebyshev’s inequality to Yn, we get for any ε > 0

P
[
|Yn −m| ≥ ε

]
≤ Var(Yn)

ε2
≤ K2

n ε2
−→
n→∞

0,

which shows the convergence in probability Yn
P−→ m. �

The ideas in the weak law of large numbers can be used to prove Weierstrass’
approximation theorem, which states that polynomials are dense in the space of
continuous functions on a compact interval, with respect to the uniform norm ‖ · ‖∞
(see Example B.10). The following exercise has the proof broken down to six easy
steps.

Exercise XI.5 (Weierstrass’ approximation theorem).
Let U1, U2, . . . be independent random variables with uniform distribution on [0, 1]. For

p ∈ [0, 1], consider the events E
(p)
1 , E

(p)
2 , . . . defined by E

(p)
j =

{
Uj ≤ p

}
.

(a) Define S
(p)
n =

∑n
j=1 IE(p)

j
. Calculate the expected value E

[
S

(p)
n

]
, and show that the

variance is Var(S
(p)
n ) ≤ n

4 .

(b) Show that for any δ > 0 we have P
[∣∣S(p)

n /n− p
∣∣ ≥ δ] ≤ 1

4nδ2 .

Let f : [0, 1]→ R be some function.

(c) Show that Bn(p) := E
[
f(S

(p)
n /n)

]
is a polynomial in p.
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(d) Show that
∣∣Bn(p)− f(p)

∣∣ ≤ E
[ ∣∣f(S

(p)
n /n)− f(p)

∣∣ ].
Suppose that f : [0, 1] → R is continuous. By compactness of [0, 1], we know the following.
The function f is bounded: there exists a K < +∞ such that |f(p)| ≤ K for all p ∈ [0, 1].
Also, f is uniformly continuous: for all ε > 0 there exists a δ > 0 such that |f(p)−f(q)| < ε
whenever |p− q| < δ.

(e) Let ε > 0 and choose δ > 0 by uniform continuity of f as above. Consider the event

A
(p)
n =

{∣∣S(p)
n /n− p

∣∣ ≥ δ}. Show that we have∣∣f(S(p)
n /n)− f(p)

∣∣ ≤ 2K I
A

(p)
n

+ ε I
Ω\A(p)

n
.

(f) Prove the Weierstrass’ approximation theorem: for any ε > 0 there exists a polyno-
mial Bn such that

∣∣f(p)−Bn(p)
∣∣ < 2ε for all p ∈ [0, 1].

XI.4. Proof of the strong law of large numbers

Proof of Theorem XI.5. We first prove the statement assuming m = 0, and then reduce the general
case to this particular case by appropriately centering the random variables.

the case m = 0: Assume m = 0. Denote

Sn =

n∑
j=1

Xj .

The assertion of the strong law of large numbers is that the event

E :=

{
ω ∈ Ω

∣∣∣∣ lim
n→∞

Sn(ω)

n
= 0

}
occurs almost surely. Instead of considering E directly, however, we will consider another
event

E′ :=

{
ω ∈ Ω

∣∣∣∣∣
∞∑
n=1

(Sn(ω)

n

)4

< +∞

}
,

and show that it is almost sure, and that it implies the original event E.

To see that the occurrence of E′ implies the occurrence of E, note that by definition of E′

we have
∞∑
n=1

(Sn(ω)

n

)4

< +∞ for all ω ∈ E′.

In particular, the terms of this convergent sum must tend to zero,(Sn(ω)

n

)4

−→
n→∞

0 for all ω ∈ E′.

Applying furthermore the continuous function t 7→ t1/4 to this limit, we conclude that

Sn(ω)

n
−→
n→∞

0 for all ω ∈ E′.

This proves that E′ ⊂ E, establishing the desired implication.

To prove that E′ occurs almost surely, the main body of work consists of showing that
∞∑
n=1

E

[(Sn
n

)4
]
< +∞. (XI.7)

Once this is done, Lemmas VIII.6 and VIII.5 imply that we have
∑∞
n=1

(
Sn
n

)4
< +∞ almost

surely, i.e., that P[E′] = 1. This will finish the proof, because we then have

1 = P[E′] ≤ P[E] since E′ ⊂ E.
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It remains to prove (XI.7). Note first of all that since Xj ∈ L4(P) for all j by assumption,
Lemma VIII.10 shows that also Sn = X1 + · · · + Xn ∈ L4(P). We will compute the fourth
moment of Sn by expanding the multinomial

S4
n =

(
X1 + · · ·+Xn

)4
=

∑
1≤i≤n

X4
i +

∑
1≤i,j≤n
i 6=j

4!

3! 1!
X3
i Xj +

1

2!

∑
1≤i,j≤n
i 6=j

4!

2!2
X2
i X

2
j (XI.8)

+
1

2!

∑
1≤i,j,k≤n
i,j,k different

4!

2! 1!2
X2
i Xj Xk +

1

4!

∑
1≤i,j,k,`≤n
i,j,k,` different

4!

1!4
XiXj XkX`.

We want to take expected values of this expansion, so let us make some observations regard-
ing that. By assumption we have Xi ∈ L4(P) for any i ∈ N, so from Lemma VIII.9 we get
finiteness of lower order moments E

[
|Xi|

]
< ∞, E

[
|Xi|2

]
< ∞, and E

[
|Xi|3

]
< ∞ as well.

For any i 6= j the random variables Xi and Xj were assumed independent, so we have also
the independence of X3

i ∈ L1(P) and Xj ∈ L1(P) (recall Exercise V.2). By Theorem X.11,
we then get

E
[
X3
i Xj

]
= E

[
X3
i

]
E
[
Xj

]︸ ︷︷ ︸
=m=0

= 0.

Similarly one argues that

E
[
X2
i Xj Xk

]
= E

[
X2
i

]
E
[
Xj

]︸ ︷︷ ︸
=0

E
[
Xk

]︸ ︷︷ ︸
=0

= 0

and

E
[
XiXj XkX`

]
= E

[
Xi

]︸ ︷︷ ︸
=0

E
[
Xj

]︸ ︷︷ ︸
=0

E
[
Xk

]︸ ︷︷ ︸
=0

E
[
X`

]︸ ︷︷ ︸
=0

= 0.

Only two terms of the expansion (XI.8) of the fourth power thus contribute to the expected
value,

E
[
S4
n

]
=

∑
1≤i≤n

E
[
X4
i

]
+

1

2!

∑
1≤i,j≤n
i 6=j

4!

2!2
E
[
X2
i X

2
j

]
.

For the first contribution we have the bound E
[
X4
i

]
≤ K4 by assumption, and for the second

we use Cauchy-Schwarz inequality

E
[
X2
i X

2
j

]
≤
√
E
[
X4
i

]
E
[
X4
j

]
≤
√
K4K4 = K4.

This gives

E
[
S4
n

]
≤

∑
1≤i≤n

K4 +
1

2!

∑
1≤i,j≤n
i6=j

4!

2!2
K4 = nK4 + n(n− 1)

1

2!

4!

2!2
K4

= nK4 + (3n2 − 3n)K4

≤ 3n2K4.

With this estimate we get

∞∑
n=1

E
[(Sn

n

)4]
=

∞∑
n=1

1

n4
E
[
S4
n

]
≤
∞∑
n=1

3n2K4

n4
= 3K4

∞∑
n=1

1

n2
< +∞.

This is exactly (XI.7), and the proof is complete for the case m = 0.

the general case: Finally, let us reduce the general case, E[Xj ] = m ∈ R for all j ∈ N, to the case

above. We define X̃j = Xj −m. This is a “centered” version of the original term Xj , i.e., it
has vanishing expected value

E
[
X̃j

]
= 0.
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If we can apply the previously proven centered case of the strong law of large numbers, we
get

1

n

n∑
j=1

X̃j
a.s.−→ 0.

But since X̃j = Xj −m, this translates to

1

n

n∑
j=1

Xj −m
a.s.−→ 0,

which in turn is equivalent to the desired almost sure convergence

1

n

n∑
j=1

Xj
a.s.−→ m.

The proof will thus be complete if we are permitted to apply the previous case to the centered

random variables X̃j . The independence of X̃1, X̃2, . . . follows from the assumed indepen-
dence of X1, X2, . . . (as in Exercise V.2(a)). To derive the boundedness of the fourth mo-

ments of of X̃1, X̃2, . . . from the assumed boundedness of the fourth moments of X1, X2, . . .,
we use (VIII.3):

E
[
|X̃j |4

]
= E

[
|Xj −m|4

]
≤ 24

(
E
[
|X|4

]
+ E

[
m4
])
≤ 16

(
K4 + m4

)
.

We see that there exists a constant K̃4 < +∞ (given by the last expression above) such that

E
[
X̃4
j

]
≤ K̃4 for all j ∈ N. This finishes the proof. �

XI.5. Kolmogorov’s strong law of large numbers

Our laws of large numbers, Theorems XI.4 and XI.5, were formulated with assump-
tions of bounded moments of suitable order. The existence of expected values only
requires that the random variables are integrable, X1, X2, . . . ∈ L1(P). We finish
by giving the statement of a result of Kolmogorov, which does not use any higher
moment assumptions. The result is a strong law of large numbers, because it gives
almost sure convergence, but it also guarantees yet another notion of convergence
which we introduce before the statement.

Convergence in L1

The following notion of convergence already appeared implicitly in the Dominated
convergence theorem (Theorem VII.19).

Definition XI.8 (Convergence in L1).
Suppose that X1, X2, . . . ∈ L1(P) and X ∈ L1(P). We say that Xn tends to X
in L1 as n→∞, if we have

lim
n→∞

E
[
|Xn −X|

]
= 0.

In this case we denote Xn
L1−→ X.

The notion is stronger than convergence in probability.
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Exercise XI.6 (Convergence in L1 implies convergence in probability).

Assume that X1, X2, . . . ∈ L1(P) are integrable random variables and Xn
L1

−→ X. Show that

Xn
P−→ X.

Hint: Apply Markov’s inequality.

Statement of Kolmogorov’s strong law of large numbers

Theorem (Kolmogorov’s strong law of large numbers).
Let X1, X2, . . . ∈ L1(P) be independent and identically distributed integrable
random variables with E[Xj] = m for all j ∈ N. Then we have

1

n

(
X1 + · · ·+Xn

) a.s.−→ m

and
1

n

(
X1 + · · ·+Xn

) L1−→ m

as n→∞.

The proof can be found in, e.g., [Wil91, Chapters 12 and 14].

For the expected value to make sense, we had to at least assume Xj ∈ L1(P) in the
above statement. In Theorems XI.4 and XI.5 we assumed more — that Xj ∈ L2(P)
and Xj ∈ L4(P), respectively. Note, however, that while the above result is thus
relaxing the moment assumptions, it is not strictly speaking a generalization of
the strong law of Theorem XI.5, because it assumes that the sequence consists of
identically distributed random variables. Both formulations are useful.



Lecture XII

Central limit theorem and convergence in distribution

Consider a sequence X1, X2, . . . of independent and identically distributed random
numbers, and form the sums

Sn = X1 + · · ·+Xn

of the first n members of the sequence. We are interested in the behavior of the
sums Sn with a large number n of terms.

If the random variables are integrable, Xj ∈ L1(P), with expected values E[Xj] = m,
then we have E[Sn] = nm. The law of large numbers1 then says that the sum Sn
concentrates around the value nm, when we look at it in a scale proportional to n,
or more precisely

Sn − nm
n

−→ 0 (almost surely, in probability, and in L1(P)).

If the random variables are square integrable, Xj ∈ L2(P), with expected values
E[Xj] = m and variances Var(Xj) = s2, then by the independence of the terms we
have Var(Sn) = ns2. Chebyshev’s inequality then says that the fluctuations of the
sum Sn around the value nm do not exceed a scale proportional to

√
n, or more

precisely

P

[
|Sn − nm|√

n
≥ c

]
≤ ns2

(c
√
n)2

=
s2

c2
(for any c > 0).

To understand the behavior of the sums Sn for large n in detail, it is therefore
meaningful to look at Sn − nm on a scale proportional to

√
n. One can show that

Sn − nm√
n

does not converge anywhere almost surely or in probability, so in order to de-
scribe the limiting behavior, we need another notion of convergence. The appro-
priate notion is convergence in distribution (also known as convergence in law or
weak convergence). Addressing exactly this, the Central limit theorem asserts that
as n increases, the distribution of Sn−nm√

n
approaches a Gaussian distribution (Exam-

ple VIII.3). An elementary interpretation of this is that the cumulative distribution
functions have the following limit

P

[
Sn − nm
s
√
n
≤ x

]
−→
n→∞

Φ(x) :=

∫ x

−∞

1√
2π
e−t

2/2 dt (for all x ∈ R).

The right hand side above is the cumulative distribution of the standard normal
distribution (Gaussian distribution with mean zero and unit variance).

1In this formulation, we need Kolmogorov’s strong law of large numbers.
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XII.1. Characteristic functions

An important tool in the proof of the central limit theorem and in various other
places in probability theory is characteristic functions. The characteristic function of
a real valued random variable2 is a single function, which encodes its distribution —
it is essentially the Fourier transform of the law of the random variable.

Describing distributions in terms of their characteristic functions thus unifies the
treatment of discrete distributions (which can be described by probability mass
functions3) and continuous distributions (which can be described by probability
densities4), as well as distributions, which are neither discrete nor continuous!

Complex valued random variables

The characteristic functions are complex valued, so we begin with a few remarks
about complex valued random variables.

The set of complex numbers is denoted by C, and the imaginary unit by i (i ∈ C
is a square root of −1, i.e., i

2 = −1). A complex number z ∈ C can be written
uniquely as z = x+iy with x, y ∈ R. We call x = <e(z) the real part and y = =m(z)

the imaginary part of z. The absolute value (or modulus) of z is |z| :=
√
x2 + y2.

We identify C with the Euclidean plane R2 (the set of complex numbers forms
the “complex plane”), so that x and y are the two coordinates of z = x + iy in
the plane. The absolute value |z| is exactly the Euclidean norm, and we equip
C with the topology of the plane, and correspondingly with the Borel σ-algebra
B(C) ∼= B(R2) = B ⊗B.

A complex valued random variable Z = X + iY is constructed out of a pair X, Y of
real valued random variables5 (the real and imaginary parts of Z). We say that Z is
integrable if both its real and imaginary parts are, i.e., if X, Y ∈ L1(P). We define
the expected value of an integrable complex random variable Z to be the complex
number

E
[
Z
]

:= E
[
X
]

+ iE
[
Y
]

whose real and imaginary parts are the expected values of the real and imaginary
parts of Z. Note that for z = x+ iy we have |x+ i y| ≤ |x|+ |y|. From monotonicity,
linearity, and triangle inequality we therefore get

E
[
|Z|
]
≤ E

[
|X|+ |Y |

]
= E

[
|X|
]

+ E
[
|Y |
]
<∞,

if Z is integrable.

The exponential of a complex number z ∈ C is defined by the convergent power
series

ez =
∞∑
n=0

1

n!
zn.

2More generally, characteristic functions of vector valued random variables could be defined,
and have properties parallel with what we show in the setup of real valued random variables.

3See Definition II.15 and Exercise VIII.1, in particular.
4See Definition VIII.2 and Exercise VIII.3, in particular.
5As with random vectors, Z : Ω → C is F/B(C)-measurable if and only if X,Y : Ω → R are

F/B(R)-measurable — see Remark X.2.
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As a particular case, for z = iφ with φ ∈ R we have Euler’s formula

eiφ = cos(φ) + i sin(φ).

Note that we have
∣∣eiφ∣∣ =

√
cos2(φ) + sin2(φ) = 1. It is often convenient to write

a complex number z ∈ C in polar coordinates as z = r eiφ, where r = |z| and
φ ∈ [0, 2π).

Expected values of complex valued random variables have familiar properties.

Proposition XII.1 (Properties of expected values of complex random variables).

Linearity: If c1, c2 ∈ C are complex numbers and Z1, Z2 are integrable C-
valued random variables, then also c1Z1 + c2Z2 is an integrable C-valued
random variable and E

[
c1Z1 + c2Z2

]
= c1 E[Z1] + c2 E[Z2].

Triangle inequality: If Z is an integrable C-valued random variable, then
we have

∣∣E[Z]
∣∣ ≤ E

[
|Z|
]
.

Dominated convergence: Suppose that Z1, Z2, . . . are C-valued random vari-
ables and X ∈ L1(P) is an integrable random variable which dominates
the absolute values, |Zn| ≤ X for all n ∈ N. Then if the pointwise limit
limn→∞ Zn exists, we have E

[
limn→∞ Zn

]
= limn→∞ E[Zn].

Proof. Linearity is proved directly from the definition by splitting each of c1, c2, Z1, Z2 to real and
imaginary parts. We leave the details as an exercise.

Triangle inequality can be proved as follows. The expected value is a complex number, so
we can write it in polar coordinates as E[Z] = r eiφ, where r =

∣∣E[Z]
∣∣ and φ ∈ [0, 2π). Then

by linearity we have

r = e−iφ E[Z] = E
[
e−iφZ

]
= E

[
<e
(
e−iφZ

)]
+ iE

[
=m

(
e−iφZ

)]
.

Since r ∈ R by construction, the second term in fact has to vanish: E
[
=m

(
e−iφZ

)]
= 0. If

we furthermore use the fact that <e(z) ≤ |z| and monotonicity of real expected values, we
thus get

r = E
[
<e
(
e−iφZ

)]
≤ E

[∣∣e−iφZ
∣∣] = E

[∣∣Z∣∣].
Remembering that r =

∣∣E[Z]
∣∣, this gives the triangle inequality.

Dominated convergence follows by splitting Zn to real and imaginary parts and applying
dominated convergence theorem to these separately: the same integrable random variable
X which dominates |Zn| also dominates <e(Zn) and =m(Zn). �

Exercise XII.1 (Independent complex random variables).
Let Z1 = X1 + iY1 and Z2 = X2 + iY2 be two independent, integrable complex valued
random variables. Show that the product Z1Z2 is integrable, and that we have

E
[
Z1 Z2

]
= E

[
Z1

]
E
[
Z2

]
.

Definition and first properties of characteristic functions

Let (Ω,F ,P) be a probability space and X : Ω→ R a real valued random variable.
Note that for any θ ∈ R and any ω ∈ Ω, we have

ei θX(ω) = cos
(
θX(ω)

)
+ i sin

(
θX(ω)

)
. (XII.1)

This shows that the real and imaginary parts of ei θX are bounded random variables,
and thus in particular integrable. Therefore the following definition makes sense.
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Definition XII.2 (Characteristic function).
The characteristic function of X is the function ϕX : R→ C given by

ϕX(θ) = E
[
ei θX

]
(XII.2)

= E
[

cos(θX)
]

+ i E
[

sin(θX)
]
.

Remark XII.3. The function x 7→ eiθx is continuous, and therefore a Borel function by Corol-
lary III.10 (i.e. the real and imaginary parts x 7→ cos(θx) and x 7→ sin(θx) are). Therefore
by Theorem VIII.1, the expected value in (XII.2) can be written using the distribution PX
of X,

ϕX(θ) = E
[
ei θX

]
=

∫
R
eiθx dPX(x).

This shows that the characteristic function ϕX of X only depends on the distribution PX
of X. Soon we will show that ϕX in fact contains enough information to fully determine the
distribution PX .

Let us give a few examples of characteristic functions.

Example XII.4 (Characteristic function of exponential distribution).
Suppose that X ∼ Exp(λ) is exponentially distributed with parameter λ > 0 (see Exam-
ple VIII.4), i.e., X has a probability density

fX(x) = λ e−λx I[0,+∞)(x).

Let us compute its characteristic function using the formula of Exercise VIII.3,

ϕX(θ) = E
[
ei θX

]
=

∫
R
ei θx fX(x) dx

=

∫ ∞
0

ei θx λ e−λx dx = λ

∫ ∞
0

ex(−λ+i θ) dx = λ
−1

−λ+ iθ
=

1

1 + iθ/λ
.

Example XII.5 (Characteristic function of Poisson distribution).
Suppose that X ∼ Poisson(λ) is Poisson distributed with parameter λ > 0 (see Exam-
ple II.16), i.e., X has a probability mass function

pX(n) = P
[
X = n

]
= e−λx

λn

n!
for n ∈ Z≥0 = {0, 1, 2, . . .} .

Let us compute its characteristic function using the formula of Exercise VIII.1,

ϕX(θ) = E
[
ei θX

]
=

∞∑
n=0

pX(n) eiθn

=

∞∑
n=0

e−λ
λn

n!
eiθn = e−λ

∞∑
n=0

1

n!

(
λeiθ

)n
= e−λ eλe

iθ

= exp
(
λ(eiθ − 1)

)
.

Exercise XII.2 (The characteristic function of a standard Gaussian random variable).
Suppose that X ∼ N(0, 1) is a real valued random variable with standard normal distribution
(see Example VIII.3), i.e., a continuous distribution with density function

fX(x) =
1√
2π

e−
1
2x

2

for x ∈ R.

Hint: You can consider it known that
∫ +∞
−∞ fX(x) dx = 1, and that the exponential of any complex

number z ∈ C is given by the convergent series ez =
∑∞
n=0

1
n!
zn.

(a) Let t ∈ R. Show that E
[
etX
]

= et
2/2.

Hint: Express the expected value in terms of the density, and perform a suitable change of

variables x′ = x+ c.
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(b) For x, t ∈ R, show that e|tx| ≤ etx + e−tx. Using this, prove that for any t ∈ R we have

E
[ ∞∑
n=0

1

n!
|tX|n

]
< +∞.

(c) Prove that for any t ∈ R we have

E
[
etX
]

=

∞∑
n=0

1

n!
tn E[Xn].

(d) By comparing (a) with (c), deduce that for n ∈ N we have

E[Xn] =

{∏n/2
j=1(2j − 1) if n is even

0 if n is odd.

(e) Prove that

ϕX(θ) = e−
1
2 θ

2

for θ ∈ R.

We now state properties of characteristic functions that hold in general. You may
directly inspect that the characteristic functions in Examples XII.4, XII.5 and Ex-
ercise XII.2 indeed have the stated properties.

Proposition XII.6 (Basic properties of characteristic functions).
Characteristic functions have the following properties:

(a) We have ϕX(0) = 1.
(b) We have |ϕX(θ)| ≤ 1 for all θ ∈ R.
(c) The function ϕX : R→ C is continuous.
(d) For any a, b ∈ R we have ϕaX+b(θ) = ei bθ ϕX(aθ) for all θ ∈ R.

(e) We have ϕ−X(θ) = ϕX(θ) for all θ ∈ R.

(f) We have ϕX(−θ) = ϕX(θ) for all θ ∈ R.

Proof. At θ = 0 we of course have θX(ω) = 0 for all ω ∈ Ω and thus ei θX(ω) = 1. We directly get
ϕX(0) = E[1] = 1, which proves (a).

Part (b) follows from triangle inequality: |ϕX(θ)| =
∣∣E[eiθX ]

∣∣ ≤ E
[
|eiθX |

]
= E[1] = 1.

Continuity is proved as follows. We must show that for any sequence θ1, θ2, . . . ∈ R such
that θn → θ, we have ϕX(θn) → ϕX(θ). Since θn → θ, we get pointwise for all ω ∈ Ω,
that ei θnX(ω) → ei θX(ω), using the continuity of the exponential function. But the random
variables ei θnX are also bounded, so we can use the Bounded convergence theorem (both
real and imaginary parts are bounded real random variables which converge pointwise):

ϕX(θn) = E
[
ei θnX

]
−→ E

[
ei θX

]
= ϕX(θ).

This proves part (c), the continuity of ϕX .

For part (d), observe that

ei θ
(
aX(ω)+b

)
= ei θaX(ω) ei θb

and use linearity.

Parts (e) and (f) follow by noting that the complex conjugate of eiθX(ω) is e−iθX(ω). �

We can now for instance reduce the calculation of the characteristic function of a
general Gaussian random variable to that of a standard Gaussian.
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Exercise XII.3 (Characteristic function of a Gaussian random variable).
Let m ∈ R and s > 0, and let X ∼ N(m, s2) (see Example VIII.3). Use Exercise XII.2 and
Proposition XII.6(d) to show that

ϕX(θ) = eimθ−
1
2 s

2θ2 for θ ∈ R.

Another fundamental property of characteristic functions is that the characteristic
function of a sum of independent terms is the pointwise product of the characteristic
functions.

Exercise XII.4 (Characteristic function of a sum of independent terms).
Suppose that X and Y are independent real valued random variables. Using Exercise XII.1,
show that the characteristic function of their sum is

ϕX+Y (θ) = ϕX(θ)ϕY (θ) for θ ∈ R.

Lévy’s inversion theorem

A fundamental property of the characteristic function of a random variable is that
it contains all the information about the distribution of the random variable. This
fact is made explicit by Lévy’s inversion theorem, below.

Theorem XII.7 (Lévy’s inversion theorem).
Let X ∈ mF be a real-valued random variable, PX its distribution (a Borel
probability measure on R), and ϕX : R → C its characteristic function. Then
for any a, b ∈ R, a < b, we have

lim
T→+∞

1

2π

∫ +T

−T

e−iθa − e−iθb

i θ
ϕX(θ) dθ

= PX
[
(a, b)

]
+

1

2
PX
[
{a}

]
+

1

2
PX
[
{b}
]
.

In particular, ϕX uniquely determines PX .

Moreover, if
∫
R |ϕX(θ)| dθ < +∞, then X has a continuous probability density

function fX given by

fX(x) =
1

2π

∫
R
e−iθx ϕX(θ) dθ.

The proof is given in Appendix F.

Exercise XII.5 (Sum of independent Gaussian random variables).
Suppose that X1 ∼ N(m1, s

2
1) and X2 ∼ N(m2, s

2
2) are Gaussian random variables which are

independent. Show that X1 +X2 ∼ N(m1 + m2, s
2
1 + s2

2).
Hint: Use Lévy’s inversion theorem together with Exercises XII.3 and XII.4.

Exercise XII.6 (Sum of i.i.d. Bernoulli random variables).

(a) Let p ∈ [0, 1]. Calculate the characteristic function ϕB(θ) = E[ei θB ] of a random variable
B such that P[B = 1] = p and P[B = 0] = 1− p (we denote B ∼ Bernoulli(p)).

(b) Let p ∈ [0, 1] and n ∈ N. Calculate the characteristic function ϕX(θ) = E[ei θX ] of a
random variable X such that P[X = k] =

(
n
k

)
pk(1− p)n−k for all k ∈ {0, 1, 2, . . . , n} (we

denote X ∼ Bin(n, p)).
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(c) Let B1, . . . , Bn be independent and identically distributed, with P[Bj = 1] = p and
P[Bj = 0] = 1− p, for all j. Compute the characteristic function of S = B1 + · · · + Bn
using part (a) and Exercise XII.4. Compare with the result of part (b), and conclude
that S ∼ Bin(n, p).

Taylor expansion of a characteristic function

By Lévy’s inversion theorem, the characteristic function ϕX of a random variable X
contains all information about the distribution PX of X. In particular, it should
contain the information about the expected value, variance, etc. To see why this is
at least formally true, write the power series expansion

ei θX(ω) =
∞∑
n=0

1

n!

(
iθX(ω)

)n
= 1 + iθX(ω)− 1

2
θ2X(ω)2 + · · · for all ω ∈ Ω.

If the expected value could be taken term by term in this expansion, then we would
get

ϕX(θ) = E
[
ei θX

]
?
= 1 + iθ E[X]− 1

2
θ2 E[X2] + · · ·

Formally, therefore, the expected value E[X] seems to be encoded in the first order
term in the Taylor expansion of ϕX(θ) around the point θ = 0, the variance Var(X) =
E[X2] − E[X]2 in the terms up to order two, and more generally moment E[Xn] of
order n in the coefficient of θn. Of course, this can only be meaningful if the random
variable has moments of the correct order, i.e., X ∈ Lp(P) for high enough p ≥ 1.

The following lemma makes precise sense of the above formal observation for square
integrable random variables.6

Proposition XII.8 (Taylor expansion of characteristic function).
Let X ∈ L2(P) be a square integrable random variable and let ϕX : R → C be
its characteristic function. Then we have

ϕX(θ) = 1 + iθ E[X]− 1

2
θ2 E[X2] + ε(θ), (XII.3)

where the function ε : R→ C is an error term of smaller order than θ2 in the
sense that

|ε(θ)|
|θ|2

−→ 0 as θ → 0.

Proof. The idea is to Taylor expand eiθX up to order two, with a controlled error term.

Start by observing that we have d
due

iθu = iθ eiθu, so for any x ∈ R we have∫ x

0

iθ eiθu du = eiθx − 1.

Let us solve for eiθx, and get

eiθx = 1 + iθ

∫ x

0

eiθu du.

6The reader should think about how to modify the assumptions, statement, and proof to see
moments up to order n in the Taylor expansion of the characteristic function.
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Apply the same observation again to the integrand eiθu, to get

eiθx = 1 + iθ

∫ x

0

(
1 + iθ

∫ u

0

eiθv dv
)

du

= 1 + iθx− θ2

∫ x

0

(∫ u

0

eiθv dv
)

du.

In this expression, write still eiθv = 1 + (eiθv − 1), and perform the integrations of the first
term to get

eiθx = 1 + iθx− θ2 x
2

2
− θ2

∫ x

0

(∫ u

0

(eiθv − 1) dv
)

du. (XII.4)

The first three terms without integrations are the ones we care about, so let us introduce
the following notation for the remainder that we want to get rid of,

R(θ, x) :=

∫ x

0

(∫ v

0

(eiθv − 1) dv
)

du

To estimate the magnitude of this remainder, note first that |R(θ,−x)| = |R(θ, x)|, so it is
enough to consider x ≥ 0. Then use the triangle inequality for integrals and the observation
eiθv − 1 = eiθv/2

(
eiθv/2 − e−iθv/2

)
= 2i eiθv/2 sin(θv/2) to get the upper bound∣∣R(θ, x)

∣∣ ≤ ∫ |x|
0

(∫ v

0

∣∣eiθv − 1
∣∣ dv

)
du ≤ 2

∫ |x|
0

(∫ v

0

∣∣ sin(θv/2)
∣∣ dv

)
du

If we estimate the integrand in the last expression by
∣∣ sin(θv/2)

∣∣ ≤ 1, we find after the two
integrations ∣∣R(θ, x)

∣∣ ≤ |x|2, (XII.5)

and if we estimate it by
∣∣ sin(θv/2)

∣∣ ≤ 1
2 |θ| |v|, we find after integrations∣∣R(θ, x)
∣∣ ≤ 1

6
|θ| |x|3,

which in particular shows that for any x ∈ R we have∣∣R(θ, x)
∣∣ −→ 0 as θ → 0. (XII.6)

Let us now apply (XII.4) pointwise to the values of the random variable X, to get

eiθX(ω) = 1 + iθX(ω)− 1

2
θ2X(ω)2 − θ2R

(
θ,X(ω)

)
.

With this, we can write the error term ε(θ) in the approximation (XII.3) in a manageable
form. Namely, by linearity of expectation we have

ε(θ) := ϕX(θ)−
(

1 + iθ E[X]− 1

2
θ2 E[X2]

)
= E

[
eiθX − 1− iθ X +

1

2
θ2X2

]
= − θ2 E

[
R(θ,X)

]
.

Then use the triangle inequality for expected values to control the magnitude of the error
term, ∣∣ε(θ)∣∣ ≤ |θ|2 E

[∣∣R(θ,X)
∣∣].

The estimate (XII.5) shows that
∣∣R(θ,X)

∣∣ ≤ |X|2 for any θ, so by the assumption X ∈ L2(P)
we have an integrable upper bound and we can use the Dominated convergence theorem in

lim
θ→0

E
[∣∣R(θ,X)

∣∣] = E
[

lim
θ→0

∣∣R(θ,X)
∣∣] (XII.6)

= E[0] = 0.

We conclude that

|ε(θ)|
|θ|2

≤ E
[∣∣R(θ,X)

∣∣] −→ 0

as θ → 0, and the proof is complete. �
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XII.2. Convergence in distribution

The notion of convergence in distribution is different from notion of convergence
in Lecture XI: it is not strictly speaking about convergence of random variables
(functions on the sample space Ω), but rather the convergence of their distributions
(measures on R, in the case of real-valued random variables).7

Theorem XII.9 (Equivalent conditions for convergence in distribution).
Let X1, X2, . . . and X be real-valued random variables. Let also F1, F2, . . .
and F be their cumulative distribution functions, and let ϕ1, ϕ2, . . . and ϕ be
their characteristic functions, respectively. Then the following conditions are
equivalent:

(i) For all bounded continuous functions f : R → R we have E[f(Xn)] →
E[f(X)] as n→∞.

(ii) We have Fn(x) → F (x) as n → ∞ for all points x ∈ R such that F is
continuous at x.

(iii) We have ϕn(θ)→ ϕ(θ) as n→∞ for all θ ∈ R.

The proof is given in Appendix F.

Definition XII.10 (Convergence in distribution).
Let X1, X2, . . . and X be real-valued random variables. We say that Xn tend

to X in distribution (or in law) as n→∞ and denote Xn
law−→ X, if any (then

all) of the equivalent conditions of Theorem XII.9 hold.

Remark XII.11 (Convergence in distribution formulated in terms of distributions).
Note that a bounded continuous function f : R → R is a Borel function (Corollary III.10),
so the expected values E[f(Xn)] and E[f(X)] can be written using the distributions PXn
and PX (Theorem VIII.1). Therefore condition (i) of Theorem XII.9 can be written as∫

R
f dPXn −→

∫
R
f dPX as n→∞

for all such f . This formulation explains the terminology convergence in distribution.

XII.3. Central limit theorem

We are now ready to state and prove the Central limit theorem (CLT). It is one
of the most central8 theorems in probability and statistics. It is for instance the
rigorous justification for various normal approximations that are commonly used.

7In fact, for convergence in distribution it is not even necessary that the random variables
are defined on the same probability space: we could have X : Ω → R defined on (Ω,F ,P) but
Xn : Ωn → R each defined on its own probability space (Ωn,Fn,Pn). In any case, the distributions
PXn are probability measures on the real line R, so the formulation of Remark XII.11 below still
makes perfect sense. For simplicity of presentation, however, we choose not to keep explicitly
mentioning and writing all the (possibly) different probability spaces during this lecture.

8pun intended / hence the name



126 XII. CENTRAL LIMIT THEOREM AND CONVERGENCE IN DISTRIBUTION

Theorem XII.12 (Central limit theorem).
Let X1, X2, . . . ∈ L2(P) be independent and identically distributed square inte-
grable random variables. Denote

m := E[Xj] and s :=
√
Var(Xj).

Assume that s > 0.9 For all n ∈ N, let Sn =
∑n

j=1Xj. Then we have

Sn − nm
s
√
n

law−→ Z as n→∞, (XII.7)

where Z is a random variable with standard normal distribution N(0, 1).

Proof. By considering X̃j = Xj − m if necessary, we may assume that m = 0. Likewise, by

considering
Xj
s if necessary, we may assume that s = 1. The goal is then to show that

Sn√
n

law−→ Z. We will prove this by verifying condition (iii) of Theorem XII.9, i.e., the pointwise

convergence of the characteristic functions of Sn√
n

.

By the assumption of identical distributions, the characteristic functions of all Xj , j ∈ N,
are equal, so let us denote them by

ϕ(θ) := ϕXj (θ) = E
[
eiθXj

]
.

By Proposition XII.8 and assumptions m = 0 and s = 1, we have

ϕ(θ) = 1− 1

2
θ2 + ε(θ), (XII.8)

where ε(θ)
|θ|2 → 0 as θ → 0.

Now calculate the characteristic function of the sum Sn =
∑n
j=1Xj using independence,

ϕSn(θ) = E
[
eiθ

∑n
j=1Xj

]
= E

[ n∏
j=1

eiθXj
]

(⊥⊥)
=

n∏
j=1

E
[
eiθXj

]
= ϕ(θ)n.

The characteristic function of Sn√
n

is then

ϕSn/
√
n(θ) = E

[
eiθSn/

√
n
]

= ϕSn

( θ√
n

)
=

(
ϕ
( θ√

n

))n
.

By (XII.8), we have

ϕ
( θ√

n

)
= 1− 1

2

( θ√
n

)2

+ ε
( θ√

n

)
= 1− θ2

2n
+ rn,

where rn
1/n → 0 as n → ∞. By substituting this in the expression for the characteristic

function of Sn√
n

, we get

ϕSn/
√
n(θ) =

(
1− θ2

2n
+ rn

)n
.

The limit in Exercise XII.7 gives

lim
n→∞

ϕSn/
√
n(θ) = lim

n→∞

(
1− θ2

2n
+ rn

)n
= e−

1
2 θ

2

.

Since this is the characteristic function ϕZ(θ) of a standard normal distributed random
variable Z ∼ N(0, 1) according to Exercise XII.2, the proof is complete. �

Exercise XII.7 (Complex exponential as a limit).
Let z ∈ C and suppose that r1, r2, . . . ∈ C are such that n rn → 0 as n→∞. Show that

lim
n→∞

(
1 +

z

n
+ rn

)n
= ez.

9This is always true unless Xj are almost surely constants. The case of almost surely constant
random variables is not probabilistically interesting.



Appendix A

Set theory preliminaries

This appendix reviews necessary backgound on set theory, in particular the notion
of countability, which is crucial in probability theory and measure theory.

A.1. Intersections and unions of sets

Let A,B be two sets. The intersection A∩B is defined as the set of those elements
which belong to both A and B,

A ∩B =
{
x
∣∣ x ∈ A and x ∈ B

}
.

The union A∪B is defined as the set of those elements which belong to at least one
of the sets A and B,

A ∪B =
{
x
∣∣ x ∈ A or x ∈ B

}
.

More generally, let (Ai)i∈I be a collection of sets Ai indexed by i ∈ I. The union of
the collection is defined as⋃

i∈I

Ai =
{
x
∣∣ x ∈ Ai for some i ∈ I

}
.

The intersection of the collection is defined provided the collection is non-empty
(I 6= ∅) as ⋂

i∈I

Ai =
{
x
∣∣ x ∈ Ai for all i ∈ I

}
.

A collection (Ai)i∈I of sets is said to be disjoint if no two different members of the
collection have common elements, i.e., for all i, j ∈ I, i 6= j, we have Ai ∩ Aj = ∅.
If the collection (Ai)i∈I of sets is disjoint, then we say that the union

⋃
i∈I Ai is a

disjoint union. Disjoint unions enjoy additivity properties in probability theory and
measure theory, according to the axiomatic properties in Definitions II.4 and II.5.

A.2. Set differences and complements

Let A,B be two sets. The set difference A\B is defined as the set of those elements
which belong to A but do not belong to B,

A \B =
{
x
∣∣ x ∈ A and x /∈ B

}
.

When it is clear from the context that we are considering subsets of a particular
reference set S (often the sample space S = Ω), then the complement of a subset
A ⊂ S, denoted by Ac, is the set of those elements (of S) which do not belong to A

Ac = S \ A =
{
x ∈ S

∣∣ x /∈ A} .
127
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The following basic results of set theory tell how unions and intersections behave
under complements. They are known as De Morgan’s laws .

Proposition A.1 (De Morgan’s laws).
Let (Ai)i∈I be a non-empty indexed collection of subsets Ai ⊂ S of a fixed set S.
Then we have(⋃

i∈I

Ai
)c

=
⋂
i∈I

Ac
i and

(⋂
i∈I

Ai
)c

=
⋃
i∈I

Ac
i .

Exercise A.1. Prove the De Morgan’s laws above.

A.3. Images and preimages of sets under functions

Let S and S ′ be two sets and

f : S → S ′

a function from S to S ′. For A ⊂ S, the image of A under f is the subset f(A) ⊂ S ′

consisting of all those elements s′ ∈ S ′ such that s′ = f(s) for some s ∈ S,

f(A) =
{
f(s)

∣∣ s ∈ A} ⊂ S ′.

For A′ ⊂ S ′, the preimage of A′ under f is the subset f−1(A′) ⊂ S consisting of all
those elements s ∈ S whose image f(s) belongs to the subset A′,

f−1(A′) =
{
s ∈ S

∣∣ f(s) ∈ A′
}
⊂ S.

Exercise A.2 (Properties of preimages).
Show that

(a) f−1
(
A′

c)
=
(
f−1(A′)

)c
(b) f−1

(⋃
i

A′i

)
=
⋃
i

f−1(A′i)

(c) f−1
(⋂

i

A′i

)
=
⋂
i

f−1(A′i).

A.4. Cartesian products

Let A,B be two sets. The Cartesian product A×B is defined as the set of ordered
pairs (a, b) whose first member a belongs to the set A and second member b belongs
to the set B, i.e.,

A×B =
{

(a, b)
∣∣ a ∈ A, b ∈ B} .

More generally, when A1, . . . , An are sets, the n-fold Cartesian product A1×· · ·×An
is the set of ordered n-tuples (a1, . . . , an) such that ak ∈ Ak for each k = 1, . . . , n

A1 × · · · × An =
{

(a1, . . . , an)
∣∣ a1 ∈ A1, . . . , an ∈ An

}
.

Even more generally, if (Aj)j∈J is a collection of sets indexed by j ∈ J , the Cartesian
product

∏
j∈J Aj is the set of indexed collections (aj)j∈J such that aj ∈ Aj for
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each j ∈ J , ∏
j∈J

Aj =
{

(aj)j∈J
∣∣ ∀j ∈ J : aj ∈ Aj

}
.

The axiom of choice states that if all the factors are non-empty, Aj 6= ∅ for all j ∈ J ,
then the Cartesian product is also non-empty

∏
j∈J Aj 6= ∅.

As a particular case of Cartesian products, if each factor is the same set, Aj = A for
all j ∈ J , then the Cartesian product is alternatively denoted by AJ :=

∏
j∈J A. In

that case an element of AJ is an indexed collection (aj)j∈J of elements of A, which
can be naturally identified with the function j 7→ aj from J to A. Therefore AJ is
identified with the set of functions from J to A,

AJ = {f : J → A function} .

A.5. Power set

Given a set S, the set P(S) of all subsets A ⊂ S of it is called the power set of S,

P(S) =
{
A
∣∣ A ⊂ S

}
.

A subset A ⊂ S can be specified by indicating for each element s ∈ S whether it
belongs to A or not, so it is natural to identify the the power set P(S) of S with

the set {0, 1}S of functions S → {0, 1}. In particular if S is a finite set with #S = n
elements, then its power set is a finite set with #P(S) = 2n elements.

It is good to keep in mind that the power set readily provides an easy first example
of many notions introduced in probability theory. For instance, in view of Defini-
tions I.1, II.23, and C.3, the collection P(S) of all subsets of S is obviously a sigma
algebra on S, a π-system on S, a d-system on S, etc.

A.6. Sequences of sets

A sequence A1, A2, . . . of sets is said to be increasing if

A1 ⊂ A2 ⊂ A3 ⊂ · · · .

In this case we denote

An ↑ A,
where the limit A of the increasing sequence of sets is defined as the union

A =
∞⋃
n=1

An.

Likewise, a sequence A1, A2, . . . of sets is said to be decreasing if

A1 ⊃ A2 ⊃ A3 ⊃ · · · .

In this case we denote

An ↓ A,
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where the limit A of the decreasing sequence of sets is defined as the intersection

A =
∞⋂
n=1

An.

Sequences of sets which are either increasing or decreasing are said to be monotone.

Exercise A.3 (Characterization of limits of monotone sequences of sets).
Show that the limits of monotone sequences of sets can be characterized as follows.

(a) Suppose that An ↑ A. Show that

x ∈ A ⇐⇒ ∃m ∈ N such that ∀n ≥ m : x ∈ An
x /∈ A ⇐⇒ ∀n ∈ N : x /∈ An.

(b) Suppose that An ↓ A. Show that

x ∈ A ⇐⇒ ∀n ∈ N : x ∈ An
x /∈ A ⇐⇒ ∃m ∈ N such that ∀n ≥ m : x /∈ An.

For a sequence A1, A2, . . . of sets, we define its upper limit as

lim sup
n

An :=
⋂
m∈N

⋃
n≥m

An.

Note that if we define Cm =
⋃
n≥mAn, then the sequence C1, C2, . . . of sets is de-

creasing, and its limit
⋂
m∈NCm is precisely lim supnAn.

We also define the lower limit of the sequence of sets as

lim inf
n

An :=
⋃
m∈N

⋂
n≥m

An.

Note that if we define Dm =
⋂
n≥mAn, then the sequence D1, D2, . . . of sets is

increasing, and lim infnAn is its limit.

Exercise A.4 (Characterization of upper and lower limits of sequences of sets).
Show that the limsup and liminf of a sequence A1, A2, . . . of sets can be characterized as
follows:

(a): lim sup
n

An =
{
s
∣∣ ∀m ∈ N : ∃n ≥ m : s ∈ An

}
(b): lim inf

n
An =

{
s
∣∣ ∃m ∈ N : ∀n ≥ m : s ∈ An

}
.

A.7. Countable and uncountable sets

In probability theory we need to distinguish between sets of different sizes: finite
sets, countably infinite sets, and uncountably infinite sets. In fact, if one had to
summarize probability theory (and measure theory) in a single phrase, it might be:

All countable operations in probability theory are defined to behave
just as intuition dictates.
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Comparison of cardinalities

Cardinality is the set-theoretic notion of the size or “number of elements” of a set.
The idea is that when comparing the sizes of two sets A and B, we attempt to
match the elements of A to the elements of B by functions f : A → B. Under a
surjective function, each element of B has at least some element(s) of A matched
to it, and we then would interpret that A has at least as many elements as B.
Under an injective function f , all elements of A are matched to some elements of
B without any two different elements ever being matched to the same element, and
then we would interpret that A has at most as many elements as B. Comparison of
cardinalities is done by asking about the existence of such functions.

Definition A.2 (Comparison of cardinalities).
Let A and B be sets. We say that the cardinality of A is less than or equal to
the cardinality of B if there exists an injective function f : A→ B.

Remark A.3 (Comparison of cardinalities of finite sets).
Suppose that A and B are two finite sets. Let n = #A be the number of elements in A and
m = #B be the number of elements in B. Then it is easy to see that there exists an injective
function f : A → B if and only if we have n ≤ m. Thus for finite sets, the comparison of
cardinalities amounts to just the comparison of the number of elements.

Example A.4 (Subsets can not have larger cardinality).
If A is a subset of B, A ⊂ B, then the cardinality of A is less than or equal to the cardinality
of B, because the inclusion mapping ι : A→ B defined by ι(x) = x for all x ∈ A is injective.

Example A.5 (Transitivity of comparison of cardinalities).
Let A, B, C be sets. Suppose that the cardinality of A is less than or equal to the cardinality
of B and the cardinality of B is less than or equal to the cardinality of C. In that case there
exists injective functions f : A→ B and f̃ : B → C. The composition f̃ ◦ f : A→ C is also
injective, so we get that the cardinality of A is less than or equal to the cardinality of C. In
other words, the comparison of cardinalities is transitive.

As suggested before Definition A.2, instead of requiring the existence of injective
functions in the comparison of cardinalities, one can alternatively require the exis-
tence of surjective functions in the opposite direction. The following two exercises
establish this alternative characterization. To solve these exercises, you are allowed
to use the axiom of choice.

Exercise A.5 (Comparison of cardinalities with surjective functions: necessity).
Show that if the cardinality of a non-empty set A 6= ∅ is less than or equal to the cardinality
of a set B, then there exists a surjective function g : B → A.

Exercise A.6 (Comparison of cardinalities with surjective functions: sufficiency).
Show that if there exists a surjective function g : B → A, then the cardinality of the set A
is less than or equal to the cardinality of the set B.
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Equal cardinalities

Definition A.6 (Equal cardinalities).
We say that A and B have equal cardinalities if there exists an injective func-
tion f : A→ B and an injective function g : B → A.

Clearly if there exists a bijective function f : A→ B, then A and B have equal
cardinalities (we may then take g = f−1). The converse is also true, but it is not
as obvious. The Schröder - Bernstein theorem states that if A and B have equal
cardinalities, then there exists a bijective function f : A→ B (you could try to prove
this as an exercise).

Countable sets

For the purposes of probability theory and measure theory, countable cardinalities
are the most crucial. We begin with the definition.

Definition A.7 (Countability).
A set A is said to be countable if the cardinality of A is less than or equal to
the cardinality of the set N = {1, 2, 3, . . .} of natural numbers.

Example A.8 (Subsets of natural numbers are countable).
From Example A.4 it follows that any subset S ⊂ N, including the set N of natural numbers
itself, is countable.

Since countable sets are so important, we unravel the definition once more, and
provide an alternative characterization and two useful sufficient conditions.

Lemma A.9 (Criteria for countability).

(a) A set A is countable if and only if there exists an injective function f : A→ N.
(b) A non-empty set A 6= ∅ is countable if and only if there exists a surjective

function g : N→ A.
(c) If B is a countable set and there exists an injective function f : A→ B,

then also the set A is countable.
(d) If B is a countable set and there exists a surjective function g : B → A, then

also the set A is countable.

Proof. Assertion (a) follows directly by combining Definitions A.2 and A.7.

Assertion (b) follows by combining Definition A.7 with the characterization of Exercises A.5
and A.6.

Assertions (c) and (d) are similarly obtained using the transitivity in Example A.5. �

Enumerations of countable sets

If A is countable and non-empty, then from Exercise A.5 it follows that there exists
a surjective function g : N → A. We see that all elements of A are obtained in the
following “list”

A = {g(1), g(2), g(3), . . .} .
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Note, however, that repetitions are allowed in the above “list”, as g does not have
to be injective. It is possible to remove repetitions and obtain an enumeration of
the elements of A. To do this, one defines ak ∈ A as the k:th value in the list above
omitting repetitions. If the set A is finite, however, then there are only finitely many
different values and the enumeration terminates at some point. Thus, for a finite
set A with n elements, we have an enumeration

A = {a1, a2, . . . , an} .
An infinite set which is countable is said to be countably infinite, and for such a set
A, we have an enumeration

A = {a1, a2, a3, . . .} .

Note also that if the elements of A can be enumerated as above without repetition,
then the mapping ak 7→ k is well defined and injective A → N. Therefore any set
whose elements can be enumerated is countable.

Operations that preserve countability

In probability theory and measure theory, countable operations work well. It is
therefore crucial to understand clearly which set theoretic operations preserve count-
ability.

Suppose that A1 and A2 are countable sets. By definition, there exists injective
functions f1 : A1 → N and f2 : A2 → N. Consider the union A1 ∪ A2, and note that
it can be expressed as A1∪A2 = A1∪ (A2 \A1), where the latter is a disjoint union.
The function f : A1 ∪ A2 → N defined “piecewise” by

f(x) =

{
2f1(x) if x ∈ A1

2f2(x) + 1 if x ∈ A2 \ A1

is clearly injective: it maps elements of A1 injectively to even natural numbers and
the remaining elements injectively to odd natural numbers. From the existence of
such an injective function we conclude that the union A1∪A2 is countable. Using this
argument inductively, we get that finite unions of countable sets remain countable.

Lemma A.10 (Finite unions of countable sets are countable).
Let A1, . . . , An be countable sets. Then the union

A1 ∪ · · · ∪ An =
n⋃
j=1

Aj

is also countable.

Example A.11 (The set of integers is countable).
Consider the three sets:

A1 = {1, 2, 3, . . .}
A2 = {0}
A3 = {−1,−2,−3, . . .} .

Each of them is countable: the set A1 = N is countable by Example A.8, the set A2 is
countable because it is finite, and the set A3 is countable because it is in bijection with N
via x 7→ −x. The set of all integers is the union of these three

Z = {. . . ,−2,−1, 0, 1, 2, . . .} = A1 ∪A2 ∪A3
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and as such Z is itself countable by Lemma A.10

Consider now the set N × N, the Cartesian product of the set of natural numbers
with itself. We claim that N × N is countable. To see this, note that the elements
can be enumerated

N× N =
{

(n,m)
∣∣ n,m ∈ N

}
=
{

(1, 1),

(2, 1), (1, 2),

(3, 1), (2, 2), (1, 3),

(4, 1), (3, 2), (2, 3), (1, 4),

· · ·
}
.

The enumeration shows that N×N is also countable, as it gives rise to an injective
function h : N× N→ N.

Suppose now that A1 and A2 are countable sets. Then there exists injective functions
f1 : A1 → N and f2 : A2 → N. Now define f : A1 × A2 → N by

f(x1, x2) = h
(
f1(x1), f2(x2)

)
for x1 ∈ A1, x2 ∈ A2,

where h : N × N → N is the injective function given by the above enumeration
of N × N. The function f : A1 × A2 → N is injective, and we thus see that the
Cartesian product A1×A2 of countable sets A1 and A2 is again countable. Using this
observation inductively, we get that Cartesian products of finitely many countable
sets remain countable.

Proposition A.12 (Finite Cartesian produts of countable sets are countable).
Let A1, . . . , An be countable sets. Then the Cartesian product

A1 × · · · × An
is also countable.

Example A.13 (The d-dimensional integer lattice Zd is countable).
Let d ∈ N. The set

Zd = Z× · · · × Z︸ ︷︷ ︸
d times

=
{

(x1, . . . , xd) ∈ Rd
∣∣∣ x1, . . . , xd ∈ Z

}
of points with integer coordinates in the d-dimensional Euclidean space Rd is countable,
since it is the Cartesian product of d copies of the countable set Z.

Example A.14 (The set of rational numbers is countable).
Consider the set Q ⊂ R of rational numbers. The mapping g : Z × N → Q defined by
g(n,m) = n

m is surjective onto Q. As a Cartesian product of the countable sets Z and N,
the set Z × N is countable by Proposition A.12. From Lemma A.9(d) and the existence of
the surjective function g we get that also the set Q of rational numbers is countable.

Using the above proposition about Cartesian products of countable sets we can
strengthen our earlier observation about unions of countable sets: it turns out that
countable unions of countable sets remain countable.
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Proposition A.15 (Countable unions of countable sets are countable).
Let A1, A2, A3, . . . be countable sets. Then the union

∞⋃
j=1

Aj = A1 ∪ A2 ∪ A3 ∪ · · ·

is also countable.

Proof. We may assume that the sets Aj are non-empty, Aj 6= ∅, for all j ∈ N (empty terms can be
omitted from the union). Then, for each j ∈ N there exists a surjective function

gj : N→ Aj .

We now define a function g on N× N by

g(j, k) = gj(k) for j, k ∈ N,
and observe that this function

g : N× N→
∞⋃
j=1

Aj

is surjective onto the union
⋃∞
j=1Aj . This shows that the cardinality of

⋃∞
j=1Aj is less than

or equal to the cardinality of N × N. Since N × N is countable, this shows that the union⋃∞
j=1Aj is also countable. �

Uncountable sets

A set which is not countable is said to be uncountable. Since all finite sets are
countable, an uncountable set is necessarily infinite.

In the previous section we saw that some rather nontrivial set theoretic operations
preserve countability. We now provide examples of uncountable sets by a useful stan-
dard argument known as Cantor’s diagonal extraction. The argument shows that
countable Cartesian products of countable sets (or even of finite sets) are generally
not countable.

Example A.16 (The set of binary sequences is uncountable).
For each j ∈ N, let Aj = {0, 1}. Consider the Cartesian product

B =

∞∏
j=1

Aj = {0, 1}N =
{

(b1, b2, . . .)
∣∣∣ b1, b2, . . . ∈ {0, 1}}

of the sets A1, A2, . . ., which is most concretely interpreted as the set of infinite binary
sequences b = (b1, b2, . . .) of zeroes and ones. The set B is a countable Cartesian product of
finite sets. We claim that B itself is uncountable.

The diagonal argument proceeds by supposing, on the contrary, that B is countable. If this
were the case, then we could find an enumeration

B =
{
b(1), b(2), b(3), . . .

}
,

where the m:th element b(m) is a binary sequence

b(m) = (b
(m)
1 , b

(m)
2 , b

(m)
3 , . . .).

Now define a binary sequence b′ = (b′1, b
′
2, b
′
3, . . .) by choosing for each j ∈ N the j:th “digit”

b′j ∈ {0, 1} to be different from b
(j)
j , the j:th “digit” of the j:th element b(j) in the enumer-

ation. This construction of b′ ∈ B is known as diagonal extraction. Now for any m ∈ N,
the binary sequence b′ differs from b(m) at least in the m:th digit, so b′ 6= b(m). But the
element b′ ∈ B should appear in the enumeration of B, so we have derived a contradiction.
We conclude that B can not be enumerated. Therefore B is in fact uncountable.
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Example A.17 (The set of real numbers is uncountable).

Let B = {0, 1}N be the set of binary sequences as in the previous example. Consider also
the subset B′ ⊂ B of those binary sequences which contain infinitely many zeroes,

B′ =
{

(b1, b2, . . .) ∈ {0, 1}N
∣∣∣ ∀m ∈ N : ∃n ≥ m : bn = 0

}
.

We first claim that B′ is also uncountable.

The complement B \B′ is the set of binary sequences which end with repeated ones,

B \B′ =
{

(b1, b2, . . .) ∈ {0, 1}N
∣∣∣ ∃m ∈ N : ∀n ≥ m : bn = 1

}
.

Let

Rm =
{

(b1, b2, . . .) ∈ {0, 1}N
∣∣∣ ∀n ≥ m : bn = 1

}
.

denote the set of sequences where a repetition of ones has started by the m:th “digit”. Note
that Rm is a finite set, #Rm = 2m−1, since we are only free to choose the values of the first
m− 1 “digits”. As a countable union of these finite sets, the complement

B \B′ =

∞⋃
m=1

Rm.

is countable by Proposition A.15. Now if B′ would be countable, then the union B =
B′ ∪ (B \ B′) would also be countable, which is a contradiction with the conclusion of
Example A.16. We thus conclude that B′ is uncountable.

To prove that the set of real numbers is uncountable, we note that any real number has a
binary expansion. More specifically, any number x ∈ [0, 1) has a binary expansion with its
“digit sequence” in B′. Indeed, define a function f on [0, 1) by

f(x) = (b1, b2, . . .) where bj =
⌊
2jx
⌋
.

The sequence f(x) = (b1, b2, . . .) is a binary expansion of x,

x =

∞∑
j=1

bj 2−j .

It is easy to see that f(x) ∈ B′ and that f : [0, 1)→ B′ is surjective onto B′ (for b ∈ B′ and
x =

∑∞
j=1 bj 2−j we indeed have f(x) = b). Therefore we conclude that the cardinality of

B′ is less than or equal to the cardinality of [0, 1). But since B′ is uncountable, also the set
[0, 1) is uncountable.

Since [0, 1) ⊂ R is a subset and [0, 1) is uncountable, also the set R of real numbers is
uncountable.
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Topological preliminaries

This appendix reviews necessary backgound on topological notions, in particular
properties of real numbers.

B.1. Topological properties of the real line

The set R of real number inherits its topology from the natural notion of distance
of points on the line: the distance %(x, y) of two numbers x, y ∈ R is the absolute
value of their difference

%(x, y) := |x− y|.

The distance function % : R×R→ [0,+∞) is called the metric on R, see Section B.2
for a summary of metric space topology more generally. Here we first remind the
reader of some fundamental properties of the topology of the real line specifically.

Extended real line

Frequently during the present course it is convenient to extend the real line R by
two symbols, −∞ and +∞, and consider the extended real line

R̂ = R ∪ {−∞} ∪ {+∞} . (B.1)

We also alternatively denote the extended real line by R̂ = [−∞,+∞], because it
has the topology of a closed interval with −∞ and +∞ as its endpoints, as will be
detailed later in Example B.19. Likewise, we denote

[−∞,+∞) = R ∪ {−∞}
(−∞,+∞] = R ∪ {+∞}
(−∞,+∞) = R.

Supremum and infimum

One of the key defining properties of real numbers is the completeness property that
non-empty bounded subsets have least upper bounds and greatest lower bounds. In
the present text, supremum and infimum are used for these notions generalized to
the setup of the extended real line, and to a setup where we do not even require
non-emptiness and boundedness of the subset.
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Definition B.1 (Supremum and infimum).

Let A ⊂ R̂ be a subset of the extended real line.

The supremum, sup(A), is the least upper bound of A, i.e., the smallest
M ∈ [−∞,∞] such that x ≤M for all x ∈ A.

The infimum, inf(A), is the greatest lower bound of A, i.e., the greatest
M ∈ [−∞,∞] such that x ≥M for all x ∈ A.

For non-empty subsets ∅ 6= A ⊂ R of the real line, we have sup(A) ∈ (−∞,+∞],
whereas for the empty set ∅ we have sup(∅) = −∞. Likewise, for non-empty subsets
∅ 6= A ⊂ R of the real line, we have inf(A) ∈ [−∞,+∞), whereas for the empty
set ∅ we have inf(∅) = +∞.

For indexed collections (xj)j∈J , we denote the supremum and infimum also by

sup
j∈J

xj := sup
({

xj
∣∣ j ∈ J}) and inf

j∈J
xj := inf

({
xj
∣∣ j ∈ J}).

Sequences of numbers

In probability theory, we frequently encounter sequences of real numbers. Crualial
notions about sequences include in particular convergence (limits), monotonicity,
and upper and lower limits (limsup and liminf).

Convergence of sequences of numbers

The usual notion of limit of a sequence of real numbers is the following.

Definition B.2 (Convergence of real number sequences).
Let x1, x2, x3, . . . be a sequence of real numbers.

The sequence is said to converge to (or tend to) a limit x ∈ R if for all ε > 0
there exists n0 = n0(ε) ∈ N such that for all n ≥ n0 we have |xn − x| < ε. We
then denote

lim
n→∞

xn = x or xn −→
n→∞

x.

In addition to the above usual notion of limit of the sequence inside R, we consider
also limits +∞ and −∞.

Definition B.3 (Convergence of real number sequences towards infinities).
Let x1, x2, x3, . . . be a sequence of real numbers.

The sequence is said to converge to (or tend to) +∞ if for all M > 0 there
exists n0 = n0(M) ∈ N such that for all n ≥ n0 we have xn > M . We then
denote limn→∞ xn = +∞ or xn → +∞.

The sequence is said to converge to (or tend to) −∞ if for all M < 0 there
exists n0 = n0(M) ∈ N such that for all n ≥ n0 we have xn < M . We then
denote limn→∞ xn = −∞ or xn → −∞.
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Monotone sequences of numbers

A sequence x1, x2, x3, . . . of real numbers is said to be increasing if

x1 ≤ x2 ≤ x3 ≤ · · · .

If the sequence x1, x2, x3, . . . is increasing, then it has a limit x ∈ (−∞,+∞], and
we denote

xn ↑ x.
It is easy to see that the limit of an increasing sequence is its supremum

x = sup
n∈N

xn.

Likewise, a sequence x1, x2, x3, . . . of real numbers is said to be decreasing if

x1 ≥ x2 ≥ x3 ≥ · · · .

If the sequence x1, x2, x3, . . . is decreasing, then it has a limit x ∈ [−∞,+∞), and
we denote

xn ↓ x.
It is easy to see that the limit of a decreasing sequence is its infimum

x = inf
n∈N

xn.

Sequences of numbers which are either increasing or decreasing are said to be mono-
tone.

Upper and lower limits of sequences

For a sequence x1, x2, x3, . . . of real numbers, we define the upper limit

lim sup
n

xn := inf
m∈N

(
sup
n≥m

xn

)
Note that if we define cm = supn≥m xn, then the sequence c1, c2, . . . of numbers in
(−∞,+∞] is decreasing, and its limit is limm→∞ cm = lim supn xn.

We also define the lower limit

lim inf
n

xn := sup
m∈N

(
inf
n≥m

xn

)
Note that if we define dm = infn≥m xn, then the sequence d1, d2, . . . of numbers in
[−∞,+∞) is increasing, and its limit is limm→∞ dm = lim infn xn.

Proposition B.4 (Limit in terms of upper and lower limits).
For any sequence x1, x2, x3, . . . of real numbers we have

lim inf
n

xn ≤ lim sup
n

xn.

The equality above holds if and only if the sequence is convergent, and it this
case lim infn xn = lim supn xn = limn→∞ xn.

Exercise B.1. Prove Proposition B.4.
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Countability properties on the real line

We make use of the following facts on a few occasions.

Exercise B.2 (Open subsets of the real line are countable unions of open intervals).
Show that any open set V ⊂ R is the union of at most countably many open intervals.

Hint: Show that every point x ∈ V is contained in some interval (a, b) ⊂ V with rational endpoints

a, b ∈ Q.

Proposition B.5 (Open sets as countable unions of disjoint open intervals).
Any open set V ⊂ R is the union of countably many disjoint open intervals.

Exercise B.3. Give a proof of the above proposition, using the following steps.

(a) Show that any open set V ⊂ R is the union of countably many open intervals.
Hint: Show that every point x ∈ V is contained in some interval (a, b) ⊂ V with rational

endpoints a, b ∈ Q.

(b) Show that any open set V ⊂ R is the union of countably many disjoint open intervals.
Hint: Show that every point x ∈ V is contained in a unique maximal interval (a, b) within

the set V . Use part (a) to show that there are at most countably many different such maximal

intervals.

Proposition B.6 (Monotone functions have countably many discontinuities).
A monotone function f : R→ R has countably many points of discontinuity.

Exercise B.4. Prove the above proposition.
Hint: Consider f restricted to an interval [k, k + 1]. For a given m ∈ N, how many jumps of size

at least 1
m

can f have on such an interval?

B.2. Metric space topology

Basic concepts of metric space topology

Recall that a metric space is a set X equipped with a metric, i.e., a function
% : X× X→ [0,∞) such that

%(x, y) = 0 ⇔ x = y (%-Sep)

%(x, y) = %(y, x) ∀x, y ∈ X (%-Sym)

%(x, y) ≤ %(x, z) + %(z, y) ∀x, y, z ∈ X. (%-Tri)

Example B.7 (Real line as a metric space).
The set of real numbers R equipped with the usual metric %(x, y) = |x−y| is a metric space.

Example B.8 (Euclidean space as a metric space).
Consider the d-dimensional real vector space Rd. The Euclidean norm of a vector x =
(x1, . . . , xd) ∈ Rd is

‖x‖ =
√
x2

1 + · · ·+ x2
d.

The space Rd equipped with the metric %(x, y) = ‖x− y‖ is a metric space.
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Example B.9 (Discrete metric).
Let S be any set. If we think of the points of S as discrete, then we may define the discrete
metric on S by

%dis(x, y) =

{
1 if x 6= y

0 if x = y.

The set S equipped with the metric %dis is a metric space.

Example B.10 (Uniform norm).
Consider the space of continuous real-valued functions on a closed interval [a, b] ⊂ R

C ([a, b]) := {f : [a, b]→ R continuous} .

The supremum norm (or uniform norm) of a function f ∈ C ([a, b]) is

‖f‖∞ = sup
x∈[a,b]

|f(x)|.

The space C ([a, b]) equipped with the metric %(f, g) = ‖f − g‖∞ is a metric space.

Exercise B.5. Verify in each of the examples above that the given metric indeed satisfies the
axioms (%-Sep), (%-Sym), and (%-Tri).

We will use the following topological notions in metric spaces.

Definition B.11 (Open balls).
Let x ∈ X and r > 0. The (open) ball of radius r centered at x is the subset

Br(x) =
{
y ∈ X

∣∣ %(x, y) < r
}
.

Definition B.12 (Open sets).
A subset A ⊂ X is open, if for all its points some ball centered at that point
is contained in the set A (i.e., ∀x ∈ A ∃r > 0 : Br(x) ⊂ A).

Exercise B.6 (Open balls are open sets).
Prove that any open ball Br(x) ⊂ X is an open set.

Definition B.13 (Closed sets).
A subset A ⊂ X is closed , if its complement X \ A is open.

Note that for example the empty set ∅ ⊂ X and the whole space X are both open
and closed. There are also sets which are neither open nor closed.

Definition B.14 (Limit of a sequence).
A sequence (xn)n∈N of points xn ∈ X converges to x ∈ X if %(xn, x) → 0 as
n→∞. We then call x the limit of the sequence and denote

lim
n→∞

xn = x or xn −→
n→∞

x.

Exercise B.7 (The limit of a real number sequence in terms of metric).
Verify that the usual notion of a limit of a sequence of real numbers given in Definition B.2
coincides with Definition B.14 in the special case when the metric space is R (Example B.7).
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Definition B.15 (Continuous functions between metric spaces).
If (X(1), %(1)) and (X(2), %(2)) are two metric spaces, then a function f : X(1) →
X(2) is continuous if for any convergent sequence (xn)n∈N of points xn ∈ X(1)

the sequence (f(xn))n∈N converges in X(2) and

lim
n→∞

f(xn) = f( lim
n→∞

xn).

The notions of convergence of sequences and continuity of functions can be formu-
lated in purely topological terms, without reference to metric, only using the notion
of open sets.

Proposition B.16 (Topological characterization of continuity).
A function f : X(1) → X(2) between two metric spaces (X(1), %(1)) and (X(2), %(2))
is continuous if and only if for every open set V in X(2), the preimage f−1(V ) ={
x ∈ X(1)

∣∣ f(x) ∈ V
}

is open in X(1).

Proposition B.17 (Topological characterization of limits).
A sequence (xn)n∈N of points in a metric space (X, %) converges to x ∈ X if and
only if for every open set U ⊂ X containing the point x, there exists n0 = n0(U)
such that for all n ≥ n0 we have xn ∈ U .

Exercise B.8. Verify that the convergence of a sequence and continuity of a function can be
equivalently defined in terms of open sets as stated in Propositions B.17 and B.16 above.

Definition B.18 (Homeomorphism).
If (X(1), %(1)) and (X(2), %(2)) are two metric spaces, then a function f : X(1) →
X(2) is a homeomorphism if f is bijective and both f : X(1) → X(2) and its
inverse f−1 : X(2) → X(1) are continuous. Two spaces are homeomorphic if
there exists a homeomorphism between them.

According to Proposition B.16, for a bijective function f to be a homeomorphism,
a characterizing property is that a subset U ⊂ X(1) is open if and only if its image
f(U) ⊂ X(2) is open. Since all topological properties can be formulated using the
notion of open sets, homeomorphisms are exactly the mappings which preserve all
topological properties.

Example B.19 (The topology of the extended real line).
Consider the function h : [−π2 ,+

π
2 ]→ [−∞,+∞] defined by

h(s) =


−∞ if s = −π2
tan(s) if − π

2 < s < +π
2

+∞ if s = +π
2 .

It is easy to see that h is bijective.

The restriction of the function h to the open interval (−π2 ,+
π
2 ) is continuous (it is the

trigonometric function tan: (−π2 ,+
π
2 ) → R) and has continuous inverse (the inverse is

arctan: R → (−π2 ,+
π
2 )). It is therefore provides a homeomorphism from the open interval

(−π2 ,+
π
2 ) to the real line R.

We can define a topology on the extended real line R̂ = [−∞,+∞] by requiring that

h : [−π2 ,+
π
2 ]→ R̂ is a homeomorphism. With this definition, in particular, a subset A ⊂ R̂
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is open if and only if h−1(A) ⊂ [−π2 ,+
π
2 ] is open. The topology of R̂ can be obtained for

example using the metric %(x, y) = |h−1(x)− h−1(y)|, but since this choice of metric is not

canonical and in particular does not agree with the usual metric on the subset R ⊂ R̂, we

usually prefer not to use an explicitly chosen metric on R̂.

Exercise B.9 (Convergence on the extended real line).
Verify that our definition of convergence of a real sequence (xn)n∈N to +∞ (respectively
to −∞) in Definition B.3 is equivalent to the convergence of that sequence in the topological

space R̂ to the point +∞ ∈ R̂ (resp. to −∞ ∈ R̂).





Appendix C

Dynkin’s identification and monotone class theorem

In this appendix we give the proof of Dynkin’s identification theorem (Theorem II.26)
and we state and prove a related result, the Monotone class theorem (Theorem C.2
below), which was used in Lectures IV and IX.

It is possible to study Sections C.2 and C.3 immediately after Lecture II, where
Dynkin’s identification theorem was stated.

Another option is to study this entire appendix after Lecture IV, where the Mono-
tone class theorem is first used. This latter approach may be more convenient, since
the techniques of proofs of both results are very closely related.

C.1. Monotone class theorem

Definition C.1 (Monotone class).
A collection H of bounded functions from S to R is said to be a monotone
class if it satisfies the following conditions:

(MC-1) The constant function 1 belongs to H .
(MC-R) The class H is a vector space1 over R.
(MC-↑) If f1, f2, . . . ∈H is an increasing sequence of non-negative functions in H

such that the pointwise limit f = limn→∞ fn is a bounded function, then
f ∈H .

Theorem C.2 (Monotone class theorem).
Suppose that H is a monotone class of bounded functions from S to R. Let J
be a π-system on S. Then if H contains the indicator function IA of every set
A ∈ J in the π-system, then H contains all bounded σ(J )/B-measurable
functions.

C.2. Auxiliary results

In the proof of both Dynkin’s identification theorem and Monotone class theorem,
we use the following definitions and auxiliary observations.

Definition C.3 (D-system).
A collection D of subsets of S is said to be a d-system on S if it satisfies the
following conditions:

1That H is a vector space means that it is stable under taking linear combinations of functions:
if we have f1, f2 ∈H and c1, c2 ∈ R, then we also have c1f1 + c2f2 ∈H .
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(D-1) S ∈ D
(D-d) if A,B ∈ D and A ⊂ B, then B \ A ∈ D
(D-↑) if A1, A2, . . . ∈ D is an increasing sequence of subsets and A =

⋃
n∈NAn is

its limit, then A ∈ D .

Proposition C.4 (A characterization of sigma algebras).
A collection C of subsets of S is a σ-algebra if and only if it is both a d-system
and a π-system.

Proof. The “if” direction is obvious: a σ-algebra clearly satisfies both the conditions of a d-system
and of a π-system. It thus suffices to prove the “only if” part.

Suppose that C is both a π-system and a d-system. We must show that C is a σ-algebra.

By property (D-1) we have S ∈ C , so C satisfies condition (Σ-1) of σ-algebras. If A ∈ C ,
then we have Ac = S \A ∈ C by properties (D-1) and (D-d), so C satisfies condition (Σ-c)
of σ-algebras. It remains to show condition (Σ-∪), i.e., that C is stable under countable
unions.

Consider first the union of just two sets A1, A2 ∈ C in the collection. We have Ac
1, A

c
2 ∈ C

by d-system properties and then Ac
1 ∩ Ac

2 ∈ C by π-system properties. Using De Morgan’s
law we then observe that

A1 ∪A2 = S \ (Ac
1 ∩Ac

2) ∈ C ,

again by d-system properties. From this, by induction one gets that C is stable under finite
unions.

Now consider a countable sequence of sets A1, A2, . . . ∈ C . Denote Gn = A1 ∪ · · · ∪ An.
The induction above allows to conclude that Gn ∈ C . Then G1 ⊂ G2 ⊂ · · · is an increasing
sequence of subsets belonging to the collection C , so by d-system property (D-↑) we get that
also the limit G =

⋃
n∈NGn belongs to the collection C . But by construction

⋃
n∈NGn =⋃

n∈NAn, so we conclude that
⋃
n∈NAn ∈ C . This shows that C also satisfies condition

(Σ-∪) of σ-algebras, and finishes the proof. �

Definition C.5 (D-system generated by a collection of subsets).
The d-system generated by a collection I of subsets of S is the smallest d-
system D which contains the collection I . We denote the d-system generated
by the collection I by d(I ).

Remark C.6 (Well-definedness of generated d-systems).
The definition makes sense again essentially because the intersection of d-systems is a d-
system. The smallest d-system with the property that they contain the collection I is the
intersection of all such d-systems (the intersection is over a non-empty collection since at
the very least the power set P(S) is such a d-system).

Lemma C.7 (Dynkin’s lemma).
Suppose that J is a π-system. Then the d-system d(J ) generated by J and
the σ-algebra σ(J ) generated by J coincide, d(J ) = σ(J ).

Proof. Since any sigma-algebra is a d-system, we clearly have d(J ) ⊂ σ(J ). By Proposition C.4
it thus suffices to show that d(J ) is also a π-system. We show this in two steps.

In the first step our goal is to show that whenever B ∈ d(J ) and C ∈ J , we have
B ∩ C ∈ d(J ). Define therefore the collection

D1 =
{
B ∈ d(J )

∣∣∣ B ∩ C ∈ d(J ) for all C ∈J
}
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of sets B with this property. Rephrasing our goal, we wish to show that this collection is
simply D1 = d(J ). By construction we have D1 ⊂ d(J ). Moreover, since J is a π-system,
we have J ⊂ D1. Since d(J ) is the smallest d-system containing J , showing that D1 is
a d-system will thus achieve our goal: D1 = d(J ).

For any C ∈ J we have S ∩ C = C ∈ J ⊂ d(J ), so we get that S ∈ D1, i.e., property
(D-1) holds for D1. If A,B ∈ D1 and A ⊂ B and C ∈J , then we have(

B \A
)
∩ C =

(
B ∩ C︸ ︷︷ ︸
∈ d(J )

)
\
(
A ∩ C︸ ︷︷ ︸
∈ d(J )

)
∈ d(J )

by property (D-d) of d-system d(J ). We get B \ A ∈ D1, and we thus see that property
(D-d) holds for D1. If A1, A2, . . . ∈ D1 is an increasing sequence of subsets and C ∈ J ,
then we have ( ⋃

n∈N
An

)
∩ C =

⋃
n∈N

(
An ∩ C︸ ︷︷ ︸
∈ d(J )

)
∈ d(J )

by property (D-↑) of d-system d(J ). We get
⋃
n∈NAn ∈ D1, and we thus see that property

(D-↑) holds for D1. We conclude that D1 is a d-system, and therefore that D1 = d(J ),
which was our first goal.

In the second step our goal is to show that whenever A,B ∈ d(J ), we have A∩B ∈ d(J ).
Define therefore the collection

D2 =
{
A ∈ d(J )

∣∣∣ A ∩B ∈ d(J ) for all B ∈ d(J )
}

of sets A with this property. Rephrasing our second goal, we wish to show that this collection
is simply D2 = d(J ). From the first step we got that J ⊂ D2 and by construction we
have D2 ⊂ d(J ). Since d(J ) is the smallest d-system containing J , showing that D2 is
a d-system will thus achieve our second goal: D2 = d(J ). The proof that D2 is a d-system
is exactly parallel to the similar argument in the first step.

The conclusion of the second step precisely says that d(J ) is a π-system, and the proof is
thus complete. �

C.3. Proof of Dynkin’s identification theorem

Recall the statement of the nontrivial direction of Dynkin’s identification theorem
(Theorem II.26): we assume that

• P1 and P2 are two probability measures on a measurable space (Ω,F )
• J is a π-system on Ω such that σ(J ) = F
• for all E ∈J we have P1[E] = P2[E].

Then the claim is that the two probability measures are in fact identical,

P1 = P2,

i.e., that the equalities P1[E] = P2[E] hold for all events E ∈ F .

Proof of Dynkin’s identification theorem (Theorem II.26). Let

D =
{
E ∈ F

∣∣∣ P1[E] = P2[E]
}

be the collection of those E for which the desired equality P1[E] = P2[E] holds. To show
that P1 = P2 we must show that this collection contains all events, D = F .

We claim that D is a d-system on Ω. The defining properties are checked as follows:

• We have P1[Ω] = 1 = P2[Ω] by definition of probability measures. Therefore we see that
Ω ∈ D , which shows property (D-1) for D .
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• Suppose that A,B ∈ D and A ⊂ B. Write B = A ∪ (B \ A), which is a disjoint union,
so by finite additivity of probabilities for disjoint sets (Lemma II.19) we get

P1[B] = P1[A] + P1[B \A]

and similarly for P2. We solve this for the probability of B \A and get

P1[B \A] = P1[B]− P1[A]

= P2[B]− P2[A] (because A,B ∈ D)

= P2[B \A].

This shows that B \A ∈ D , and establishes property (D-d) for D .
• Suppose that A1, A2, . . . ∈ D and An ↑ A. By monotone convergence of probabilities

(Theorem II.22) we get P1[An] ↑ P1[A] and similarly for P2. Therefore we have

P1[A] = lim
n→∞

P1[An]

= lim
n→∞

P2[An] (because An ∈ D)

= P2[A].

This shows that A ∈ D , and establishes property (D-↑) for D .

We have shown that D is a d-system. By assumption, J is contained in it, J ⊂ D , so
also the d-system generated by J must be contained in it, d(J ) ⊂ D . Since J is a π-
system, we get from Dynkin’s lemma (Lemma C.7) that d(J ) = σ(J ), and by assumption
we have σ(J ) = F . Therefore we conclude F ⊂ D . By definition of D this means that
P1[E] = P2[E] hold for all events E ∈ F . �

C.4. Proof of Monotone class theorem

With the preparations in Section C.2 we can prove also the Monotone class theorem.
It is worth observing that the proof steps are exactly those of the “standard machine”
of integration theory (see Lecture VII).

Proof of Theorem C.2 (Monotone class theorem). Let H be a monotone class of bounded func-
tions from S to R. Define D as the collection of subsets A ⊂ S whose indicator belongs to
the monotone class, IA ∈H . Properties (MC-1), (MC-R), and (MC-↑) of H imply that D
has properties (D-1), (D-d), and (D-↑), i.e., D is a d-system.

Now assume, as in the statement, that J is a π-system such that H contains the indicator
function of each member of J . Then we have J ⊂ D . Since D is a d-system, also d(J ) ⊂
D . Furthermore d(J ) = σ(J ) by Dynkin’s lemma, so we actually have σ(J ) ⊂ D . In
other words, all indicator functions of sets in σ(J ) are in the monotone class H .

Any bounded simple σ(J )/B-measurable function is a finite linear combination of indi-
cator functions of sets in σ(J ), so by the above observation σ(J ) ⊂ D and the vector
space property (MC-R) we have that the monotone class H contains such bounded simple
functions.

If f : S → R is a non-negative bounded σ(J )/B-measurable function, by the approximation
lemma (Lemma III.18) we may find a sequence f1, f2, . . . of non-negative simple σ(J )/B-
measurable functions such that fn ↑ f . We observed that the simple functions are in the
monotone class, fn ∈H . Therefore, by property (MC-↑), their limit is as well, f ∈H .

We have shown that H contains all non-negative bounded σ(J )/B-measurable functions.
For a general bounded σ(J )/B-measurable function f , write f = f+ − f− where f+ =
max(f, 0) and f− = max(−f, 0) are non-negative, bounded and σ(J )/B-measurable. As
this linear combination, f itself belongs to the monotone class, f ∈ H . This finishes the
proof. �



Appendix D

Monotone convergence theorem

This appendix is devoted to the proof of the Monotone convergence theorem from
Lecture VII. Let us recall its statement.

Theorem (Monotone convergence theorem, Theorem VII.8).
If f1, f2, . . . ∈ mS + and fn ↑ f as n→∞, then we have∫ +

fn dµ ↑
∫ +

f dµ as n→∞.

We will prove this in a number of steps, gradually increasing the generality of the
non-negative limit function f as well as the non-negative approximating functions fn.

D.1. Monotone convergence theorem for simple functions

First, notice that the Monotone convergence theorem for integrals is certainly closely
related to the following monotone convergence of measures, which we proved in
Lecture II.

Proposition (Part (II.9) of Lemma II.19).
If A1, A2, . . . ∈ S and An ↑ A as n→∞, then we have µ[An] ↑ µ[A].

With this initial observation, our first step is the following monotone convergence
result for simple functions approximating an indicator function.

Lemma D.1 (Monotone convergence for simple approximations of an indicator).
If we have A ∈ S , and if h1, h2, . . . ∈ sS + are such that hn ↑ IAas n → ∞,
then we have ∫ �

hn dµ ↑ µ[A] as n→∞.

Proof. Since we have hn ≤ IA, the monotonicity of the integral
∫ �

(Lemma VII.3) yields∫ �

hn dµ ≤
∫ �

IA dµ = µ[A],

so it suffices to prove that

lim inf
n

∫ �

hn dµ ≥ µ[A].

Let 0 < ε < 1. Define An =
{
s ∈ S

∣∣ hn(s) > 1− ε
}

. Then by the assumption hn ↑ IA, we
have An ↑ A. Monotone convergence of measures (Lemma II.19) thus gives µ[An] ↑ µ[A].

149
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Note also that hn ≥ (1−ε) IAn by construction of An, so the monotonicity of the integral
∫ �

gives ∫ �

hn dµ ≥ (1− ε)µ[An].

Taking the lower limit as n→∞ of this inequality and recalling µ[An] ↑ µ[A], we get

lim inf
n

∫ �

hn dµ ≥ (1− ε)µ[A].

Since ε > 0 can be taken arbitrarily small, we conclude that

lim inf
n

∫ �

hn dµ ≥ µ[A],

which finishes the proof. �

Next we prove the monotone convergence theorem for simple functions.

Lemma D.2 (Monotone convergence theorem for simple functions).
If h1, h2, . . . ∈ sS + and hn ↑ h ∈ sS + as n→∞, then we have∫ �

hn dµ ↑
∫ �

h dµ as n→∞.

Proof. Write h =
∑m
k=1 ak IAk , with a1, . . . , am > 0 and A1, . . . , Am ∈ S disjoint. Then we have

that 1
ak

IAkhn ↑ IAk as n → ∞ by assumption hn ↑ h. Now the assertion follows from
Lemma D.1 and linearity of the integral. �

D.2. Monotone convergence theorem for general non-negative functions

Above we established the Monotone convergence theorem for simple functions. The
next steps first relax the assumption that the limit function is simple, and then relax
the assumption that the approximating functions are simple.

Let us start by verifying that for any non-negative measurable function there exists
at least some sequence of simple functions for which the conclusion of the Monotone
convergence theorem holds.

Lemma D.3 (Monotone convergence for some simple approximating sequence).
For any f ∈ mS + there exists a sequence g1, g2, . . . ∈ sS + such that as
n→∞, we have

gn ↑ f and

∫ �

gn dµ ↑
∫ +

f dµ.

Proof. By Definition VII.4 we have∫ +

f dµ := sup
h∈sS +

0≤h≤f

∫ �

hdµ,

so there exists some sequence h1, h2, . . . ∈ sS + such that the integral of f is approximated
as ∫ �

hn dµ ↑
∫ +

f dµ as n→∞. (D.1)
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In addition, by the approximation lemma (Lemma III.18), there exists a sequence f1, f2, . . . ∈
sS + such that the function f is approximated as

fn ↑ f as n→∞. (D.2)

Define a new sequence g1, g2, . . . ∈ sS + in terms of the two sequences above as

gn := max {fn, h1, h2, . . . , hn} . (D.3)

By construction this sequence is pointwise increasing, g1 ≤ g2 ≤ · · · . The constructed
functions are also simple, gn ∈ sS + (the possible values of the maximum of finitely many
simple functions are the finitely many values of these simple functions together).

Moreover, we clearly have fn ≤ gn ≤ f , so from (D.2) we also get

gn ↑ f as n→∞.

Likewise, we clearly have hn ≤ gn ≤ f , so by monotonicity of the integral
∫ �

and definition

of the integral
∫ +

we get the inequalities∫ �

hn dµ ≤
∫ �

gn dµ ≤
∫ +

f dµ.

These inequalities, together with (D.1), give∫ �

gn dµ ↑
∫ +

f dµ as n→∞.

This finishes the proof. �

In the remaining steps of the proof of the Monotone convergence theorem, we use
the following auxiliary result about monotone increasing arrays twice.

Lemma D.4 (Monotone arrays).

Let
(
t
(r)
n

)
n∈N,r∈N be an array of numbers t

(r)
n ∈ [0,+∞], which is increasing in

both indices:

t
(r)
1 ≤ t

(r)
2 ≤ t

(r)
3 ≤ · · · for all r ∈ N (D.4)

t(1)
n ≤ t(2)

n ≤ t(3)
n ≤ · · · for all n ∈ N. (D.5)

For any r ∈ N, denote the limit of the increasing sequence (D.4) by

t(r) := lim
n→∞

t(r)n ,

and for any n ∈ N, denote the limit of the increasing sequence (D.5) by

tn := lim
r→∞

t(r)n .

Then the sequences t(1), t(2), . . . and t1, t2, . . . are both increasing, and their
limits

t(∞) := lim
r→∞

t(r) and t∞ := lim
n→∞

tn

coincide,

t(∞) = t∞.

Proof. We may assume that the array of numbers is uniformly bounded in the sense that for some

M < +∞ we have t
(r)
n ≤ M for all n ∈ N, r ∈ N (consider for example arctan(t

(r)
n ) if the

original table is not uniformly bounded).

Recall the definition tn = limr→∞ t
(r)
n , for all n ∈ N. Since for any n and r we have

t(r)n ≤ t
(r)
n+1 ≤M,
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taking the limits as r →∞ we get

tn ≤ tn+1 ≤M.

This shows that the sequence t1, t2, . . . is increasing and bounded by M . It therefore has a
limit, which we denote by t∞ = limn→∞ tn.

Similarly one shows that the sequence t(1), t(2), . . . is increasing and bounded. Denote its
limit by t(∞) = limr→∞ t(r).

Let ε > 0. Since tn ↑ t∞ as n→∞, we can choose some n0 such that tn0
> t∞ − 1

2ε. Then,

since t
(r)
n0 ↑ tn0

as r → ∞, we can choose some r0 such that t
(r0)
n0 > tn0

− 1
2ε. We now see,

because the sequences are increasing, that

t(∞) ≥ t(r0) ≥ t(r0)
n0

> tn0
− 1

2
ε > t∞ − ε.

Since ε > 0 was arbitrary, this shows t(∞) ≥ t∞. Completely symmetrically one obtains
the opposite inequality t∞ ≥ t(∞). We conclude the equality t∞ = t(∞), and the lemma is
proven. �

We now improve the result of Lemma D.3, and show that the specific choice of the
approximating sequence of simple functions did not matter.

Lemma D.5 (Monotone convergence for simple approximating sequences).
For any f ∈ mS + and any sequence h1, h2, . . . ∈ sS + such that hn ↑ f as
n→∞, we have ∫ �

hn dµ ↑
∫ +

f dµ.

Proof. Given f ∈ mS +, use Lemma D.3 to get a sequence g(1), g(2), . . . ∈ sS + such that

g(r) ↑ f and

∫ �

g(r) dµ ↑
∫ +

f dµ as r →∞.

Suppose now that h1, h2, . . . ∈ sS + is another sequence such that hn ↑ f as n→∞. Define,
for all n ∈ N and r ∈ N the function

f (r)
n := min

{
hn, g

(r)
}
,

which is simple, f
(r)
n ∈ sS +. Observe that in this situation

f (r)
n ↑ hn as r →∞

and f (r)
n ↑ g(r) as n→∞.

Also denote the integrals of these functions by

t(r)n :=

∫ �

f (r)
n dµ.

Consider first a fixed r ∈ N. Since f
(r)
n ↑ g(r) as n → ∞, we can apply the already proven

Monotone convergence theorem for simple functions, Lemma D.2, to get

t(r)n =

∫ �

f (r)
n dµ ↑

∫ �

g(r) dµ =: t(r) as n→∞.

Now letting r →∞, we have by the choice of the sequence g(1), g(2), . . . that

t(r) =

∫ �

g(r) dµ ↑
∫ +

f dµ =: t(∞) as r →∞.
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Consider then a fixed n ∈ N. Since f
(r)
n ↑ hn as r → ∞, we can again apply the already

proven Monotone convergence theorem for simple functions, Lemma D.2, to get

t(r)n =

∫ �

f (r)
n dµ ↑

∫ �

hn dµ =: tn as r →∞.

The integrals tn of the functions hn form an increasing sequence (the sequence of functions
is increasing and the integral is monotone), so they have a limit, which we denote by t∞:

tn =

∫ �

hn dµ ↑ t∞ as n→∞.

It now follows from Lemma D.4 on monotone increasing arrays that t∞ = t(∞). Recalling
the definition of t(∞), we have obtained that as n→∞,∫ �

hn dµ = tn ↑ t∞ = t(∞) =

∫ +

f dµ

and the proof is complete. �

Now, finally, we are ready to prove the Monotone convergence theorem in full gen-
erality.

Proof of the Monotone convergence theorem (Theorem VII.8). Let f1, f2, . . . ∈ mS + be a sequence
of non-negative measurable functions, which is pointwise increasing:

0 ≤ f1(s) ≤ f2(s) ≤ · · · for all s ∈ S.

Let f : S → [0,+∞] be the pointwise limit of this increasing sequence,

f(s) := lim
n→∞

fn(s) for s ∈ S,

so that we have fn ↑ f . By Proposition III.14 this limit function is measurable, f ∈ mS +.

For each n ∈ N, use the staircase function construction of Lemma III.18 to get an increasing

approximation of fn by simple functions: define f
(r)
n := ςr ◦ fn so that

f (r)
n ↑ fn as r →∞.

Note also that for a fixed r ∈ N, the r:th staircase function ςr : [0,+∞]→ [0, r] is monotone,
so when applied to the increasing sequence f1 ≤ f2 ≤ · · · it produces an increasing sequence

f
(r)
1 ≤ f (r)

2 ≤ · · · . By left-continuity of ςr, the limit of this increasing sequence is f (r) := ςr◦f
(see Remark III.20), i.e.,

f (r)
n ↑ f (r) as n→∞.

In particular, we thus see that the array of simple functions (f
(r)
n )n∈N,r∈N is pointwise

increasing in both of its indices, n and r.

Now for n ∈ N and r ∈ N, denote

t(r)n :=

∫ �

f (r)
n dµ.

Since the array of functions is increasing in both indices, by the monotonicity of the inte-

gral
∫ �

, also the array (t
(r)
n )n∈N,r∈N of their integrals is increasing in both indices.

Consider first a fixed r ∈ N. Then we have f
(r)
n ↑ f (r) as n→∞, where f (r) = ςr ◦ f . The

functions here are all simple, so we can apply the already proven Monotone convergence
theorem for simple functions, Lemma D.2, to get that

t(r)n :=

∫ �

f (r)
n dµ ↑

∫ �

f (r) dµ =: t(r) as n→∞.

The functions f (r) = ςr ◦f themselves constitute an increasing approximation of f by simple
functions,

f (r) ↑ f as r →∞.
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Therefore we can use the already proven Monotone convergence theorem with simple ap-
proximating functions, Lemma D.5, to get

t(r) :=

∫ �

f (r) dµ ↑
∫ +

f dµ =: t(∞) as r →∞.

Consider then a fixed n ∈ N. Then we have by construction f
(r)
n ↑ fn as r → ∞. The

approximating functions here are all simple, so we can apply the already proven Monotone
convergence theorem with simple approximating functions, Lemma D.5, to get that

t(r)n :=

∫ �

f (r)
n dµ ↑

∫ +

fn dµ =: tn as r →∞.

At this stage we apply again Lemma D.4: it says that as n → ∞ we have tn ↑ t∞ = t(∞).
Recalling what tn and t(∞) are, we have obtained∫ +

fn dµ = tn ↑ t∞ = t(∞) =

∫ +

f dµ.

This is exactly the assertion of the Monotone convergence theorem. �



Appendix E

Orthogonal projections and conditional expected values

This appendix concerns orthogonal projections in the space L2(P) of square inte-
grable random variables, and conditional expected values with respect to σ-algebras.

E.1. Geometry of the space of square integrable random variables

The Cauchy-Schwarz inequality, Equation (X.4) in Theorem X.6,∣∣∣E[XY ] ∣∣∣ ≤√E
[
X2
]
E
[
Y 2
]

for X, Y ∈ L2(P)

underlies a lot of familiar geometry in the space L2(P) of square integrable random
variables. We begin by defining inner products, norm, and distances, and establish-
ing results of familiar geometric flavor about them.

Inner product, norm, and distance

Definition E.1 (Inner product and norm for square integrable random variables).
For X, Y ∈ L2(P), we denote

〈X, Y 〉 := E
[
XY

]
(E.1)

We call this the inner product of the random variables X and Y . If the inner
product vanishes, 〈X, Y 〉 = 0, then we say that X and Y are orthogonal and
we denote X ⊥ Y .

For X ∈ L2(P), we denote

‖X‖ :=
√
〈X,X〉 =

√
E
[
X2
]

(E.2)

We call this the norm (or more specifically 2-norm) of the random variable X.

In this notation, the Cauchy-Schwarz inequality reads∣∣〈X, Y 〉∣∣ ≤ ‖X‖ ‖Y ‖.
Corollary X.7, in turn, amounts to the following bound

E
[
|X|
]
≤ ‖X‖

for expected values in terms of the norm.

The norm leads to a notion of distance in L2(P): for two square integrable random
variables X, Y ∈ L2(P), we interpret the norm of their difference

‖X − Y ‖
155
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as the distance between the two.1

Note that the distance satisfies the usual triangle inequality.

Lemma E.2 (Triangle inequality).
For any X, Y ∈ L2(P), we have

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖. (E.3)

Proof. We have, by bilinearity of the inner product and Cauchy-Schwarz inequality

‖X + Y ‖2 = 〈X + Y,X + Y 〉 = 〈X,X〉+ 2 〈X,Y 〉︸ ︷︷ ︸
≤2 ‖X‖ ‖Y ‖

+〈Y, Y 〉

≤ ‖X‖2 + 2 ‖X‖ ‖Y ‖+ ‖Y ‖2 =
(
‖X‖+ ‖Y ‖

)2

.

The assertion follows by taking square roots. �

Regarding orthogonality, we have the following familiar formula.

Lemma E.3 (Pythagoras’ theorem).
If X, Y ∈ L2 are orthogonal, X ⊥ Y , then we have

‖X + Y ‖2 = ‖X‖2 + ‖Y ‖2.

Proof. By direct calculation using bilinearity and symmetry of the inner product, we get

‖X + Y ‖2 = 〈X + Y,X + Y 〉
= 〈X,X〉+ 2 〈X,Y 〉︸ ︷︷ ︸

=0

+〈Y, Y 〉 = ‖X‖2 + ‖Y ‖2.

�

A similar calculation yields another useful formula.

Lemma E.4 (Parallelogram law).
If X, Y ∈ L2, then we have

‖X + Y ‖2 + ‖X − Y ‖2 = 2 ‖X‖2 + 2 ‖Y ‖2.

Proof. By direct calculation using bilinearity and symmetry of the inner product, we get

‖X + Y ‖2 + ‖X − Y ‖2 = 〈X + Y,X + Y 〉+ 〈X − Y,X − Y 〉
= 2 〈X,X〉+ 0 〈X,Y 〉+ 2 〈Y, Y 〉 = 2 ‖X‖2 + 2 ‖Y ‖2.

�

1It is common to quotient the space Lp(P) by the equivalence relation

X
a.s.
= Y ⇐⇒ P

[{
ω ∈ Ω

∣∣∣ X(ω) = Y (ω)
}]

= 1

of almost sure equality. This is quite natural, because we have E
[
|X|p

]
= E

[
|Y |p

]
whenever

X
a.s.
= Y , and moreover we have E

[
|X|p

]
= 0 if and only if X

a.s.
= 0. The quotient space

Lp(P) = Lp(P)/
a.s.
= is a vector space, and the formula ‖X‖p =

(
E
[
|X|p

])1/p
defines a norm in

it. The statements of Proposition E.6 and Exercise E.1 then assert that L2(P) and Lp(P) are
Banach spaces, i.e., a complete normed vector spaces.

There would be certain advantages in identifying random variables which are almost surely
equal. We, however, choose not to use this quotient space — agreeing with [Wil91], we find it
preferable that random variables are functions on Ω instead of equivalence classes of such functions.



E.1. GEOMETRY OF THE SPACE OF SQUARE INTEGRABLE RANDOM VARIABLES 157

The notion of distance, in turn, leads to a notion of convergence of sequences.
Compare this notion of convergence in the space L2(P) of square integrable random
variables with Defition XI.8 on convergence in the space L1(P) of integrable random
variables.2

Definition E.5 (Convergence in L2).
Suppose that X1, X2, . . . ∈ L2(P) and X ∈ L2(P). We say that Xn tends to

X in L2 as n → ∞ and denote Xn
L2−→ X, if we have ‖Xn − X‖ → 0 or

equivalently E
[
(Xn −X)2

]
→ 0 as n→∞.

Completeness of square integrable random variables

The space of square integrable random variables has the following completeness
property.

Proposition E.6 (The space of square integrable random variables is complete).
Suppose that X1, X2, . . . ∈ L2(P) is a sequence of square integrable random
variables which is Cauchy in the sense that

lim
m→∞

sup
n,n′≥m

‖Xn −Xn′‖ = 0. (E.4)

Then there exists a square integrable random variable X ∈ L2(P) such that we

have Xn
L2−→ X.

Proof. Assuming (E.4), we can choose m1 < m2 < · · · such that

‖Xn −Xn′‖ ≤ 2−k whenever n, n′ ≥ mk. (E.5)

By Corollary X.7, we then have also

E
[∣∣Xn −Xn′

∣∣] ≤√E
[(
Xn −Xn′

)2]
= ‖Xn −Xn′‖ ≤ 2−k for n, n′ ≥ mk.

In particular we get E
[∣∣Xmk+1

−Xmk

∣∣] ≤ 2−k and thus

∞∑
k=1

E
[∣∣Xmk+1

−Xmk

∣∣] < +∞.

According to Lemma VIII.6, it follows that almost surely the series
∞∑
k=1

(
Xmk+1

−Xmk

)
converges absolutely. Let Y denote the sum of this almost surely convergent series,

Y =

∞∑
k=1

(
Xmk+1

−Xmk

)
= lim

`→∞

∑̀
k=1

(
Xmk+1

−Xmk

)
= lim

`→∞

(
Xm`+1

−Xm` +Xm` −Xm`−1
+ · · ·+Xm3

−Xm2
+Xm2

−Xm1

)
= lim

`→∞

(
Xm`+1

−Xm1

)
.

2The limit of a sequence converging in L2(P) (or in L1(P), for that matter) is not strictly
speaking uniquely defined. Rather, if X,X ′ ∈ L2(P) are L2-limits of the same sequence, then

one can only conclude that they are almost surely equal, X
a.s.
= X ′. We have chosen to embrace

this slight non-uniqueness of limits. The alternative approach would again be to quotient by the

equivalence relation of almost sure equality,
a.s.
= .
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By setting X = Y +Xm1
, we conclude that almost surely

lim
`→∞

Xm` = X.

For any n ≥ mk, as a consequence of (E.5) and Fatou’s lemma, we obtain

E
[(
Xn −X

)2]
= E

[
lim
`→∞

(
Xn −Xm`

)2]
≤ lim inf

`
E
[(
Xn −Xm`

)2]
= lim inf

`
‖Xn −Xm`‖2 ≤ 4−k.

This shows first of all that Xn − X ∈ L2(P), so by the vector space property we get that
X = Xn − (Xn −X) is square integrable as well. Moreover, it shows that

lim
n→∞

E
[(
Xn −X

)2]
= 0,

which completes the proof. �

Exercise E.1 (Completeness of Lp).
Prove an analoguous statement for Lp(P), using Exercise VIII.9 instead of Corollary X.7.

Orthogonal projections to closed subspaces

Definition E.7 (Closed subspaces of square integrable random variables).
A vector subspace V ⊂ L2(P) in the space of square integrable random vari-
ables is said to be closed , if for any sequence X1, X2, . . . ∈ V which converges

in L2(P), a limit can be found also within the subspace, i.e., Xn
L2−→ X ∈ V .

We say that Y ∈ L2(P) is orthogonal to the subspace and denote Y ⊥ V , if
for all X ∈ V we have Y ⊥ X.

Given a random variable and a subspace, the natural notion of projecting the random
variable to the subspace is obtained by finding the nearest point within the subspace.
The existence and almost uniqueness of such a nearest point is guaranteed by the
following proposition, which also explains why this is an orthogonal projection.

Proposition E.8 (Orthogonal projection).
Let V ⊂ L2(P) be a closed subspace of square integrable random variables and
let Y ∈ L2(P) be a square integrable random variable. Define the distance of Y
to the subspace V by

∆ := inf
X∈V
‖Y −X‖. (E.6)

Then for a random variable Z ∈ V the following conditions are equivalent:

(i): ‖Y − Z‖ = ∆ (ii): Y − Z ⊥ V .

Furthermore, there exists a random variable Z ∈ V with these properties, and

if Z̃ ∈ V is another such random variable, then we have Z = Z̃ almost surely.

Proof. We first show the equivalence of the conditions (i) and (ii), then prove the existence of Z
satisfying (ii), and finally prove the almost uniqueness.
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proof of (ii)⇒ (i): Suppose that Z ∈ V satisfies (ii). Let Z ′ ∈ V be any other point in the
subspace. Because we have Z − Z ′ ∈ V, property (ii) implies Y − Z ⊥ Z − Z ′. Therefore
Pythagoras’ theorem gives

‖Y − Z ′‖2 = ‖Y − Z + Z − Z ′‖2

= ‖Y − Z‖2 + ‖Z − Z ′‖2 ≥ ‖Y − Z‖2.

Therefore Z minimizes the distance to Y within the subspace, ‖Y − Z‖ = ∆, i.e., (i) holds.

proof of (i)⇒ (ii): Suppose that Z ∈ V satisfies (i), i.e., ‖Y − Z‖ = ∆. Let V ∈ V, and for t ∈ R
consider the vector Z + tV ∈ V. Then by definition (E.6) we have

0 ≤ ‖Y − Z − tV ‖2 −∆2

= ‖Y − Z‖2︸ ︷︷ ︸
=∆2

−2t 〈Y − Z, V 〉+ t2 ‖V ‖2 −∆2

= − 2t 〈Y − Z, V 〉+ t2 ‖V ‖2.

If 〈Y − Z, V 〉 6= 0, then this polynomial would obtain negative values for small positive or
small negative t, which is a contradiction. Therefore we must have 〈Y − Z, V 〉 = 0, i.e., (ii)
holds.

proof of existence of minimizer: By definition (E.6), we can find a sequence Z1, Z2, . . . ∈ V such
that

‖Y − Zn‖2 ≤ ∆2 +
1

n
.

By the parallelogram law, Lemma E.4, for any n, n′ we have

2 ‖Y − Zn‖2 + 2 ‖Y − Zn′‖2 = ‖2Y − Zn − Zn′‖2 + ‖Zn − Zn′‖2.

Note here, that we have ‖2Y −Zn−Zn′‖2 = 4 ‖Y − Zn+Zn′
2 ‖2 ≥ 4∆2, since also Zn+Zn′

2 ∈ V.
We thus conclude that

‖Zn − Zn′‖2 = 2 ‖Y − Zn‖2 + 2 ‖Y − Zn′‖2 − ‖2Y − Zn − Zn′‖2

≤ 2
(
∆2 +

1

n

)
+ 2
(
∆2 +

1

n′
)
− 4∆2

≤ 2

n
+

2

n′
.

This shows that the sequence Z1, Z2, . . . is Cauchy. Therefore by Proposition E.6, the
sequence Z1, Z2, . . . converges in L2(P). Since V is a closed subspace, a limit remains in the

subspace, Zn
L2

−→ Z ∈ V.

By triangle inequality, we have

∆ ≤ ‖Y − Z‖ = ‖Y − Zn + Zn − Z‖ ≤ ‖Y − Zn‖︸ ︷︷ ︸
→∆

+ ‖Zn − Z‖︸ ︷︷ ︸
→0

−→
n→∞

∆,

so we conclude that ‖Y − Z‖ = ∆. This shows the existence of a random variable Z ∈ V
satisfying (i), and therefore also (ii).

proof of almost uniqueness: Suppose that Z, Z̃ ∈ V are two random variables satisfying (i) and (ii).

Then Z − Z̃ ∈ V and thus by (ii) we have Z − Z̃ ⊥ Y − Z. Therefore property (i) and
Pythagoras theorem again lead to

∆2 = ‖Y − Z̃‖2 = ‖Y − Z + Z − Z̃‖2

= ‖Y − Z‖2 + ‖Z − Z̃‖2 = ∆2 + ‖Z − Z̃‖2.

This shows that ‖Z − Z̃‖2 = 0, which implies Z = Z̃ almost surely. �

Given Y ∈ L2(P) and a closed subspace V ⊂ L2(P), a random variable Z which
satisfies (i) and (ii) is called (a version of) the orthogonal projection of Y to V .
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E.2. Conditional expected values

Throughout, let (Ω,F ,P) be a probability space. Given an integrable random
variable Y and a sub-σ-algebra G ⊂ F , we will define and study the conditional
expected value E[Y |G ] of Y given G . This should be interpreted as the best estimate
of Y that can be made based on the information G .3 We start by discussing the
case when Y is square-integrable.

Orthogonal projections as best estimates

Observe that if G ⊂ F is a sub-σ-algebra of F , then the space

L2(P) ∩ mG

of square integrable G -measurable random variables is a closed subspace of L2(P):
it is clearly a vector subspace, and satisfies the completeness property of Proposi-
tion E.6 — therefore any sequence in it which converges has a limit in it (convergent
sequences are necessarily Cauchy).

Suppose now that the σ-algebra G represents information available to us, and our

task is to form an estimate Ŷ of a random quantity Y ∈ L2(P) based on that
information. To formalize the property that the estimate is made based on infor-

mation G , we require that Ŷ is a G -measurable random variable.4 The difference

Y − Ŷ between the actual value and our estimate is the error we commit, and thus

the norm ‖Y − Ŷ ‖ tells us about the magnitude of the error.5 In this sense, the

best possible estimate is obtained by choosing Ŷ ∈ L2(P) ∩ mG which minimizes

‖Y − Ŷ ‖. According to Proposition E.8, this is achieved by letting Ŷ be the orthog-
onal projection of Y onto the subspace V = L2(P) ∩ mG .

We then observe a key property that the best estimate Ŷ satisfies.

Lemma E.9 (Orthogonal projection to G -measurable random variables).

For G ⊂ F a sub-σ-algebra and Y ∈ L2, let Ŷ be (a version of) the orthogonal
projection of Y to the closed subspace L2(P) ∩ mG of G -measurable square
integrable random variables. Then for any G ∈ G we have

E
[
IG Ŷ

]
= E

[
IG Y

]
.

Proof. Obviously IG is G -measurable and square integrable, so IG ∈ V := L2(P) ∩ mG . By

definition, Ŷ satisfies property (ii) of Proposition E.8: Y − Ŷ ⊥ V. Thus we in particular

have Y − Ŷ ⊥ IG. This can be explicitly written as

0 = 〈Y − Ŷ , IG〉 = 〈Y, IG〉 − 〈Ŷ , IG〉 = E
[
Y IG

]
− E

[
Ŷ IG

]
.

The asserted equality follows. �

This observation is the motivating idea, which underlies the abstract definition of
conditional expected values.

3Recall from Lecture IV the interpretation of σ-algebras as information.
4Morally, the value Ŷ of the estimate should be a deterministic function of the known infor-

mation (see Doob’s representation theorem, Theorem IV.5).
5In particular, Ŷ must be square integrable for the magnitude of error in this sense to be finite.
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Definition of conditional expected value

Let now Y ∈ L1(P) and let G ⊂ F be a sub-σ-algebra.

Definition E.10 (Conditional expected value).

A random variable Ŷ ∈ L1(P) is said to be (a version of) the conditional

expected value (denoted E[Y |G ]) of Y given G , if Ŷ ∈ mG and

E
[
IG Ŷ

]
= E

[
IG Y

]
for all G ∈ G . (E.7)

In particular, if Y ∈ L2(P), then by Lemma E.9 the orthogonal projection of Y to
L2(P) ∩ mG is (a version of) this conditional expected value. In the general case
of Y ∈ L1(P), we still have to show that such conditional expected values exist.
We start, however, by first addressing their uniqueness (up to the usual amount of
ambiguity).

Lemma E.11 (Almost uniqueness of conditional expected values).

Suppose that both Ŷ and Ŷ ′ are conditional expected values of Y given G . Then

the two are almost surely equal, Ŷ
a.s.
= Ŷ ′.

Proof. For n ∈ N, let

Gn :=

{
ω ∈ Ω

∣∣∣ Ŷ (ω)− Ŷ ′(ω) ≥ 1

n

}
.

Then we have Gn ∈ G , since Ŷ and Ŷ ′ are G -measurable. By Markov’s inequality, we get

1

n
P[Gn] ≤ E

[
IGn (Ŷ − Ŷ ′)

]
= E

[
IGn Ŷ

]
− E

[
IGn Ŷ ′

]
= E

[
IGn Y

]
− E

[
IGn Y

]
= 0,

where we used the definition of conditional expected values for both Ŷ and Ŷ ′. We conclude
that P[Gn] = 0, and then using the union bound also

P
[
Ŷ > Ŷ ′

]
= P

[ ⋃
n∈N

Gn

]
≤
∑
n∈N

P[Gn] =
∑
n∈N

0 = 0.

By changing the roles of Ŷ and Ŷ ′, one similarly derives P
[
Ŷ < Ŷ ′

]
= 0, and therefore

P
[
Ŷ 6= Ŷ ′

]
= 0.

By passing to the complementary events, this concludes the proof of Ŷ
a.s.
= Ŷ ′. �

We will denote the conditional expected values of Y given G by

E[Y |G ] ∈ L1(P) ∩mG ,

and not worry too much about the possibility that different choices for it could be
made, since any two choices are anyway almost surely equal.

Admitting that conditional expected values exist, the reader can now for example
verify the following.

Exercise E.2 (Conditional expected value preserves non-negativity).
Show that if Y ≥ 0 (almost surely) then also E[Y |G ] ≥ 0 (almost surely).

The remaining task is to show that the conditional expected value E[Y |G ] exists
not only when Y ∈ L2(P), but generally for any Y ∈ L1(P). We first do this by
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assuming non-negativity of Y , and then it is routine to deal with the general case
by splitting to positive and negative parts.

Conditional expected value for integrable random variables

Let Y be a non-negative integrable random variable. Denote by Y ∧ n this random
variable truncated at level n:(

Y ∧ n
)
(ω) = min {Y (ω), n} for ω ∈ Ω.

Then Y ∧n is bounded and in particular square integrable, Y ∧n ∈ L2(P). Moreover,
we have Y ∧ n ↑ Y as n→∞.

We use this approximation by square integrable random variables to construct the
conditional expected value of non-negative integrable Y .

Lemma E.12 (Truncation approximation to conditional expected values).
Let Y be a non-negative integrable random variable, and let Zn be the orthog-
onal projection of Y ∧ n to the subspace L2(P) ∩ mG . Then there exists an
integrable mG -measurable random variable Z such that Zn ↑ Z as n → ∞
(almost surely), and we have

E
[
IG Z

]
= E

[
IG Y

]
for any G ∈ G .

Proof. Since Y ∧ (n + 1) ≥ Y ∧ n for any n ∈ N, it follows from linearity of projection and
Exercise E.2 that Zn+1 ≥ Zn (almost surely). Therefore the sequence Z1, Z2, . . . of (almost
surely) non-negative random variables is (almost surely) increasing, and thus has a limit Z.
By the mG -measurability of each Zn, the limit Z is also mG -measurable. Now let G ∈ G .
Then using Lemma E.9 once and the Monotone convergence theorem twice, we calculate

E
[
IG Z

]
= E

[
IG
(

lim
n→∞

Zn
)]

= lim
n→∞

E
[
IG Zn

]
= lim

n→∞
E
[
IG (Y ∧ n)

]
= E

[
IG
(

lim
n→∞

(Y ∧ n)
)]

= E
[
IG Y

]
.

This is the asserted property of the limit Z, and taking G = Ω in particular shows that
indeed Z ∈ L1(P). �

Proposition E.13 (Existence of conditional expected values).
For any Y ∈ L1(P), (a version of) the conditional expected value E[Y |G ] exists.

Proof. Decompose Y to its positive and negative parts, Y = Y+ − Y−. Lemma E.12 can be used

to construct conditional expected values Ŷ+ and Ŷ− of the non-negative integrable random

variables Y+ and Y− given G . Then E[Y |G ] := Ŷ+− Ŷ− clearly satisfies the defining property
of conditional expected value of Y given G . �

Properties of conditional expected value

In the following we summarize a number of important properties of conditional
expected values.
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Theorem E.14 (Properties of conditional expected values).
Conditional expected values satisfy the following properties (interpreted in the
almost sure sense), when Y and Y1, Y2, . . . are integrable random variables.

(i) If Y ∈ mG , then we have E[Y |G ] = Y .
(ii) We have E

[
E[Y |G ]

]
= E[Y ].

(iii) For c1, c2 ∈ R, we have E
[
c1Y1 + c2Y2

∣∣G ] = c1 E[Y |G ] + c2 E[Y2|G ].

(iv) If H ⊂ G ⊂ F are σ-algebras, then we have E
[
E[Y |G ]

∣∣H ]
= E[Y |H ].

(v) If Z ∈ mG and ZY ∈ L1(P), then we have E[ZY |G ] = Z E[Y |G ].
(vi) If G ⊥⊥ σ(Y ), then we have E[Y |G ] = E[Y ].

Remark E.15 (Interpretations of the properties of conditional expected values).
The properties in the theorem above have rather intuitive interpretations.

(i) The best estimate of a known quantity Y ∈ mG is the quantity Y itself.
(ii) The best estimate of a quantity Y is unbiased, in the sense that it has the same expected

value as the quantity Y itself.
(iii) The best estimate of a linear combination of quantities is the corresponding linear com-

bination of the best estimates.
(iv) Suppose that a person H possesses less information than a person G. If H tries to form

an estimate about the best estimate that G makes about some quantity Y , then the best
she can do is to use her own best estimate of the quantity Y .

(v) Known quantities can be treated like constants when forming best estimates.
(vi) Any information that is independent of Y can not be used to estimate Y any better than

the expected value E[Y ] of Y .

Proof of Theorem E.14. Property (i) is immediate from the defining equation (E.7) and the (al-
most) uniqueness of conditional expected value (Lemma E.11).

Property (ii) follows by taking G = Ω ∈ G in the defining equation (E.7) of conditional
expected value.

Property (iii) is a consequence of the linearity of the defining equation (E.7) and the (almost)
uniqueness of conditional expected value (Lemma E.11).

To prove property (iv), note first that both E[Y |H ] and E
[
E[Y |G ]

∣∣H ]
are by construction

H -measurable and integrable, so it only remains to verify the defining equation (E.7). For
H ∈H ⊂ G ⊂ F , using the defining property of conditional expected values, we get

E
[
IH E

[
E[Y |G ]

∣∣H ]]
= E

[
IH E[Y |G ]

]
= E

[
IH Y

]
.

Since conditional expected values are (almost) uniquely defined, this proves that

E
[
E[Y |G ]

∣∣H ]
= E[Y |H ].

We leave it as an exercise to the reader to prove property (v) by the “standard machine”, i.e,
by verifying the claim successively when the random variable Z is a G -measurable indicator,
a simple random variable, a non-negative random variable, and finally in the full generality
of the assertion.

To prove property (vi), note that the assumed independence G ⊥⊥ σ(Y ) implies that IG ⊥⊥ Y
for any G ∈ G . Therefore we get

E
[
IG Y

]
= E[IG] E[Y ] = E

[
IG E[Y ]

]
,

which by (almost) uniqueness of conditional expected value shows that E[Y |G ] = E[Y ]. �

Also for example Monotone convergence theorem, Dominated convergence theorem,
Fatou’s lemma, Jensen’s inequality, etc. hold in the appropriate form for condi-
tional expected values, and their proofs are straightforward modifications of the
corresponding ones for usual expected values.





Appendix F

Characteristic functions

This appendix is devoted to the proof of two results from Lecture XII: Lévy’s in-
version theorem (Theorem XII.7), by which the distribution of a random variable
is recovered from its characteristic function, and Theorem XII.9 about equivalent
conditions for convergence in distribution formulated in terms of cumulative distri-
bution functions or characteristic functions.

F.1. Lévy’s inversion theorem

Let

X : Ω→ R
be a real valued random variable. In this section, we use the following notational
conventions regarding its distribution:

• ν = PX , the distribution of X, a probability measure on R such that

ν[B] = P
[
X ∈ B

]
for Borel sets B ∈ B.

• ϕ = ϕX , the characteristic function of X, a function R→ C such that

ϕ(θ) = E
[
ei θX

]
=

∫
R
eiθx dν(x) for θ ∈ R.

• F = FX , the cumulative distribution function of X, a function R → [0, 1]
such that

F (x) = P
[
X ≤ x

]
= ν

[
(−∞, x]

]
for x ∈ R.

The statement of Lévy’s inversion theorem is the following.

Theorem (Lévy’s inversion theorem, Theorem XII.7).
For any a, b ∈ R, a < b, we have

lim
T→+∞

1

2π

∫ +T

−T

e−iθa − e−iθb

i θ
ϕ(θ) dθ (F.1)

= ν
[
(a, b)

]
+

1

2
ν
[
{a}

]
+

1

2
ν
[
{b}
]

(F.2)

Moreover, if
∫
R |ϕ(θ)| dθ < +∞, then X has a continuous probability density

function fX given by

fX(x) =
1

2π

∫
R
e−iθx ϕ(θ) dθ. (F.3)

Remark F.1. Formula (F.2) is occasionally written in terms of the cumulative distribution func-
tion as well. Recall from Proposition II.30 that the cumulative distribution function F is

165
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increasing and right-continuous: if xn ↓ x then F (xn) ↓ F (x). Since it is increasing and
bounded, the left limits also exist: they are defined by

F (x−) := lim
x′↑x

F (x′).

By monotone convergence of probability measures (Theorem II.22), the left limits can be
expressed in terms of the distribution ν as the following measures of open semi-infinite
intervals

F (x−) = lim
n→∞

F
(
x− 1

n

)
= lim

n→∞
ν
[(
−∞, x− 1

n

]]
= ν

[ ∞⋃
n=1

(
−∞, x− 1

n

]]
= ν

[
(−∞, x)

]
.

In particular, if there is a discontinuity in the cumulative distribution function at a point x,
then the size of the jump F (x)−F (x−) is the probability mass located at the single point x,

F (x)− F (x−) = ν
[
(−∞, x]

]
− ν
[
(−∞, x)

]
= ν

[
{x}

]
(at continuity points x of F there is no probability mass, ν[{x}] = 0).

For any a < b, the increment from a to b of the cumulative distribution function is

F (b)− F (a) = ν
[
(−∞, b]

]
− ν
[
(−∞, a]

]
= ν

[
(a, b]

]
.

If we replace F (x) by the average 1
2

(
F (x) + F (x−)

)
of the left and right limits, then the

corresponding increment becomes

1

2

(
F (b) + F (b−)

)
− 1

2

(
F (a) + F (a−)

)
= ν

[
(a, b)

]
+

1

2
ν
[
{a}

]
+

1

2
ν
[
{b}

]
.

This allows to alternatively write (F.2) in terms of the cumulative distribution function F .

In the proof we use the following auxiliary calculation.

Lemma F.2 (An auxiliary integral).
For r ∈ R define

S(r) :=

∫ r

0

sin(θ)

θ
dθ.

Then the limits as r ↑ +∞ and as r ↓ −∞ of this integral are

lim
r↑+∞

S(r) =
π

2
and lim

r↓−∞
S(r) = −π

2
.

Moreover, for any c ∈ R, we have∫ r

0

sin(c θ)

θ
dθ = S(c r).

Proof. Let us start from the last part: performing the change of variables θ′ = c θ we obtain the
asserted formula ∫ r

0

sin(c θ)

θ
dθ =

∫ cr

0

sin(θ′)

θ′
dθ′ = S(c r).

In particular taking c = −1 we see that S(−r) = S(r), so it suffices to consider r > 0.

The improper Riemann integral limr↑+∞ S(r) is one which is routine to evaluate with com-

plex analysis and residue calculus. Indeed, the principal value integral of eiz

z over the real
line evaluates to iπ times the residue at z = 0,

P.V.

∫ ∞
−∞

eiz

z
dz = iπ Resz=0

(eiz
z

)
= iπ.
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The result follows from this by taking the imaginary part and using parity. �

Proof of Theorem XII.7. We first prove the equality of (F.1) and (F.2). Then we prove the asser-
tion about the probability density assuming integrability of the characteristic function.

proof of (F.1)=(F.2): For any u, v ∈ R, we have |eiu − eiv| ≤ |u− v|. We deduce that∫
R

(∫ +T

−T

∣∣∣eiθ(x−a) − eiθ(x−b)

i θ

∣∣∣︸ ︷︷ ︸
≤ |iθb−iθa|

|iθ| ≤ |b−a|

dθ

)
dν(x) ≤ 2T |b− a| < +∞.

This finiteness of the double integral of absolute value justifies the use of Fubini’s theorem
to exchange the order of integrations in expression (F.1)∫ +T

−T

e−iθa − e−iθb

i θ
ϕ(θ) dθ =

∫ +T

−T

e−iθa − e−iθb

i θ

(∫
R
eiθx dν(x)

)
dθ

=

∫
R

(∫ +T

−T

eiθ(x−a) − eiθ(x−b)

i θ
dθ

)
dν(x).

In the last expression, the inner integral over θ is such that the imaginary part of the
integrand is an odd function and the real part of the integrand is an even function, so only
the real part survives integration over the symmetric interval [−T, T ]. We are able to express
the result in terms of the integrals S(r) of Lemma F.2:∫ +T

−T

eiθ(x−a) − eiθ(x−b)

i θ
dθ =

∫ +T

−T

sin
(
θ(x− a)

)
− sin

(
θ(x− b)

)
θ

dθ

= 2

∫ +T

0

sin
(
θ(x− a)

)
θ

dθ − 2

∫ +T

0

sin
(
θ(x− b)

)
θ

dθ

= 2S
(
(x− a)T

)
− 2S

(
(x− b)T

)
.

As T → +∞, it follows from Lemma F.2 that we have

∫ +T

−T

eiθ(x−a) − eiθ(x−b)

i θ
dθ −→


2π if a < x < b

π if x = a or x = b

0 if x < a or x > b,

and the left hand side expression is uniformly bounded in T (as an upper bound for its
absolute value we may use for example 4 supr>0 |S(r)| < +∞). The bounded convergence
theorem therefore says that the limit T → +∞ can be interchanged with the integration
over the probability measure ν:∫

R

(∫ +T

−T

eiθ(x−a) − eiθ(x−b)

i θ
dθ

)
dν(x) −→

T→∞
2π ν

[
(a, b)

]
+ π ν

[
{a}

]
+ π ν

[
{b}

]
.

This concludes the proof of the first assertion, the equality of (F.1) and (F.2).

proof of probability density part: Suppose now that
∫
R |ϕ(x)|dx < +∞. Note that the function (F.3)

fX(x) =
1

2π

∫
R
e−iθx ϕ(θ) dθ.

is continuous: if xn → x then we have the pointwise limit e−iθxn ϕ(θ) → e−iθx ϕ(θ) by
continuity of the exponential function, and domination |e−iθxn ϕ(θ)| ≤ |ϕ(θ)| by an inte-
grable function, so it follows from dominated convergence theorem that fX(xn) → fX(x).
It therefore remains to show that this fX is a probability density for the measure ν.

Next note that ∣∣∣e−iθa − e−iθb

iθ
ϕ(x)

∣∣∣ ≤ |a− b| |ϕ(x)|.
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Therefore by the Dominated convergence theorem (domination by constant multiple of the
integrable function |ϕ(x)|), the left hand side (F.1) can be written simply as

1

2π

∫
R

e−iθa − e−iθb

i θ
ϕ(θ) dθ.

Also by dominated convergence (domination again by multiple of |ϕ(x)|), if an → a and
bn → b, we get

1

2π

∫
R

e−iθan − e−iθbn

i θ
ϕ(θ) dθ −→ 1

2π

∫
R

e−iθa − e−iθb

i θ
ϕ(θ) dθ.

Using the result of the first part and rewriting (F.2) in terms of the cumulative distribution
function F , we get

F (bn) + F (b−n )

2
− F (an) + F (a−n )

2
−→ F (b) + F (b−)

2
− F (a) + F (a−)

2
.

This shows that the cumulative distribution function F is continuous.

Again, since we have ∣∣∣e−iθa − e−iθb

iθ(b− a)
ϕ(x)

∣∣∣ ≤ |ϕ(x)|,

we may calculate the derivative of the cumulative distribution function F by dominated
convergence as follows:

F ′(a) = lim
b→a

F (b)− F (a)

b− a
= lim

b→a

1

2π

∫
R

e−iθa − e−iθb

i θ (b− a)
ϕ(θ) dθ

=
1

2π

∫
R
eiθa ϕ(θ) dθ.

Thus the derivative is given by the expression in (F.3), F ′(x) = fX(x). It follows that fX
is a probability density, because for any interval (a, b) ⊂ R we have

ν
[
(a, b)

]
= F (b)− F (a) =

∫ b

a

F ′(x) dx =

∫ b

a

fX(x) dx

and intervals form a π-system which uniquely determine the probability measure ν. �

Let us at this point also prove a lemma which allows us to control the amount of
probability mass that is outside a large interval [−r,+r] in terms of the behavior of
the characteristic function ϕ(θ) near θ = 0.

Lemma F.3 (A bound on the probability mass outside an interval).
Let ν be a probability measure on (R,B), and let ϕ(θ) =

∫
R e

iθx dν(s) be its
characteristic function. Then for any r > 0 we have

ν
[
R \ [−r,+r]

]
≤ r

2

∫ 2/r

−2/r

(
1− ϕ(θ)

)
dθ.

Proof. Let us denote u = 2/r for convenience. Start with the following calculation of an integral∫ u

−u
(1− eiθx) dθ = 2u− 1

ix

(
eiux − e−iux

)
= 2u− 2 sin(ux)

x
= 2u

(
1− sin(ux)

ux

)
.

Let us then integrate both sides of this equation over the variable x with respect to the
measure ν. On the left hand side we get, using Fubini’s theorem,∫

R

(∫ u

−u
(1− eiθx) dθ

)
dν(x) =

∫ u

−u

(∫
R

(1− eiθx) dν(x)
)

dθ

=

∫ u

−u

(
1− ϕ(θ)

)
dθ.
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Dividing by u and equating with what we get on the right hand side gives

1

u

∫ u

−u

(
1− ϕ(θ)

)
dθ = 2

∫
R

(
1− sin(ux)

ux

)
dν(x).

Because sin(ξ)
ξ ≤ 1 for any ξ ∈ R, we see that the integrand on the right hand side here is

non-negative, 1 − sin(ux)
ux ≥ 0. Therefore omitting from the integral over R the part over

[−r, r] ⊂ R yields a lower bound

1

u

∫ u

−u

(
1− ϕ(θ)

)
dθ ≥ 2

∫
R\[−r,r]

(
1− sin(ux)

ux

)
dν(x).

Then observe that for |x| > r = 2/u we have | sin(ux)
ux | ≤

1
u|x| ≤

1
2 , so the integrand on the

remaining part satisfies 1− sin(ux)
ux ≥ 1

2 , which yields

1

u

∫ u

−u

(
1− ϕ(θ)

)
dθ ≥ 2

∫
R\[−r,r]

1

2
dν(x) = ν

[
R \ [−r,+r]

]
.

Recalling that u = 2/r, this is exactly the asserted inequality. �

F.2. Equivalent conditions for convergence in distribution

Theorem (Theorem XII.9).
Let X1, X2, . . . and X be real-valued random variables. Let also ν1, ν2, . . . and
ν be their laws, and let F1, F2, . . . and F be their cumulative distribution func-
tions, and let ϕ1, ϕ2, . . . and ϕ be their characteristic functions, respectively.
Then the following conditions are equivalent:

(i) For all bounded continuous functions f : R→ R we have∫
R
f(x) dνn(x) −→

∫
R
f(x) dν(x) as n→∞.

(ii) We have Fn(x) → F (x) as n → ∞ for all points x ∈ R such that F is
continuous at x.

(iii) We have ϕn(θ)→ ϕ(θ) as n→∞ for all θ ∈ R.

Proof. We first show the equivalence of (i) and (ii) by proving both implications “(i) ⇒ (ii)”
and “(ii) ⇒ (i)”.

Then we show that “(i) ⇒ (iii)”. Finally, we show that “(iii) ⇒ (ii)”, making use of the
previously established implications. The equivalence of all three conditions then follows.

proof of “ (i) ⇒ (ii)”: Assume (i), i.e., that for all bounded continuous functions f : R → R we
have ∫

R
f(x) dνn(x) −→

n→∞

∫
R
f(x) dν(x).

Let x0 ∈ R be a continuity point of F . Fix ε > 0. Then by continuity of F at x0, for
some δ > 0 we have

F (x0 − δ) > F (x0)− ε and F (x0 + δ) < F (x0) + ε. (F.4)

Now define two piecewise linear functions f−, f+ : R→ R by

f−(x) =


1 if x ≤ x0 − δ
x0−x
δ if x0 − δ < x < x0

0 if x0 ≤ x
, f+(x) =


1 if x ≤ x0

x0+δ−x
δ if x0 < x < x0 + δ

0 if x0 + δ ≤ x
.
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These functions are chosen so that we have the pointwise inequalities

I(−∞,x0−δ](x) ≤ f−(x) ≤ I(−∞,x0](x) ≤ f+(x) ≤ I(−∞,x0+δ](x). (F.5)

If we integrate (F.5) over x with respect to the measure ν, the indicators integrate to values
of the cumulative distribution function F , and by monotonicity of integral, we get

F (x0 − δ) ≤
∫
f− dν ≤ F (x0) ≤

∫
f+ dν ≤ F (x0 + δ).

Combining with inequalities (F.4) and rearranging terms, we derive the estimates∫
f+ dν − ε < F (x0) <

∫
f− dν + ε.

Similarly we can integrate (F.5) with respect to νn for any n ∈ N to get∫
f− dνn ≤ Fn(x0) ≤

∫
f+ dνn.

To estimate Fn(x0)− F (x0), we can combine these with the previous inequalities and rear-
range to the form∫

f− dνn −
∫
f− dν − ε < Fn(x0)− F (x0) <

∫
f+ dνn −

∫
f+ dν + ε.

Now since the functions f− and f+ are bounded and continuous, by our assumption (i)
there exists some N such that for n ≥ N we have∣∣∣ ∫ f− dνn −

∫
f− dν

∣∣∣ < ε and
∣∣∣ ∫ f+ dνn −

∫
f+ dν

∣∣∣ < ε.

For n ≥ N , our estimate on Fn(x0)− F (x0) therefore yields

−2ε < Fn(x0)− F (x0) < +2ε.

Since ε > 0 was arbitrary, we can conclude limn→∞ Fn(x0) = F (x0), which establishes (ii).

proof of “ (ii) ⇒ (i)”: Assume (ii), i.e., that limn→∞ Fn(x) = F (x) for all x ∈ D, where D ⊂ R is
the set of continuity points of F . The increasing function F can only have countably many
points of discontinuity, so the complement R \D is countable, and thus D ⊂ R is dense.1

Let ε > 0. Since F (x) ↓ 0 as x ↓ −∞ and F (x) ↑ 1 as x ↑ +∞ (Proposition II.30), and since
D ⊂ R is dense, we can choose a, b ∈ D, a < b, such that F (b) − F (a) > 1 − ε. Moreover,
since limn→∞ Fn(a) = F (a) and limn→∞ Fn(b) = F (b), there exists some N1 such that we
have

Fn(b)− Fn(a) > 1− 2ε for all n ≥ N1.

Let f : R→ R be bounded and continuous. On the compact interval [a, b] ⊂ R, the function f
is uniformly continuous, so for some δ > 0 we have |f(x)−f(y)| < ε whenever |x−y| < δ and
x, y ∈ [a, b]. Now choose points a = c0 < c1 < · · · < ck−1 < ck = b such that cj − cj−1 < δ
and cj ∈ D for all j = 1, . . . , k. Then for any j = 1, . . . , k, we get∣∣f(x)− f(cj)

∣∣ < ε for x ∈ [cj−1, cj ].

Define the simple function h : R→ R by

h(x) =

k∑
j=1

f(cj) I(cj−1,cj ](x)

The above estimate shows that |f(x) − h(x)| < ε for all x ∈ [a, b]. By boundedness of f ,
there exists a constant K > 0 such that |f(x)| ≤ K for all x ∈ R. Since h vanishes outside
(a, b], the triangle inequality for integral with respect to νn gives∣∣∣ ∫

R
f dνn −

∫
R
hdνn

∣∣∣ ≤ ∫
(a,b]

|f − h|dνn︸ ︷︷ ︸
≤ε

+

∫
R\(a,b]

|f |dνn︸ ︷︷ ︸
≤K νn

[
R\(a,b]

]
.

1In fact, the proof of this implication only relies on having pointwise convergence of the cu-
mulative distribution functions in some dense set.
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When n ≥ N1, we have νn
[
R \ (a, b]

]
= 1− νn

[
(a, b]

]
= 1− (Fn(b)− Fn(a)) < 2ε, and thus

the triangle inequality implies∣∣∣ ∫
R
f dνn −

∫
R
hdνn

∣∣∣ ≤ ε+K 2ε = (1 + 2K) ε.

Similarly, integrating now with respect to ν instead, one shows that∣∣∣ ∫
R
f dν −

∫
R
hdν

∣∣∣ ≤ (1 +K) ε.

It remains to consider the integrals of the function h with respect to both νn and ν. These
integrals are expressible in terms of the cumulative distribution functions,∫

R
hdνn =

k∑
j=1

f(cj) νn
[
(cj−1, cj ]

]
=

k∑
j=1

f(cj)
(
Fn(cj)− Fn(cj−1)

)
and similarly ∫

R
hdν =

k∑
j=1

f(cj)
(
F (cj)− F (cj−1)

)
.

The difference of the integrals of h with respect to these two can therefore be estimated as∣∣∣ ∫
R
hdν −

∫
R
hdνn

∣∣∣ =
∣∣∣ k∑
j=1

f(cj)
(
F (cj)− Fn(cj)− F (cj−1) + Fn(cj−1)

)∣∣∣
≤

k∑
j=1

|f(cj)|
(∣∣F (cj)− Fn(cj)

∣∣+
∣∣F (cj−1) + Fn(cj−1)

∣∣)
≤ 2kK max

j=1,...,k

∣∣F (cj)− Fn(cj)
∣∣.

By our assumption (ii), we have limn→∞ Fn(cj) = F (cj) for each j = 1, . . . , k, so there exists
N2 such that for n ≥ N2 we have maxj=1,...,k |F (cj)− Fn(cj)| < ε

k , and thus∣∣∣ ∫
R
hdν −

∫
R
hdνn

∣∣∣ ≤ 2Kε.

Combining the estimates we have obtained, for n ≥ max(N1, N2), we have∣∣∣ ∫
R
f dν −

∫
R
f dνn

∣∣∣
≤
∣∣∣ ∫

R
f dν −

∫
R
hdν

∣∣∣︸ ︷︷ ︸
≤(1+K)ε

+
∣∣∣ ∫

R
hdν −

∫
R
hdνn

∣∣∣︸ ︷︷ ︸
≤2Kε

+
∣∣∣ ∫

R
hdνn −

∫
R
f dνn

∣∣∣︸ ︷︷ ︸
≤(1+2K)ε

≤ (2 + 5K)ε.

Since ε > 0 was arbitrary, this shows that
∫
f dνn →

∫
f dν as n → ∞, so we have estab-

lished (i).

proof of “ (i) ⇒ (iii)”: Assume that we have E[f(Xn)]→ E[f(X)] as n→∞ for all bounded con-
tinuous functions f : R→ R. In particular, for any fixed θ ∈ R the functions f(x) = cos(θx)
and f(x) = sin(θx) are bounded and continuous, so we get

ϕn(θ) = E
[

exp(iθXn)
]

= E
[

cos(θXn)
]

+ i E
[

sin(θXn)
]

−→
n→∞

E
[

cos(θX)
]

+ i E
[

sin(θX)
]

= ϕ(θ).

proof of “ (iii) ⇒ (ii)”: Assume (iii), i.e., for all θ ∈ R we have ϕn(θ) → ϕ(θ) as n → ∞. Let us
denote by D ⊂ R the set of continuity points of F . Our proof of (ii) consists of proving two
parts:
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(1) Existence of subsequential limits: Given any subsequence indexed by (nk)k∈N, we can

find a further subsequence indexed by (nk`)`∈N and a cumulative distribution function F̃

such that Fnk` (x)→ F̃ (x) as `→∞ at all continuity points x of F̃ .

(2) Uniqueness of subsequential limits: If a cumulative distribution function F̃ is the limit

of Fnk along some subsequence, pointwise in the set of continuity points of F̃ , then we

must have F̃ = F .

From these two together we derive that Fn(x) → F (x) for all x ∈ D. Indeed, suppose by
contradiction that there exists x ∈ D such that Fn(x) does not tend to F (x). Then there
exists some ε > 0 and a subsequence (nk)k∈N such that |Fnk(x) − F (x)| ≥ ε for all k ∈ N.

Applying (1) to this subsequence, we find a further subsequence indexed by (nk`)`∈N and F̃

such that Fnk` → F̃ , pointwise in the set of continuity points of F̃ . Then by (2) we should

have F̃ = F , but this is a contradiction, since |Fnk` (x)−F (x)| ≥ ε holds in the subsequence.

This shows that (1) and (2) indeed imply (ii).

Proving uniqueness of subsequential limits (2) is straightforward using the already estab-
lished implications “(ii) ⇒ (i)” and “(i) ⇒ (iii)”. Indeed, suppose that Fnk converges to

F̃ , pointwise in the set of continuity points of F̃ . By the already established “(ii) ⇒ (i)”,
this implies the convergence

∫
f dνnk →

∫
f dν̃ for all bounded continuous f , where the

probability measure ν̃ has F̃ as its cumulative distribution function. This, in turn, by the
already established “(ii) ⇒ (i)”, implies that ϕnk(θ) → ϕ̃(θ) for all θ ∈ R, where ϕ̃ is the
characteristic function of ν̃. But since the entire sequence ϕ1, ϕ2, . . . of characteristic func-
tions has limit ϕ, the limit of the subsequence must be the same, ϕ̃ = ϕ. Therefore we also

get ν̃ = ν (by Lévy’s inversion theorem) and F̃ = F , and the uniqueness part (2) follows.

It remains to prove the existence of subsequential limits (1). The basic idea is to use Cantor’s
diagonal extraction. In order to keep the notation simpler, let us show how to extract a
convergent subsequence from the entire sequence (Fn)n∈N — the same argument works for
extracting a convergent subsequence from any given subsequence. The set Q of rational
numbers is countable, so let Q =

{
q(1), q(2), . . .

}
be an enumeration of it. Observe that for

any rational point q(j) ∈ Q, the sequence
(
Fn(q(j))

)
n∈N of values at this point is a bounded

sequence: 0 ≤ Fn(q(j)) ≤ 1 for all n ∈ N. In particular, considering q(1) ∈ Q first, we can

find a subsequence indexed by (n
(1)
k )k∈N such that

lim
k→∞

F
n
(1)
k

(q(1))

exists. Then considering q(2) ∈ Q, we can find a subsequence of this already chosen subse-

quence, indexed now by (n
(2)
k )k∈N such that

lim
k→∞

F
n
(2)
k

(q(2))

exists, and since this is a subsequence of the previous one, also

lim
k→∞

F
n
(2)
k

(q(1)) = lim
k→∞

F
n
(1)
k

(q(1)).

Continuing inductively, we find subsequences (n
(`)
k )k∈N, ` = 1, 2, 3, . . ., such that

the limit lim
k→∞

F
n
(`)
k

(q(j)) exists for all j ≤ `.

Then if we consider the subsequence of diagonally selected indices n` := n
(`)
` , we get that

the limit lim
`→∞

Fn`(q
(j)) exists for all j ∈ N,

since apart from finitely many first members, the index sequence (n`)`∈N is a subsequence

of (n
(j)
k )k∈N. The limits

G(q(j)) := lim
`→∞

Fn`(q
(j))

define a function on the set of rational numbers

G : Q→ [0, 1].
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As the limit of the increasing functions Fn` (restricted to Q), this function is also increasing:

G(q) ≤ G(q′) when q, q′ ∈ Q and q < q′.

We now claim that G(q) ↓ 0 as q ↓ −∞ and G(q) ↑ 1 as q ↑ −∞ — this is the place where
the assumption (iii) is used. Let ε > 0. Then, since ϕ(0) = 1 and θ 7→ ϕ(θ) is continuous
at θ = 0 (by Proposition XII.6), there exists δ > 0 such that∣∣1− ϕ(θ)

∣∣ < ε when |θ| < δ.

In particular we have

1

δ

∫ δ

−δ

(
1− ϕ(θ)

)
dθ < ε.

By assumption (iii) we have ϕn(θ)→ ϕ(θ) for all θ. Since we have
∣∣1−ϕn(θ)

∣∣ ≤ 1 + |ϕn(θ)| ≤ 2,
the Bounded convergence theorem (Corollary VII.21) implies

1

δ

∫ δ

−δ

(
1− ϕn(θ)

)
dθ −→

n→∞

1

δ

∫ δ

−δ

(
1− ϕ(θ)

)
dθ,

and we can conclude that there exists an Nε such that for n ≥ Nε we have

1

δ

∫ δ

−δ

(
1− ϕn(θ)

)
dθ < 2ε.

In view of Lemma F.3 this gives for n ≥ Nε
νn
[
R \ [−R,R]

]
< 2ε,

where R = 2/δ. For the corresponding cumulative distribution functions this implies

Fn(x) < 2ε for x < −R
Fn(x) > 1− 2ε for x > −R.

The inequalities inherited by the subsequential limit G(q) = lim`→∞ Fn`(q) are then

G(q) ≤ 2ε for q < −R
G(q) ≥ 1− 2ε for q > −R.

Since ε > 0 was arbitrary, this shows that G(q) ↓ 0 as q ↓ −∞ and G(q) ↑ 1 as q ↑ −∞.

The function G is not yet the cumulative distribution function we are looking for: it is only
defined on the rational numbers, and it is not necessarily right-continuous. But we can use
it to define

F̃ (x) = inf
q>x
q∈Q

G(q)

(this in fact defines the smallest right continuous function above G). From the definition it
is clear that if q′, q′′ ∈ Q and q′ < x < q′′, then

G(q′) ≤ F̃ (x) ≤ G(q′′).

We leave it to the reader to check that this F̃ is right continuous, increasing, and has limits 0

and 1 at −∞ and +∞, respectively. Therefore F̃ is a cumulative distribution function of
some probability measure ν̃ on R.

The only remaining claim is that the subsequence (Fn`)`∈N converges to F̃ pointwise in the

set D̃ ⊂ R of continuity points of F̃ . Consider x ∈ D̃ and let ε > 0. Then by continuity

of F̃ at x we have for some δ > 0

F̃ (x− δ) > F̃ (x)− ε and F̃ (x+ δ) < F̃ (x) + ε.

Choose q′ ∈ Q∩ (x− δ, x). Then by the definition G(q′) = lim`→∞ Fn`(q
′) there exists some

Lε such that for all ` ≥ Lε we have

Fn`(q
′) > G(q′)− ε,

which yields

Fn`(x) ≥ Fn`(q′) > G(q′)− ε ≥ F̃ (x− δ)− ε > F̃ (x)− 2ε.
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Since ε > 0 was arbitrary, we get

lim inf
`

Fn`(x) ≥ F̃ (x).

By choosing q′′ ∈ Q ∩ (x, x+ δ), one can similarly argue that

lim sup
`

Fn`(x) ≤ F̃ (x),

and these two combined imply

lim
`→∞

Fn`(x) = F̃ (x).

This establishes the existence of subsequential limits (1), and finishes the proof. �
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π-system, see also pi-system
σ-algebra, see also sigma algebra
p-integrable, 78

addition of functions, see also pointwise sum
of functions

additivity
countable, 8
finite, 13

almost sure, see also almost surely
event, 9
limit, 108

almost surely, 9
axiom of choice, 129

ball, 141
binary sequence, 135
binomial distribution, 13
Borel sigma algebra, 5
Borel-measurable function, 22

cardinality, 131
Cartesian product, 81, 128
Cauchy sequence

of square integrable random variables, 155
Cauchy-Schwarz inequality, 97
central limit theorem, 107
characteristic function, 120, 159
Chebyshev’s inequality, 111
closed set, 141
closed subspace, 156
complement, 127
complex valued random variable, 118
conditioned probability measure, 11
continuous distribution, 74, 95
continuous function, 141
convergence

almost surely, 108
in L1, 115, 154
in probability, 108
of a sequence of numbers, 138

convergence in distribution, 117, 125
convergence in law, 117, 125
convergent sequence, 141
countable set, 132
countably infinite, 132
counting measure, 9, 90

covariance, 98
cumulative distribution function, 18, 103

d-system, 143
De Morgan’s laws, 128
decreasing sequence

of numbers, 139
of sets, 129

density function, 74
joint, 95
marginal, 96

difference
of sets, 127

Dirac measure, 96
discrete metric, 141
disjoint, 127
disjoint union, 127
distribution

joint, 93
of a random variable, 23, 72

dominated convergence theorem, 68

Euclidean norm, 140
ev., see also eventually
event, ix, 1, 2
eventually, 44
expected value, ix, 55, 71
exponential distribution, 74
extended real line, 27, 137

Fatou’s lemma, 67
reverse, 67

finite measure, 9
finite measure space, 9

gaussian distribution, 74
geometric distribution, 13
Goddess of Chance, ix

homeomorphism, 142

i.o., see also infinitely often
image of a set under function, 128
improper Riemann integral, 70
increasing sequence

of numbers, 139
of sets, 129

independence, 41
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of σ-algebras, 39
of events, 40
of random variables, 40

indicator random variable, 24
inf, see also infimum
infimum, 137, 138
infinitely often, 44
inner product

of square integrable random variables, 153
integrable

complex random variable, 118
integrable function, 63
integrable random variable, 63, 78
integral, 55

of a non-negative function, 59
of a simple function, 57
of an integrable function, 63
over subset, 69

intersection of sets, 127

Jensen’s inequality, 79
joint density, 95
joint law, 93

Kolmogorov’s strong law of large numbers,
116

law, see also distribution
of a random variable, 23, 72

law of large numbers, 107
Lebesgue integral, 70
Lebesgue measure, 10, 90
d-dimensional, 10, 90

liminf
of events, see also eventually
of sequence of numbers, 139
of sequence of sets, 130

limit, 141
of a decreasing sequence of sets, 129
of a sequence of numbers, 138
of an increasing sequence of sets, 129

limsup
of events, see also infinitely often
of sequence of numbers, 139
of sequence of sets, 130

linearity
of integral, 56

lower limit
of sequence of numbers, 139
of sequence of sets, 130

marginal density, see also density function,
marginal, 96

Markov process, 94
Markov’s inequality, 111
MCT, see also Monotone convergence

theorem
measurable

set, 7

space, 7, 8
measurable function, 21, 22
measurable space, 7
measure, 8
measure space, 9
moment, 78
monotone class, 38, 82, 143
Monotone class theorem, 82
monotone convergence

of integrals, 62
of measures, 13

Monotone convergence theorem, 61, 147
monotone sequence

of numbers, 139
of sets, 130

monotonicity
of integral, 56
of measures, 13

multiplication of functions, see also
pointwise product of functions

negative part
of a function, 63

norm
of square integrable random variable, 153

open set, 141
orthogonality

of square integrable random variables,
153, 156

outcome, ix

pi-system (π-system), 17
pointwise product of functions, 27
pointwise scalar multiple of functions, 27
pointwise sum of functions, 27
Poisson distribution, 12
positive part

of a function, 63
power set, 129
preimage of a set under function, 128
probability, ix
probability density, 95
probability mass function, 12
probability measure, 9
probability space, 9
product measure, 86
product of functions, see also pointwise

product of functions
product sigma algebra, 83

random number, 22
random variable, ix, 21, 22
random walk, 54
Riemann integral, 70

sample space, ix
scalar multiplication of functions, see also

pointwise scalar multiple of functions
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sequence
decreasing, 129, 139
increasing, 129, 139
monotone, 130, 139
of sets, 129

sigma algebra
generated by collection of events, 3
generated by random variables, 36

sigma algebra (σ-algebra), 2
sigma finite, 90
simple function, 30, 57
square integrable random variable, 97
staircase function, 31
standard machine, 56, 146
standard normal distribution, 74
strong law of large numbers, 110
subadditivity

countable, 14
finite, 13

sum of functions, see also pointwise sum of
functions

sup, see also supremum
supremum, 137, 138
supremum norm, 141
sure event, 9

tail event, 48
tail sigma algebra, 48
tend

seeconverge, 138
total mass

of a measure, 9
truncated measure, 11

uncountable set, 135
uniform norm, 141
uniform probability measure

continuous, 11
discrete, 10
on a finite set, 10

union of sets, 127
upper limit

of sequence of numbers, 139
of sequence of sets, 130

variance, 98

weak convergence, 117
weak law of large numbers, 110
Weierstrass’ approximation theorem, 112
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