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Abstract. We show the existence of a non-injective uniformly quasiregular mapping acting

on the one-point compactification H̄1 = H1 ∪ {∞} of the Heisenberg group H1 equipped

with a sub-Riemannian metric. The corresponding statement for arbitrary quasiregular

mappings acting on sphere Sn was proven by Martin [27]. Moreover, we construct uniformly

quasiregular mappings on H̄1 with large dimensional branch sets. We prove that for any

uniformly quasiregular map g on H̄1 there exists a measurable CR structure µ which is

equivariant under the semigroup Γ generated by g. This is equivalent to the existence of an

equivariant horizontal conformal structure.

1. Introduction

Quasiconformal and quasiregular maps play a crucial role in geometric function theory
and new developments target generalizations of these notions to the abstract metric-measure
setting as in the work of Heinonen and Koskela [14], [12]. An important class of spaces
where such general results work is the setting of Carnot groups, in particular the setting of
Heisenberg groups which are the simplest examples of non-commutative stratified groups.
In this setting the theory of quasiconformal and quasiregular maps has been considered by
various authors. Korányi and Reimann focused on quasiconformal mappings ([21], [23] and
[22]), while Heinonen, Holopainen and Rickman [13], [17] were the first ones to consider
quasiregular maps in the Heisenberg/Carnot setting.

As seen from the papers of Markina [24] or Dairbekov [7], many analytic regularity prop-
erties of quasiregular maps in the Carnot setting are almost as good as the corresponding
statements in Euclidean spaces. It is therefore of general interest to find examples of qua-
siconformal and quasiregular maps on Heisenberg or Carnot groups with given non-trivial
properties. Let us recall that – as presented in Rickman’s monograph [31] – in the Euclidean
setting there is a great collection of classical examples of quasiregular maps illustrating the
richness of the theory. In the setting of Carnot groups it is much harder to construct examples
due to the highly complicated structure of the underlying sub-Riemannian geometry.

In this paper we take a step in the direction of constructing interesting examples of quasireg-
ular maps. We shall work in the setting of the compactified first Heisenberg group which can
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be identified with the unit sphere in C2. In this setting we shall construct uniformly quasireg-
ular maps – even with almost full dimensional branch set. Related to a semigroup Γ generated
by uniformly quasiregular maps we prove the existence of an equivariant CR structure. This is
interesting also from the point of view of several complex variables because by a result which
goes back to Poincaré [30] there are no non-injective CR maps acting on the standard unit
sphere in C2. The only semigroup of CR maps (with respect to the standard CR structure
on S3 ⊆ C2) must be the restriction to S3 of a subgroup of the conformal automorphisms of
the unit ball in C2.

The paper is organized as follows: in the first Section 2 we fix the notation and recall the
sub-Riemannian geometric setting of the Heisenberg groups. Here we also formulate some
basic definitions and recall previous results on quasiconformal and quasiregular mappings in
this setting. In Section 3 we construct a uqr map on the compactified Heisenberg group H̄1

starting from the winding map and using the flow method. In Section 4 we construct uqr
maps on H̄1 with branch set of Hausdorff dimension close to 4. We use in the construction
similar ideas as in [3]. Section 5 is devoted to the proof of the existence of a CR structure (or
equivalently, a horizontal conformal structure) which is equivariant under a given countable,
abelian semigroup of uqr maps acting on H̄1. The corresponding statement for the Riemann
sphere is known as the Sullivan-Tukia theorem [1]. The last Section 6 is for final remarks and
open questions.

Acknowledgements We thank Lászlo Lempert and Jeremy Tyson for valuable commu-
nication on the subject of this paper. We wish we could have shared the joy of finding the
uqr world in the Heisenberg group with Juha Heinonen. We will never forget his enthusiasm
and encouragement towards new discoveries and better understanding in mathematics.

2. Notations and preliminaries

A quasiregular map f with a uniform control of the distortion of all its iterates is called
uniformly quasiregular (uqr). In the Riemannian case such maps are studied in [19] and
they are always conformal with respect to some measurable Riemannian structure. The first
examples of such mappings acting on the sphere were found in [18] and further in more general
Riemannian manifolds in [29]. One of the main goals of the present paper is to construct uqr
maps in the setting of sub-Riemannian geometry of the compactified Heisenberg groups.

In our model for the Heisenberg group Hn we take R2n+1 as the underlying space and
provide it with the group multiplication

p · p′ = (x + x′, y + y′, t + t′ − 2x · y′ + 2y · x′) for p = (x, y, t), p′ = (x′, y′, t′) ∈ Hn,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, t ∈ R and x · y denotes the standard scalar
product on Rn.

It is sometimes more appropriate to write points in the Heisenberg group in complex
notation as follows p = (x, y, t) =: (z, t) ∈ Cn × R. The above group law in this notation
becomes

(z, t)(z′, t′) = (z + z′, t + t′ + 2 Im z · z̄′),
where z · z′ is the standard complex scalar product in Cn.
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The left-invariant vector fields at points p ∈ Hn are given by

Xj(p) =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n

Yj(p) =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n

T (p) =
∂

∂t
and they form a basis of the Lie algebra of the Heisenberg group. Denote by HT the horizontal
tangent bundle of Hn, that is the subbundle of the tangent bundle THn with fibers

HTp = span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)}, p ∈ Hn.

The Heisenberg group is equipped with the norm

|(x, y, t)| = (
(|x|2 + |y|2)2 + t2

)1/4

and the Heisenberg distance

(2.1) dH(p, q) = |p−1q|, p, q ∈ Hn,

which is equivalent to the Carnot-Carathéodory metric based on the curve length of horizontal
curves (see [10]).

The vector fields

Zj =
1
2

(Xj − iYj) =
∂

∂zj
+ iz̄j

∂

∂t
, j = 1, . . . , n

span a left invariant CR structure T 1,0 on Hn. More precisely, the complex n-dimensional
subbundle T 1,0 of the complexified 2n + 1-dimensional tangent bundle THn ⊗ C makes the
Heisenberg group a CR manifold of hypersurface type. The total space THn ⊗ C is spanned
by T 1,0, its complex conjugate bundle T 0,1 = T̄ 1,0 spanned by vector fields

Z̄j =
1
2

(Xj + iYj) =
∂

∂z̄j
− izj

∂

∂t
, j = 1, . . . , n

and one additional direction given by T . For more details on CR manifolds see [8] and also
Section 5.

Denote further by Q = 2n + 2 the homogeneous dimension of the Heisenberg group Hn.
Next, we define for an open subset U ⊂ Hn and 1 ≤ p < ∞ the horizontal Sobolev space

HW 1,p(U) as the space of functions u ∈ Lp(U) for which X1u,...,Xnu, Y1u,...,Ynu exist in
the sense of distributions and belong to Lp(U). A function f = (f1, . . . , f2n+1) : U → Hn,
U ⊆ Hn is said to be of class HW 1,p(U) if each component of f belongs to HW 1,p(U). The
local space HW 1,p

loc (U) is defined analogously.
A (generalized) contact map f : U → Hn, U ⊂ Hn open, is a function in HW 1,1

loc (U) for
which the tangent vectors Xjf(p), Yjf(p), j = 1, . . . , n, belong to HTf(p) for almost all p ∈ U ,
where

Xjf(p) = (Xjf1(p), . . . , Xjf2n+1(p)) and Yjf(p) = (Yjf1(p), . . . , Yjf2n+1(p)).

For such a map the formal horizontal differential Hf∗(p) : HTp → HTf(p) can be defined a.e.
by setting Hf∗(p)Xj = Xjf(p), Hf∗(p)Yj = Yjf(p), j = 1, . . . , n and then extending linearly
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from the basis vectors to HTp. If f ∈ HW 1,2
loc (U), the resulting map Hf∗(p) itself extends

uniquely to a homomorphism f∗(p) of the Lie algebra of Hn (the formal Pansu differential)
for almost all p ∈ U . With respect to the basis X1, . . . , Xn, Y1, . . . , Yn, T it is given by

f∗(p) =
(

Hf∗(p) 0
0 λ(p)

)
=




X1f1(p) · · · Ynf1(p) 0
...

. . .
...

...
X1f2n(p) · · · Ynf2n(p) 0

0 · · · 0 λ(p)


 ,

where

λ(p) =
n∑

j=1

Xkfj(p)Ykfn+j(p)− Ykfj(p)Xkfn+j(p)

for an arbitrary k = 1, . . . , n.
If U is an open set in Hn we say that a continuous mapping f : U → Hn is K-quasiregular

if

• f ∈ HW 1,Q
loc (U),

• f is a (generalized) contact map,
• there exists K < ∞ such that

|Hf∗(p)|Q ≤ K det f∗(p)

holds a.e. p in U , where we denoted |Hf∗(p)| = maxξ∈HTp, |ξ|=1 |Hf∗(p)ξ|.
This is the analytic definition of quasiregularity studied in [6]. In [13], quasiregular map-

pings on Carnot groups were first studied under more stringent smoothness assumptions. Yet
it turned out that the properties of quasiregular mappings which have been established in
[13] also hold for the definition given above.

A K-quasiregular homeomorphism f : U → V between open sets in Hn is quasiconformal.
The basic theory of quasiconformal maps in the Heisenberg group has been developed by
Korányi and Reimann in [21], [22], [23].

In [7] and [13] they further show that non-constant quasiregular mappings defined on
Heisenberg groups are discrete open maps and almost everywhere differentiable in the sense
of Pansu, with nonzero differential. For the composition of two quasiregular mappings f, g :
Hn → Hn it follows that Kf◦g ≤ Kf · Kg, in particular Kfm ≤ (Kf )m for m ∈ N. This
shows that under composition the constant of quasiregularity may (and in general will) grow
exponentially with m. Our intention is to study those quasiregular mappings for which this
growth is forbidden. In this paper we show that on the compactified Heisenberg group there
is an abundance of such mappings.

Let us note first that H̄n – the one-point compactification of the Heisenberg group – can
be defined analogously to the one-point compactification of the complex plane by performing
a CR generalization of stereographic projection. We describe this by following [20]. Define a
Siegel domain

D = {ζ̃ = (ζ, ζ0) | Im ζ0 − |ζ|2 > 0} ⊂ Cn+1,

where the elements of Cn+1 are written in the form ζ̃ = (ζ, ζ0) where ζ = (ζ1, . . . , ζn) ∈ Cn and
ζ0 ∈ C. The norm |ζ|2 = ζ · ζ̄ is the standard Euclidean norm in Cn. The Heisenberg group Hn
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operates simply transitively (analogously as real numbers act on the upper one-dimensional
complex half plane via translations) on D by

Hn ×D → D

((z, t), (ζ, ζ0)) 7→ (ζ + z, ζ0 + t + 2iζ · z̄ + i|z|2)
and this operation extends to the boundary ∂D as well. This gives a unique correspondence
of an element (z, t) ∈ Hn with an element (z, t)(0, 0) = (z, t + i|z|2) ∈ ∂D. Under this
identification the CR structure of Hn defined above coincides with the CR structure induced
by the standard complex structure in Cn+1 since the holomorphic subspaces coincide at the
origin and therefore everywhere via holomorphic action. The boundary of the Siegel domain
is further identified with the unit sphere

∂B = {w̃ = (w, w0) ∈ Cn × C | |w|2 + |w0|2 = 1}
via Cayley transform C : B → D:

C(w,w0) =
(

iw
1 + w0

, i
1− w0

1 + w0

)

which is a holomorphic bijection extending to a bijection between boundaries

∂B\{(0,−1)} → ∂D.

The differential of the Cayley map maps the horizontal subbundle of ∂B onto the horizontal
subbundle of ∂D.

The CR stereographic projection

π : ∂B\{(0,−1)} → R2n+1

is then defined as the composition of C followed by the projection (ζ, ζ0) 7→ (ζ, Re ζ0). The
mapping π can then be extended to a map from ∂B to the one point compactification of
R2n+1:

π(w, w0) =
(

iw
1 + w0

,
2 Imw0

|1 + w0|2
)

and the inverse map is given by

π−1(z, t) =
(

2z

i(1 + |z|2) + t
,
i(1− |z|2)− t

i(1 + |z|2) + t

)
.

For the sake of simplicity, we will concentrate in the subsequent discussion on n = 1.
One can use the chart at infinity

Φ0 : (z, t) 7→
( −z

|z|2 − it
,

−t

|z|4 + t2

)

to extend in the obvious manner the notion of quasiregularity to mappings f : H̄1 → H̄1. More
precisely, f : H̄1 → H̄1 is said to be K-quasiregular if each point p 6= ∞ has a neighborhood
U ⊂ H1 such that either f : U → H1 is K-quasiregular (if f(p) ∈ H1) or Φ0 ◦ f : U → H1 is
K-quasiregular (if f(p) = ∞). Moreover, for p = ∞, there exists a neighbourhood U of 0 in
H1 such that f ◦ Φ0 is K-quasiregular on U (if f(∞) ∈ H1) or Φ0 ◦ f ◦ Φ0 is K-quasiregular
on U (if f(∞) = ∞).
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Quasiregular mappings acting on H̄1 can be identified with those mappings acting on
∂B ⊆ C2 which distort the standard CR structure in a controlled way. Quasiconformal
mappings acting on strictly pseudoconvex hypersurfaces in Cn have been studied by Korányi
and Reimann [22], Tang [34, 33] and also by Dragomir and Tomassini [8].

In our construction, we will define mappings f : H1 → H1 and then extend them to
f̄ : H̄1 → H̄1 by setting

(2.2) f̄(p) :=
{

f(p) p ∈ Hn

∞ p = ∞.

If f : H1 → H1 is quasiregular (or quasiconformal) and satisfies the following two conditions

(2.3) lim
d(p,0)→∞

d(f(p), f(0)) = ∞

and

(2.4) N(f, Ω) := sup
q∈H1

N(q, f,Ω) = sup
q∈H1

card{f−1(q) ∩ Ω} < ∞ for all Ω ⊂ H1

then f̄ : H̄1 → H̄1 will also be quasiregular (or quasiconformal).
First note that condition (2.3) guarantees the continuity of the extension f̄ . Obviously, we

can choose for p 6= ∞ a neighborhood U ⊂ H1 such that f̄(U) ⊂ H1. The map f̄ |U = f |U :
U → H1 is quasiregular by assumption.

Now consider the point p = ∞ and the map g := Φ0 ◦ f̄ ◦ Φ0. By continuity of g it is
possible to choose a neighborhood U of 0 in H1 such that g(U) ⊆ B(0, 1) ⊂ H1. Note that

Φ0 ◦ f̄ ◦ Φ0|U\{0} = Φ0 ◦ f ◦ Φ0|U\{0} : U \ {0} → H1

is contact as a composition of contact mappings (the map Φ0 is 1-quasiconformal). Since the
statement in the definition of a contact mapping needs to hold only almost everywhere, an
additional point does not matter and it follows that g is contact on U . Moreover,

|H∗g(p)|4 ≤ K det g∗(p) a.e. p ∈ U

for f K-quasiregular (and Φ0 1-quasiconformal). Remains to show that g ∈ HW 1,4
loc (U).

Obviously, we have g ∈ L4
loc(U), since g is continuous. Moreover, the horizontal derivative

Xg1 exists in the distributional sense and satisfies∫

U
(Xg1(p))4 dL3(p) ≤

∫

U
((Xg1(p))2 + (Xg2(p))2 + (Y g1(p))2 + (Y g2(p))2)2 dL3(p)

≤ C1

∫

U
|H∗g(p)|4 dL3(p)

≤ C1K

∫

U
det g∗(p) dL3(p)

= C1K

∫

g(U)
N(q, g, U) dL3(p)

≤ C1 ·K ·N(f, Φ0(U)) · L3(g(U)) < ∞,

where we have used in the second but last line a change of variable formula from [37], see
also [25]. It follows that Xg1 ∈ L4

loc(U). An analogous reasoning holds for the other weak
horizontal derivatives.
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Altogether, this shows that the map f̄ , defined as in (2.2), is quasiregular (or quasiconfor-
mal) on H̄1, provided that f has the same properties and conditions (2.3) and (2.4) hold.

We call a quasiregular mapping f : H̄1 → H̄1 uniformly quasiregular (uqr) if f and all
the iterates f ◦ f , f ◦ f ◦ f ,. . . are K-quasiregular in the above sense with the same K < ∞
independently of the iterate fn, n ∈ N.

The branch set of f is denoted by

Bf = {p ∈ H̄1 | f is not locally injective in p}.
The uqr map in our consideration will be obtained as a composition of a quasiregular map

f̄ of type (2.2) together with a conformal mapping on H̄1.
It has been shown by Korányi and Reimann [21] that all smooth conformal (1-quasiconformal)

maps are compositions of left translations

Lq : H̄1 → H̄1, p 7→ q · p for q ∈ H̄1,

dilations
δr : H̄1 → H̄1, (z, t) 7→ (rz, r2t) for r > 0,

rotations around the t-axis

(2.5) mφ : H̄1 → H̄1, (z, t) 7→ (zeiφ, t) for φ ∈ R
and the orientation preserving inversion on the unit sphere

Φ0 : (z, t) 7→
( −z

|z|2 − it
,

−t

|z|4 + t2

)
.

This inversion mapping Φ0 takes a simple form when transported via π to act on ∂B:

π−1 ◦ Φ0 ◦ π(w, w0) = (−w,−w0).

It has been proved by Capogna in [5] by removing the regularity assumption that indeed
all 1-quasiconformal mappings defined on a domain in H̄1 are necessarily group actions. The
corresponding Liouville type theorem for 1-quasiregular maps is due to Dairbekov [6].

Denote a ball of radius r centered at p with respect to metric dH briefly by B(p, r). Then
both Lp and mφ are isometries for the Heisenberg distance and

B(p, r) = LpδrB(0, 1) and mφ(B(p, r)) = B(mφ(p), r).

Obviously, the conformal maps defined above are uqr as they come from holomorphic
automorphisms of B ⊆ C2 restricted to ∂B. It is the purpose of the present paper to provide
examples of non-injective uqr mappings on H̄1. The main tool of constructing such maps
is the flow method due to Korányi and Reimann [21], [23]. They demonstrated first the
existence of nontrivial smooth quasiconformal maps in Hn. In the first Heisenberg group H1

consider C2-vector field

(2.6) v = −1
4
(Y %)X +

1
4
(X%)Y + %T,

where % is an arbitrary sufficiently smooth real valued function in H1, which we call the
potential of the vector field v. Then v generates a local one-parameter group (Fs) of contact
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transformations which are quasiconformal, provided the second horizontal derivatives of % are
bounded. The functions Fs come as solutions of the following differential equation

∂Fs

∂s
(x, y, t) = v(Fs(x, y, t))

with initial condition F0(x, y, t) = (x, y, t).

3. Construction of a non-injective uqr map from the winding map

In this section we prove the existence of a non-injective uqr map f : H̄1 → H̄1. The proof
is an adaptation of the conformal trap method from the Euclidean case [18], [27].

Theorem 3.1. Suppose k ≥ 2 is an integer and consider the non-constant quasiregular
winding map f : H̄1 → H̄1 given in cylindrical coordinates by (r, ϕ, t) 7→ (r, kϕ, kt). There
exists a uniformly quasiregular mapping g : H̄1 → H̄1 such that Bf = Bg holds.

3.1. Winding maps and the flow method. We present some technical preliminaries which
serve as preparations for the proof of the existence of non-injective uqr maps. In [13], the
so-called winding map is studied as an example of a quasiregular map with non-empty branch
set. We will later use this mapping to produce a uqr counterpart. In order to do so, we need
to represent it as a time-t-map of a certain flow.

The winding map can be best described by using cylindrical coordinates (r, ϕ, t). We will
use the notation p = (x, y, t) and p = (r, ϕ, t) ∈ [0,∞) × R × R for points in H1 simultane-
ously. Note that infinitely many triples (r, ϕ, t) correspond to a given point p, however, the
correspondence can be made one-to-one (except on the t-axis) by restricting the angle ϕ to a
half-open interval of length 2π, e.g. ϕ ∈ (−π, π]. More precisely, the cylindrical coordinates
are given in terms of cartesian coordinates (x, y, t) as

r =
√

x2 + y2 ∈ (0,∞), ϕ := tan−1
(y

x

)
∈ (−π, π], t := t ∈ R,

where the inverse tangent is suitably defined.
The function f : H1 → H1 given in cylindrical coordinates as (r, ϕ, t) 7→ (r/2, 2ϕ, t/2) is an

example of a nontrivial quasiregular map.
More generally, for a map f(α,β,γ) : (r, ϕ, t) 7→ (αr, βϕ, γt), where β ∈ Z, the matrix of

f(α,β,γ)∗ in the basis X, Y , T in a point p = (r, ϕ, t), r > 0, is given by

f(α,β,γ)∗(p) =




α cosϕ cosβϕ + αβ sinϕ sinβϕ α sinϕ cosβϕ− αβ cosϕ sinβϕ 0
α cosϕ sinβϕ− αβ sinϕ cosβϕ α sinϕ sinβϕ + αβ cosϕ cosβϕ 0

2r(γ − α2β) sin ϕ 2r(α2β − γ) cosϕ γ


 .

Hence the contact property is satisfied if and only if γ = α2β 6= 0. By studying the eigen-
values of fT

(α,β,γ)∗f(α,β,γ)∗ we deduce that the Lipschitz map f(α,β,γ) is K = β2 quasiregular.
In what follows we choose α = 1 to keep the cylinders {(r, ϕ, t) | r = constant} invariant

and study the globally defined winding mappings:

Definition 3.2. The winding mapping of degree k, k ≥ 2, is given in cylindrical coordinates
as

f(1,k,k) : H1 → H1, (r, ϕ, t) 7→ (r, kϕ, kt).
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The branch set Bf(1,k,k)
of f(1,k,k) is the t-axis.

In what follows we need to represent f(1,k,k) locally as a flow of a vector field. More precisely,
we need to know an explicit formula for potential functions %k of vector fields vk that generate
flows F k

s such that F k
1 = f(1,k,k), locally around the point e0 = (x, y, t) = (1, 0, 0). Note

however, that it would not be possible to obtain f(1,k,k) as a flow on the whole space H1 since
flows define always diffeomorphisms. But since the function f(1,k,k) is locally injective in the
point e0, it may still be obtained as a flow in a neighborhood of e0.

Let us consider the open sector U ⊆ H1, given in cylindrical coordinates as U = {(r, ϕ, t) :
r > 0, ϕ ∈ (−π

k , π
k

)
, t ∈ R}.

Lemma 3.3. For any integer k ≥ 2 there is a potential function % = %k defined on the slit
space H1

s := H1 \ {(x, y, t) : x ≤ 0, y = 0} which generates on U a one-parameter group of
quasiconformal transformations Fs = F k

s , s ∈ [0, 1] with the property that F k
1 = f(1,k,k)|U .

Proof:
Let k ≥ 2 be a fixed integer.
By writing the vector fields X, Y , T in cylindrical coordinates we obtain

X(r, ϕ, t) = cosϕ
∂

∂r
− sinϕ

r

∂

∂ϕ
+ 2r sinϕ

∂

∂t
,

Y (r, ϕ, t) = sinϕ
∂

∂r
+

cosϕ

r

∂

∂ϕ
− 2r cosϕ

∂

∂t
,

T (r, ϕ, t) =
∂

∂t
,

for r > 0. Let % be a potential function in cylindrical coordinates. Vector fields related to %

which generate the flow of contact transformations are of the following form (in cylindrical
coordinates)

v =
(
− 1

4r

∂%

∂ϕ
+

r

2
∂%

∂t

)
∂

∂r
+

(
1
4r

∂%

∂r

)
∂

∂ϕ
+

(
−r

2
∂%

∂r
+ %

)
∂

∂t
.

Then the flow Fs(r, ϕ, t) = (Rs, θs, Ts), is obtained as a solution of the following system of
differential equations

∂Rs

∂s
= − 1

4Rs

∂%

∂ϕ
(Fs) +

Rs

2
∂%

∂t
(Fs),

∂θs

∂s
=

1
4Rs

∂%

∂r
(Fs),

∂Ts

∂s
= −Rs

2
∂%

∂r
(Fs) + %(Fs),

with initial condition
R0(r, ϕ, t) = r, θ0(r, ϕ, t) = ϕ, T0 = t.

By choosing %(r, ϕ, t) = 2(ln k)r2ϕ+(ln k)t for (r, ϕ, t) ∈ {(r, ϕ, t) : r > 0,−π < ϕ < π, t ∈
R}, we obtain

(3.1) v(r, ϕ, t) = (ln k)ϕ
∂

∂ϕ
+ (ln k)t

∂

∂t
.
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and
∂Rs

∂s
= 0,

∂θs

∂s
= (ln k)θs(r, ϕ, t),

∂Ts

∂s
= (ln k)Ts(r, ϕ, t),

with initial condition
R0(r, ϕ, t) = r, θ0(r, ϕ, t) = ϕ, T0 = t,

provided that

(Rs(r, ϕ, t), θs(r, ϕ, t), Ts(r, ϕ, t)) ∈ {(r, ϕ, t) : r > 0,−π < ϕ < π, t ∈ R}
for all (r, ϕ, t) ∈ U . Let us note that we really have θs(r, ϕ, t) = ksϕ ∈ (−π, π) for all
(r, ϕ, t) ∈ U and for all s ∈ [0, 1]. Thus this induces the correct flow Fs(r, ϕ, t) = (r, ksϕ, kst),
s ∈ [0, 1]. At s = 1 we have F1(r, ϕ, t) = (r, kϕ, kt) = f(1,k,k)(r, ϕ, t).

Notice that (r, ϕ, t) 7→ (r, ksϕ, kst), ϕ ∈ R defines a function from H1 to H1 only if ks ∈ N.
Yet, this problem can be resolved by restricting ϕ to an appropriate interval. In this way we
obtain for all s ∈ [0, 1] an injective contact map Fs : U → H1. Let us further mention that
|ZZ%| = ln k < ∞, where Z := 1

2(X − iY ). This guarantees by a result due to Korányi and
Reimann [21] that Fs, and in particular F1, is quasiconformal (see also the previous remark
on the quasiregularity of f(1,k,k)). ¤

Lemma 3.4. Let e0, U and Fs be as before in Lemma 3.3. For any a > 0 with B(e0, a) ⊆ U ,
there exists b0 > 0 with 0 < b0 < 4b0 ≤ a such that

dH(e0, Fs(p)) ≥ 4b0 for all p ∈ ∂B(e0, a) and all s ∈ [0, 1].

Proof: First note that Fs(p) 6= e0 for all p ∈ ∂B(e0, a) and s ∈ [0, 1]. Indeed, (reiksϕ, kst) =
(1, 0) would imply that r = 1, t = 0 and ksϕ = 2πl for some l ∈ Z. But since B(e0, a) is
contained in the sector U , we obtain −π

k < ϕ = 2πl
ks < π

k . This can only be fulfilled for l = 0,
but then p = (1, 0) = e0 /∈ ∂B(e0, a).

It follows that

dH(e0, Fs(p)) > 0 for all p ∈ ∂B(e0, a) and all s ∈ [0, 1].

Let us further note that min{dH(e0, Fs(p)) : (p, s) ∈ ∂B(e0, a)× [0, 1]} exists, since (p, s) →
dH(e0, Fs(p)) is a continuous function on the compact set ∂B(e0, a) × [0, 1]. That is, there
exist p0 ∈ ∂B(e0, a) and s0 ∈ [0, 1] such that

min{dH(e0, Fs(p)) : (p, s) ∈ ∂B(e0, a)× [0, 1]} = dH(e0, Fs0(p0)) =: c > 0.

On the other hand, c ≤ a, since

c = min{dH(e0, Fs(p)) : (p, s) ∈ ∂B(e0, a)× [0, 1]} ≤ dH(e0, F0(p)) = dH(e0, p) = a.

Now set b0 := c
4 > 0. Then

dH(e0, Fs(p)) ≥ c = 4b0 for all p ∈ ∂B(e0, a), s ∈ [0, 1].
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¤

3.2. Proof of Theorem 3.1. Let k ≥ 2 be an arbitrary, but fixed integer and consider the
map

f : H1 → H1, (r, ϕ, t) 7→ (r, kϕ, kt)
Notice first that the map f itself is not uniformly quasiregular. Its n-th iterate is given by

fn(r, ϕ, t) = (r, knϕ, knt),

which is a quasiregular map with distortion Kn = k2n. This shows that Kn →∞ as n →∞
and, as a consequence, f cannot be uniformly quasiregular since the distortion gets worse in
each step of the iteration.

The mapping f : H1 → H1 has degree k < ∞. Note that it leaves the t-axis invariant and
Bf = f(Bf ) = t-axis.

Choose any point p0 ∈ H1 not lying on the t-axis with the following properties:
(1) There is a small ball U0 = B(p0, r) about p0 such that f−1U0 has components U1, . . .,

Uk pairwise disjoint and such that f : Ui → U0 is injective for i = 1, . . . , k.
(2) f(U0) is disjoint from ∪k

i=0Ui.
We can choose for example p0 = (1, π

k , 0) in cylindrical coordinate representation. Then
f(p0) = (1, π, 0) and

f−1{p0} = {p1, . . . , pk},
where the points pi can be written in cylindrical coordinates as pi = (1, ϕi, 0), where ϕi ∈
(−π, π) is given by

(3.2) ϕi :=





π(1+2k(i−1))
k2 for i ∈ {1, . . . , bk2−1

2k + 1c}

π(1+2k(i−1))
k2 − 2π for i ∈ {dk2−1

2k + 1e, . . . , k}
.

Let further a,b1 > 0 so small that 2b1 < a and B̄(e0, a) ⊆ U , where e0 and U are as in
Lemma 3.3, and such that

(1) B(pi, a) ⊂ Ui, i = 0, . . . , k,
(2) B(p0, b1) ⊂ ∩k

i=1f (B(pi, a)),
(3) B (f(p0), b1) ⊂ f (B(p0, a)) .

Then set b := min{b0, b1}, where b0 is as in Lemma 3.4.
To apply the conformal trap method we shall glue in our mapping f suitable rotations. To

do that we define a modification f̃ as follows:

(3.3) f̃ :=





f on H̄1\ ∪k
i=0 B(pi, a)

m(π
k
−ϕi) on B(pi, b), i = 1, . . . , k

m(π−π
k
) on B(p0, b)

qc extension on B(pi, a) \B(pi, b), i = 0, . . . , k,

where mφ denotes the rotation by an angle φ as defined in (2.5). To realize the last line in the
definition of f̃ , i.e. to show that we can make a quasiconformal transition from the rotation
to f is the main technical difficulty of our proof. In the Euclidean case, the quasiconformal
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extension is obtained by Sullivan’s version of the annulus theorem for quasiconformal map-
pings (see [36]). In our situation, the quasiconformal map appearing in the last line of the
definition of f̃ will be defined using the flow technique of Korányi and Reimann as described
below.

For i = 1, . . . , k, let ϕi the angle given in (3.2) and set ϕ0 := π
k . By applying rotations

m−ϕi to balls B(pi, a) they are mapped onto the ball B(e0, a) where we modify the potential
% = %k functions given by Lemma 3.3 as follows. We define first a function

η(p) :=
{

0 for p ∈ B(e0,
3
2b)

1 for p ∈ H1 \ (B(e0, 2b) ∪ {(x, y, t) : x ≤ 0, y = 0}) .

Then choose any smooth extension η̃ of η on the slitted Heisenberg group H1
s := H1 \

{(x, y, t) : x ≤ 0, y = 0} and define the modified potential

%̃(p) := % · η̃(p) =





0 for p ∈ B(e0,
3
2b)

% · η(p) for p ∈ B(e0, 2b) \B(e0,
3
2b)

%(p) p ∈ H1
s \B(e0, 2b).

According to this potential function we define the modified vector field ṽ on H1
s by setting

(3.4) ṽ =
(
− 1

4r

∂%̃

∂r
+

r

2
∂%̃

∂t

)
∂

∂r
+

(
1
4r

∂%̃

∂r

)
∂

∂ϕ
+

(
−r

2
∂%̃

∂r
+ %̃

)
∂

∂t
.

For each p ∈ H1
s let Ip ⊆ R denote the open interval around 0 where the maximal solution

of the differential equation Ψ′ = ṽ(Ψ) for the initial value Ψ(0) = p is defined. Then consider
the flow

G : {(s, p) : p ∈ H1
s, s ∈ Ip} → H1

s

(s, p) 7→ G(s, p) = Gs(p).

The vector field ṽ has been constructed such that the flow map G1|B̄(e0,a) : B̄(e0, a) → H1
s

will have the following boundary behaviour

G1|∂B(e0,b) = id and G1|∂B(e0,a) = f.

We need to verify the following three properties

(1) p ∈ B̄(e0, a) ⇒ Ip ⊇ [0, 1]
(2) p ∈ ∂B(e0, a) ⇒ G1(p) = f(p)
(3) p ∈ ∂B(e0, b) ⇒ G1(p) = p.

For a given point p ∈ B(e0, a), we have either [0, 1] ⊆ Ip as desired or then there should
exist ξ < 1 such that the flow line s 7→ Gs(p) of p comes arbitrarily close to the boundary of
H1

s as s approaches ξ (see [38]).
Lemma 3.4 shows that for p ∈ ∂B(e0, a) we have dH(Gs(p), e0) ≥ 4b for s ∈ [0, 1]. Clearly,

Gs(p) ∈ H1
s for s ∈ [0, 1] and p ∈ ∂B(e0, a) ⊆ U . It follows that the trajectory {Gs(p) : s ∈

[0, 1]} stays in the region H1
s \ B(e0, 2b) where the modified vector field ṽ coincides with the

vector field v from (3.1). Therefore G1(p) = f(p) for p ∈ ∂B(e0, a)
Next, we need to show that the flow map G1 is defined for all points in the ball B̄(e0, a).
We consider the vector field ṽ : H1

s → R3 as it has been defined in (3.4). Assume to get
a contradiction, that for some point p ∈ B̄(e0, a) the solution s 7→ Gs(p) is defined on [0, ξ)
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with ξ < 1 and it cannot be extended to [0, 1]. This would imply that Gs(p) comes arbitrarily
close to the boundary of H1

s as s ↗ ξ. In particular, there has to exist s ∈ [0, ξ) such that
q := Gs0(p) ∈ ∂B(e0, a) (the orbit of p cannot be contained entirely in B(e0, a)). Yet, we
have seen above that for points q = ∂B(e0, a) the solution Gs(q) exists for all s ∈ [0, 1]. This
can be applied to q := Gs0(p) and will guarantee the existence of G1 : B̄(e0, a) → H1. As
ṽ ≡ 0 on B̄(e0,

3
2b), we find G1|∂B(e0,b) = id.

We need to ensure that the resulting map G1 is quasiconformal. In order to do so, let us
note that the set

C := {Gs(p) : s ∈ [0, 1], p ∈ B̄(e0, a)}
is compact and entirely contained in H1

s. Moreover, %̃ is a smooth function on H1
s and hence

the second horizontal derivatives of %̃ are clearly bounded on C. This shows in particular that
G1 is a quasiconformal mapping (see [21], [23]).

To come to a conclusion, we have proved the existence of a quasiconformal map G1 :
B̄(e0, a) → H1 with the property that

G1 =





id on B(e0, b)
qc extension on B(e0, a) \B(e0, b)
f on ∂B(e0, a).

Finally we define
f̃(p) =

(
mkϕi ◦G1 ◦m(−ϕi)

)
(p)

for all p ∈ B(pi, a), and i = 0, 1, . . . , k, where ϕ0 = π
k and ϕi for i = 1, . . . , k as in (3.2).

We will verify that the continuous extension of this map to the boundary of the spherical
annulus B(pi, a) \ B(pi, b ) has the right boundary values, that is, it coincides with the
definition given in (3.3). To this end, let us note that

mkφ ◦ f ◦m−φ = f

and
mkφ ◦ id ◦m−φ = mkφ−φ.

Then the desired result follows by observing that ϕ0 = π
k and kϕi = π

k (mod 2π) for i =
1, . . . , k.

Thus f̃ |∂B(pi,a) = f and f̃ |∂B(pi,b) is a rotation. Hence, f̃ maps the ring B(pi, a)\B̄(pi, b) to
the domain enclosed by ∂B(p0, b) and ∂fB(pi, a) for i = 1, . . . , k and the ring B(p0, a)\B̄(p0, b)
to the domain enclosed by ∂B(f(p0), b) and ∂fB(p0, a).

As explained earlier, the map f̃ : H1 → H1 can now be extended to a map on H̄1 by setting
f̃(∞) = ∞. The conditions above imply that the map f̃ : H̄1 → H̄1 is well defined and
quasiregular.

Denote further by
Φ := Lp0 ◦ δb ◦ Φ0 ◦ δ 1

b
◦ Lp−1

0

a conformal inversion on the sphere ∂B(p0, b) and set

g = Φ ◦ f̃ : H̄1 → H̄1.

We will show that g and all its iterates are uniformly quasiregular. This is because we
have built the set B(p0, b) to be a conformal trap, where all the points, whose neighborhood
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is distorted, land only after the next iterate under g. Especially this happens to all the
points in the branch set. First, if p ∈ B := B(p0, b) then g|B is conformal and g(B) =
Φ(B(f(p0), b)) ⊂ B. Clearly then gm|B is conformal for every m ≥ 1. Next, if p ∈ H̄1\ ∪k

i=1

B(pi, b) then f̃(p) ∈ H̄1\B and g(p) ∈ B. Therefore gm|H̄1\ ∪k
i=1 B(pi, b) is quasiregular

with a uniform bound on the distortion for each m by our first observation. Finally if p ∈
B(pi, b), i = 1, . . . , k then g is a conformal rotation followed by the conformal mapping Φ.
Thus the iterates of g stay conformal at p until it passes into the complement of ∪k

i=1B(pi, b).
Under next iterate it picks up some distortion before passing into trap B and the iterates
again stay conformal.

Note that also Bg = Bf holds. ¤

Remark 3.5. The construction in Theorem 3.1 can be made also for all winding mappings
(r, ϕ, t) 7→ (ar, kϕ, a2kt) that are globally defined in H̄1 with obvious modifications. The same
holds for the example in [13] producing a branched branch set.

For a quasiregular semigroup Γ (see Section 5) the Fatou set of Γ is defined as

F (Γ) := {p ∈ H̄1 : there is an open U, p ∈ U, Γ|U normal},
where normal means that every sequence of Γ contains a locally uniformly convergent subse-
quence. The Julia set is then defined as J(Γ) = H̄1 \ F (Γ). If the semigroup is generated by
a single uniformly quasiregular map, i.e. Γ = {gn}n∈N, we will write J(g) instead of J(Γ).

The Julia set of the mapping g constructed in Theorem 3.1 is the Cantor set

(3.5) J(g) =
∞⋂

m=1

∞⋃
n=m

g−n
(
H̄1\B) ⊂ ∪k

i=1B(pi, b).

For the corresponding statement in R̄n, see [19]. The proof of (3.5) is completely analogous.

4. Uniformly quasiregular mappings with large branch sets

In this section we refine the result of the previous section by showing the existence of uqr
map on H̄1 with arbitrarily large dimensional branch set. In order to set the notation right
recall that we consider the Heisenberg group H1 with the distance dH from (2.1) as a metric
space. (The standard compactification H̄1 of H1 yields a metric dH̄ on H̄1 which is locally
bi-Lipschitz equivalent with dH .) With respect to this metric we shall consider the notions of
Hausdorff measure and dimension. Let us recall that the Hausdorff dimension of the space H̄1

with respect to the Heisenberg metric is equal to 4. This in fact illustrates already some kind
of fractal feature of the Heisenberg group where the topological and Hausdorff dimensions
do not coincide. For 0 ≤ α ≤ 4 we denote by Hα the α-dimensional Hausdorff measure in
the metric space (H̄1, dH̄). The Hausdorff dimension of subsets A ⊆ (H̄1, dH̄) will be also
considered in this context.

Using the positivity of the Jacobian, it has been shown by Heinonen and Holopainen in
[13] that the branch set of a quasiregular mapping in a Carnot group of type H cannot be
arbitrarily big (see also [6]). More precisely, for the first Heisenberg group the following
statement holds
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Theorem 4.1 ([13]). Let f : Ω → H1, Ω ⊆ H1, be a quasiregular mapping, non-constant in
each component of Ω. Then the branch set Bf of f has vanishing 4 dimensional Hausdorff
measure: H4(Bf ) = 0.

As quasiregular mappings satisfy the so-called Lusin property, that is, they map sets of
H4-measure zero to sets of H4-measure zero, we have the following

Corollary 4.2. Let f : Ω → H1, Ω ⊆ H1, be a quasiregular mapping, non-constant in each
component of Ω. Then for the image of the branch set f(Bf ) we have H4(f(Bf )) = 0.

The same statements are true for quasiregular mappings on the compactified Heisenberg
group.

In this section, we will construct an example which shows that this result is sharp in the
sense that the dimension of the branch set and its image can come arbitrarily close to 4. To
do that we shall use the technique of [3], where quasiconformal mappings of the Heisenberg
group have been constructed which change the dimensions of Cantor sets in arbitrary fashion.
The following statement refines this result by placing the Cantor sets on the vertical axis.

Proposition 4.3. For every ε > 0 there exists Cantor subset S1 ⊆ H1 with dimH S1 = 4− ε,
a Cantor subset S2 of the t-axis and a quasiconformal mapping H : H1 → H1 such that
H(S1) = S2.

Proof. The mapping H : H1 → H1 is constructed as a composition H = H2 ◦H1, where H1

is a quasiconformal mapping which reduces the Hausdorff dimension of S1 as in [3] and H2

maps the Cantor set S̃2 := H1(S1) onto a Cantor subset S2 of the t-axis. The Cantor sets S1,
S̃2 and S2 will be obtained as invariant sets of certain conformal dynamical systems.

The method presented in [3] allows one to reduce the Hausdorff dimension of the higher
dimensional Cantor set S1 in an arbitrary fashion, however, the resulting Cantor set S̃2 will
not typically lie on the t-axis. A modification of the proof in [3] is needed to eventually map
S̃2 onto a Cantor subset of the t-axis. This approach will be sketched below (for technical
details see the similar proof of Theorem 1.1 in [3]).

As shown in [3], one can construct for an arbitrarily small ε > 0 a Cantor subset S1 of
the unit ball B(0, 1) such that dimH S1 = 4 − ε. More precisely, we can choose N ≥ 2 and
r1 = r1(N, ε) > 0 such that there exist disjoint closed balls B̄(pi, r1) ⊂ B(0, 1), i = 1, . . . , N ,
for which the associated conformal dynamical system F = {f1, . . . , fN} defined by

fi := Lpi ◦ δr1 : B(0, 1) → B(pi, r1)

has (4− ε)-dimensional invariant set S1, i.e.

S1 =
N⋃

i=1

fi(S1) ⊆
N⋃

i=1

B(pi, r1).

To ensure the equality dimH S1 = 4− ε we choose N and r1 such that Nr4−ε
1 = 1. Similarly,

we consider for r2 < r1 the associated conformal dynamical system G = {g1, . . . , gN} defined
by

gi := Lpi ◦ δr2 : B(0, 1) → B(pi, r2).
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This will yield a smaller dimensional invariant set S̃2 ⊂
⋃N

i=1 B(pi, r2). Here we require that
dimH S2 = d < 2 by the appropriate choice of r2 < r1 such that Nrd

2 = 1.
Then a quasiconformal map H1 : H1 → H1 with H1(S1) = S̃2 can be defined as in [3] using

the dynamical systems F and G.
We needed to choose r2 > 0 as above, small enough such that it is possible to construct a

Cantor set S2 of the same dimension as S̃2 in the t-axis and a quasiconformal map H2 : H1 →
H1 which maps S̃2 to S2.

We shall explain the method for constructing the quasiconformal mapping H2 in the fol-
lowing. The main idea is to use an iterative construction which defines the mapping piecewise
on successive multirings occurring in the above dynamical construction. In the first step of
the construction this mapping will satisfy H2 |H1\B(0,1)= id |H1\B(0,1). Inside the unit ball, we
define H2 using the dynamics

G = {g1, . . . , gN}, gi := Lpi ◦ δr2 : B(0, 1) → B(pi, r2)

and

H = {h1, . . . , hN}, hi := Lqi ◦ δr2 : B(0, 1) → B(qi, r2),

where q1, . . . , qN denote points on the t-axis (then the invariant set associated to H will lie
entirely in the t-axis). Now the mapping H2 is defined inside B(0, 1) piecewise by setting

H2 |gin◦···◦gi1
Aδ

0
:= hin ◦ · · · ◦ hi1 ◦H0 ◦ g−1

i1
◦ · · · ◦ g−1

in
,

where

Aδ
0 := B(0, 1 + δ) \

N⋃

i=1

giB(0, 1− δ) Ãδ
0 := B(0, 1 + δ) \

N⋃

i=1

hiB(0, 1− δ)

with δ > 0 small enough such that one can construct a quasiconformal map H0 : Aδ
0 → Ãδ

0

which satisfies

(4.1) H0 =

{
id on Rδ

0 := B(0, 1 + δ) \B(0, 1− δ)
hi ◦ g−1

i = Lqip
−1
i

on Rδ
i := giR

δ
0

,

i.e. we need Rδ
i ∩ Rδ

j = ∅ for 0 ≤ i, j ≤ N , i 6= j and Rδ
0 ∩ hiR

δ
0 = ∅ for 0 ≤ i ≤ N . The

properties of H0 ensure that there is no ambiguous definition of H2 on the intersection of the
domains gin ◦ · · · ◦ gi1A

δ
0 for various n ∈ N. As in [3] we can conclude that the thus defined

mapping H2 : H1 \ S̃2 → H1 \ S2 is quasiconformal as a finite composition of translations,
dilations and the quasiconformal map H0.

It remains to construct a quasiconformal map H0 : Aδ
0 → Ãδ

0 which satisfies the conditions
given in (4.1). This can be done using the flow method due to Korányi and Reimann. The
idea is to find appropriate potentials for which the corresponding vector fields will generate
flows (Ψs) of quasiconformal maps with Ψ1 being either the identity or an appropriate left
translation Lqip

−1
i

= hi ◦ g−1
i . Then we need to glue these potentials together in order to

obtain a globally defined potential function % for which the corresponding vector field will
produce a flow (Ψs) with Ψ1 = H0.
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Let us discuss in more detail how such a potential can be defined. Obviously, the vanishing
potential % = 0 will yield the identity map. To generate translation Lqip

−1
i

, where pi =
(xi, yi, ti) and qi = (0, 0, ti + ai), consider the potential

%i := ai − 4yix + 4xiy.

The corresponding vector field according to (2.6) is given by

vi = −xi
∂

∂x
− yi

∂

∂y
+ (ai − 2yix + 2xiy)

∂

∂t
.

Then, the system {
∂Ψis
∂s (x, y, t) = vi(Ψis(x, y, t))

Ψi0(x, y, t) = (x, y, t)
has the solution

Ψis(x, y, t) = (−xis + x,−yis + y, s(ai − 2yix + 2xiy) + t) = L(−sxi,−syi,sai)(x, y, t),

in particular we obtain for s = 1

Ψi1 = L(−xi,−yi,ai) = Lqip
−1
i

= hi ◦ g−1
i ,

as desired. Also note that for all points p the flow curve s 7→ Ψis(p) is simply a straight line
connecting p to Lqip

−1
i

(p) = qip
−1
i p.

Now we have to glue together the potentials %i for i = 1 . . . N to a globally defined potential
% that coincides with %i in a small neighborhood Dδ

i of the trajectory s 7→ Ψis( pi ) for all
i = 1 . . . N . To do that we have to define % in such a way that the flow lines of points in Rδ

i

stay inside the region where % = %i such that Ψ1(p) = H0(p). We denote

Dδ
i := {L(−sxi,−syi,sai)(p) : p ∈ Rδ

i , s ∈ [0, 1]}
and define

%̃i :=





%i on D̄δ
i

smooth extension on D2δ
i \ D̄δ

i

0 on H1 \D2δ
i

.

Finally, we set % :=
∑N

i=1 %̃i. In order to ensure that this is a well-defined function, we need to
have that the sets D2δ

i are pairwise disjoint and do not touch the annular domain R2δ
0 . This

yields restrictions on the choice of δ > 0, the radius r2 < 1 and the points qi = (0, 0, ti + ai)
on the t-axis. First, we want to make sure that the flow curves of the points pi, i.e. the line
segments lpiqi connecting pi to qi, do not meet. The only points for which there might be an
intersection of the flow lines are points on the t-axis and points pi = (ri, ϕi, ti), pj = (rj , ϕj , tj)
with ϕi = ϕj (in cylindrical coordinates). Yet, given N distinct points q1, . . . , qN on the t-
axis, this situation can be prevented simply by perturbing the points pi a little. Note that
this can be done in such a way that even the larger balls B(pi, r1) still remain disjoint.

So we have N points p1, . . . , pN in the unit ball and N points q1, . . . , qN lying on the t-axis
within the unit ball such that the connecting line segments lpiqi do not meet. Then we can
choose r2 ∈ (0, r1) and δ > 0 such that the sets D2δ

i are pairwise disjoint and lie entirely
within R2δ

0 . This guarantees that the potential % is well defined and the corresponding vector
field v generates a flow (Ψs) such that Ψ1 = H0. Note that H0 is obviously quasiconformal
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on
⋃N

i=0 Rδ
i . The quasiconformality on Aδ

0 \
⋃N

i=0 Rδ
0 follows from the fact that the potential

% is smooth and compactly supported, hence it has bounded second horizontal derivatives.
Once we have constructed a quasiconformal map H0 with the properties (4.1), a quasicon-

formal map H2 : H1 \ S̃2 → H1 \ S2 can be defined as sketched above. It can be extended
to a homeomorphism H2 : H1 → H1 with H2(S̃2) = S2. We conclude by Theorem 1.3 from
[4] that this extension is again quasiconformal. The composition with the previously defined
function H1 yields the desired map. ¤

Theorem 4.4. For any ε > 0 there exists a uqr mapping f : H̄1 → H̄1 such that

dimH Bf ≥ 4− ε.

Proof. We consider the quasiconformal mapping H : H1 → H1 from Proposition 4.3 and
extend it to the compactified Heisenberg group by defining H(∞) = ∞ (note that this is
clearly possible since H is the identity map outside the unit ball). This new mapping will
again be denoted by H. Next, we define f := H−1 ◦ g ◦H, where g is the uqr mapping from
Theorem 3.1. Observe that fn = H−1 ◦ gn ◦H for n ≥ 1. Therefore Kfn ≤ KH−1 ·Kgn ·KH

and f is a uqr map. Observe furthermore that

Bf = H−1(t− axis) ⊇ S1

which implies that
dimH Bf ≥ dimH S1 = 4− ε.

¤

Theorem 4.5. For any ε > 0 there exists a uqr mapping f : H̄1 → H̄1 such that

dimH f(Bf ) ≥ 4− ε.

Proof. Similarly as before, we consider the extension H : H̄1 → H̄1 of the quasiconformal
mapping from Proposition 4.3.

Next, we define f := H−1 ◦ Φ−1 ◦ g ◦ Φ ◦ H, where g = Φ ◦ f̃ is the uqr mapping from
Theorem 3.1 and Φ denotes the conformal inversion on ∂B(p0, b).

Observe that f is indeed uqr and

f(Bf ) = H−1(Φ−1(g(t− axis))) = H−1(Φ−1(Φ(f̃(t− axis)))

= H−1(t− axis) ⊇ H−1(S2) = S1

and hence dimH f(Bf ) ≥ dimH S1 = 4− ε. ¤

5. Equivariant measurable structures

In this section we show that given a quasiregular semigroup Γ generated by a uniformly
quasiregular mapping g, e.g. by the mapping constructed above,

Γ = {gn : H̄1 → H̄1 | g uniformly quasiregular , n ∈ N}
it is possible to construct a measurable CR structure (or equivalently a measurable horizontal
conformal structure) which is equivariant with respect to the elements of Γ.

Before coming to the proof of this main result, we fix the necessary notations and list a
few important properties of contact mappings. Recall the following
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Definition 5.1. A map f : U → H1 , U ⊂ H1 open, is a (generalized) contact map if
f ∈ HW 1,1

loc (U) and the tangent vectors

Xf(p) := (Xf1(p), Xf2(p), Xf3(p)) and Y f(p) := (Y f1(p), Y f2(p), Y f3(p))

belong to the horizontal tangent space HTf(p) for almost all p ∈ U .

A mapping of class HW 1,1
loc (U) is contact if and only if

−2f2(p)Xf1(p) + 2f1(p)Xf2(p) + Xf3(p) = 0(5.1)

−2f2(p)Y f1(p) + 2f1(p)Y f2(p) + Y f3(p) = 0,(5.2)

for almost every p ∈ U .
It will be convenient to write the mapping f = (f1, f2, f3) in complex notation as f =

(fI , f3) with fI = f1 + if2. Moreover, let us denote by HCH1 the complexified horizontal
bundle of H1 which is given by

HC
p H1 := span{Zp, Z̄p}, p ∈ H1,

where Zp = 1
2(Xp − iYp) and Z̄p = 1

2(Xp + iYp).
For a contact map f the complexified horizontal tangent map HfC∗ (p) can be defined in

almost all points p as the complex linear map HfC∗ (p) : HC
p H1 → HC

f(p)H
1 whose matrix

representation in the bases {Zp, Z̄p} and {Zf(p), Z̄f(p)} is

HfC∗ (p) =
(

ZfI(p) Z̄fI(p)
Zf̄I(p) Z̄f̄I(p)

)
.

In the subsequent discussion, we will only consider mappings with detHfC∗ (p) ≥ 0 for a.e. p.
Using this complex notation, the existence of a constant K ≥ 1 such that |Hf∗(p)|4 ≤

K det f∗(p) in the definition of quasiregularity turns out to be equivalent to the existence of
K ≥ 1 such that

|ZfI(p)|+ |Z̄fI(p)|
|ZfI(p)| − |Z̄fI(p)| ≤

√
K a.e. p.

It follows that a continuous contact map f ∈ HW 1,4
loc (U) for which

‖µf‖ = ess supp

∣∣∣∣
Z̄fI(p)
ZfI(p)

∣∣∣∣ < 1

is quasiregular.
We will need the following chain rule for the real horizontal tangent map

(5.3) H(g ◦ f)∗(p) = Hg∗(f(p))Hf∗(p) a.e. p

of quasiregular mappings. For C1-maps this can be seen by a direct computation, using the
identities (5.1). The general case follows from the chain rule for Pansu differentials and the
fact that qr maps satisfy Lusin’s conditions and are almost everywhere Pansu differentiable
with Pansu differential equal to the formal Pansu differential [6].
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5.1. Measurable CR structures. In this section we show that given a quasiregular semi-
group Γ it is possible to construct a measurable CR structure which is equivariant with
respect to the elements of Γ analogously as in the Riemannian case [18]. This will be the
main theorem of this section (Theorem 5.3). To explain the situation in the Heisenberg group
H1 we use the notation as in [21] where it was shown that a smooth (orientation-preserving)
H-quasiconformal mapping (in the sense of Mostow) f = (f1, f2, f3) satisfies a tangential
version of the classical Beltrami equation

Z̄fI = µZfI

where µ is the complex dilatation of f satisfying |µ| < 1 and

1 + |µ|
1− |µ| ≤ H.

The mutual and quantitative equivalence of different definitions of quasiconformality is dis-
cussed in [23] (for Heisenberg groups) and in [11] (for more general Carnot groups). The
complex function µ is interpreted to take values in the standard hyperbolic unit disk and it
takes the role of a CR structure as presented in [8] and [22]. The standard CR structure on
H1 is given by the splitting HC

p H1 = T 1,0
p ⊕ T 0,1

p of HC
p H1 into the subspace of “holomorphic

and antiholomorphic” vectors: T 1,0
p = span{Zp} and T 0,1

p = T 1,0
p . A general measurable CR

structure on H1 is given by a measurable function ν : H1 → D with the property that

||ν|| := ess supp∈H1 |ν(p)| < 1,

where the new subspace T 1,0
ν,p is defined as

T 1,0
ν,p := {Z ′ − ν(p) · Z ′ : Z ′ ∈ T 1,0

p },

and T 0,1
ν,p = T 1,0

ν,p .

Let us consider a quasiregular map g : H1 → H1 and a measurable CR structure ν defined
on the target space. Using g we can pull back ν to a measurable CR structure g]ν on the
domain space by requiring the condition

(5.4) HgC∗ (p)(T 1,0
g]ν, p) = T 1,0

ν, g(p),

where HgC∗ (p) is the complexified horizontal tangent map of g, which exists for points p where
g is contact, i.e. for almost every point in H1.

We shall calculate explicitly the value of g]ν(p) for a.e. p ∈ H1 as follows. By (5.4) we can
write

HgC∗ (p)(Zp − g]ν(p) · Zp) =

= (ZgI(p) · Zg(p) + ZḡI(p) · Zg(p))−
− g]ν(p) · (ZgI(p) · Zg(p) + ZḡI(p) · Zg(p)) =

= α(Zg(p) − ν̄(g(p))Zg(p)),

for some α ∈ C.
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The equality of the coefficients of Zg(p) and Zg(p) in the second equation above yields:
{

ZgI(p)− g]ν(p) · ZgI(p) = α

ZḡI(p)− g]ν(p) · ZḡI(p) = −ν̄(g(p)) · α,

which implies that

(5.5) g]ν(p) =
ZgI(p) + ν(g(p)) · ZgI(p)

ZgI(p) + ν(g(p)) · ZgI(p)
.

An important special case is when ν = 0, i.e. we pull back the standard CR structure by
g. In this case (5.5) reads as:

g]ν(p) =
ZgI(p)
ZgI(p)

=: µg(p).

The resulting CR structure µg : H1 → D is the so called Beltrami differential of g. A
CR structure µ : H1 → D is called realizable if µ = µg for some quasiconformal mapping
g : H1 → H1. In contrast to the planar case, in the Heisenberg group there is no measurable
Riemann mapping theorem, and so not every CR structure is realizable. In general it is a
difficult problem to characterize the realizable CR structures on H1 (see [22] for results in
this direction).

Coming back to (5.5) in its general form, we can denote by a = ZgI(p) and b = ZgI(p)
and observe that (5.5) can be written in the form

(5.6) g]ν(p) = Tg(p)(ν(g(p))),

where Tg(p) : D→ D is the Möbius transformation

(5.7) Tg(p)(z) =
a + b̄z

b + āz
,

with |a| < |b|.
Definition 5.2. Let Γ be a semigroup of quasiregular mappings on H̄1. We say that a CR
structure µ : H̄1 → D is Γ-equivariant if

g]µ(p) = µ(p) for a.e. p ∈ H̄1 and all g ∈ Γ.

The main result of this section is the following theorem stating the existence of an equi-
variant CR structure for a semigroup of uqr mappings on H̄1.

Theorem 5.3. Let Γ be a countable, abelian semigroup of uqr mappings acting on H̄1. Then
there exists a Γ-equivariant CR structure µ on H̄1.

Proof. According to (5.6) and Definition 5.2 we have to find a measurable function µ : H̄1 → D
with ||µ|| < 1 and such that

(5.8) µ(p) = Tg(p)(µ(g(p))) for a.e. p ∈ H̄1 and all g ∈ Γ.

The idea of finding such µ is based on the hyperbolic center method of Tukia [35] who proved
a similar statement for groups of planar quasiconformal maps. The idea was later adapted
to the case of semigroups of quasiregular maps by Iwaniec and Martin [18] acting on higher
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dimensional Euclidean spheres. We shall begin our proof as in [18] by considering the so
called “local groups” generated by Γ.

To do that, we use a version of Picard’s theorem for quasiregular maps in H-type Carnot
groups ([13], [25]), which guarantees that g ∈ Γ omits at most finitely many points; together
with the result saying that the branch set and its image are of null measure H4(Bg) =
H4(g(Bg)) = 0 for all g ∈ Γ ([13], [37] ).

Because of the above facts and the assumption that Γ is countable we can construct a full
measure set U ⊂ H̄1 with the following properties:

(1) g(U) = U = g−1(U) for all g ∈ Γ,
(2) HgC∗ (p) is defined with detHgC∗ (p) 6= 0 for all p ∈ U and g ∈ Γ,
(3) |µg(p)| < α < 1 for all p ∈ U and g ∈ Γ.

For p ∈ U we define the “local group” Γp of Γ at p as follows: a map h ∈ Γp if there is
some neighborhood V of p in which h can be written in the form: h = h1 ◦ h2 : V → H̄1,
where h2 ∈ Γ and h1 is a branch of the inverse of some element of Γ restricted to h2(V ). As
in [18] one can check the following two essential properties of Γp:

(1) for p ∈ U and g ∈ Γ we have that

(5.9) Γg(p) ◦ g := {h ◦ g : h ∈ Γg(p)} = Γp,

(2) if h ∈ Γp then h : V → H̄1 is K-quasiconformal with K independent of p and h.

For p ∈ U we associate the collection of CR structures generated by Beltrami differentials
of mappings h ∈ Γp as

CRp := {µh(p) : h ∈ Γp}.
Let us note at this point that as a consequence of the chain rule we have the following
composition formula for the Beltrami differentials of quasiregular maps:

(5.10) µh◦g(p) =
Z̄(h ◦ g)I(p)
Z(h ◦ g)I(p)

=
ZgI(p) + µh(g(p)) · ZgI(p)

ZgI(p) + µh(g(p)) · Z̄gI(p)
= Tg(p)(µh(g(p))),

where Tg(p) is the Möbius transformation as in (5.7).
Combining relations (5.10) and (5.9) we obtain

(5.11) CRp = Tg(p)(CRg(p)),

which is the set valued version of the desired relation (5.8).
Let us remark however, that while (5.11) holds for all g ∈ Γ we still need to find a single

valued solution of (5.8) i.e. a function p 7→ µ(p) such that (5.8) holds for all g ∈ Γ. This
is done by the hyperbolic center method. The idea is to view CRp ⊂ D as a subset of the
hyperbolic disc, and associate to it the unique closed hyperbolic disc which contains CRp

and has the smallest radius. The center of this disc is called the hyperbolic center of CRp

and is denoted by µ(p) ∈ D. For g ∈ Γ we use the fact that Tg(p) : D → D is a Möbius
transformation and hence an isometry of the hyperbolic disc. Relation (5.11) says that the
set CRp is an isometric image by Tg(p) of the set CRg(p). Now, the hyperbolic center of any
set is mapped by an isometry to the hyperbolic center of its image. Therefore we have:

µ(p) = Tg(p)(µ(g(p)), for all p ∈ U and g ∈ Γ,
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which is exactly relation (5.8).
To finish the proof we remark that, because for p ∈ U , h ∈ Γp is quasiconformal with a

constant independent of p and h the set CRp ⊂ D lies in a fixed compact set for all p ∈ U .
The same is true for the hyperbolic center µ(p) showing that ||µ|| < 1. ¤

We conclude this section with two remarks related to the statement of Theorem 5.3.

Remark 5.4. A variant of Theorem 5.3 need not be true for non-commutative semigroups
with more than one generator. In [16] a planar counterexample to Theorem 5.3 for semigroups
with two generators is constructed.

Recall that in the case of the Riemann sphere, the Sullivan-Tukia theorem [1] states that an
abelian uqr semigroup Γ is conjugate to a semigroup of rational maps defined as Γ′ = f◦Γ◦f−1,
where f is the solution to the Beltrami equation ∂̄f = µ∂f and µ is the equivariant complex
structure of Γ. On the other hand it is known from several complex variables by a result
which goes back to Poincaré [30] and Tanaka [32] that the only CR semigroup map acting on
the unit sphere in C2 must be the restriction of a subgroup of automorphisms of the unit ball
(see [9] for related results in more general setting).

Remark 5.5. It follows that in the present setting of non-injective maps in Γ the associated
equivariant CR structure µ given in Theorem 5.3 will not be realizable i.e. there exists no
solution f to the Beltrami equation Z̄f = µZf .

5.2. Measurable horizontal conformal structures. To define a horizontal conformal
structure on H̄1 we start with an inner product < ·, · >G on the horizontal bundle HT

of H1 by setting
< u, v >G(p)=< G(p)u, v >p

in the fiber HTp = span{Xp, Yp}, where G : p 7→ G(p) is a measurable map H1 → S(2) and
p 7→< ·, · >p on the right hand side is a Euclidean inner product with orthonormal Xp and
Yp. The space S(2) of symmetric positive definite 2× 2 matrices G with real entries and with
determinant 1 can be equipped with a metric that becomes isometric to the hyperbolic disk
D via bijective correspondence

(5.12) G =
(

g11 g12

g12 g22

)
7→ µ =

g11 − g22 + 2ig12

g11 + g22 + 2
.

This correspondence reflects the correspondence between measurable horizontal conformal
structures and measurable CR structures as it is illustrated in Theorem 5.6.

We call G a horizontal conformal structure if it is essentially bounded with respect to the
hyperbolic metric in S(2) ([19]). A quasiregular mapping g : H1 → H1 preserves the given
structure if

(5.13) < Hg∗(p)u,Hg∗(p)v >G(g(p))= λ(p) < u, v >G(p)

holds almost everywhere for some positive real valued function λ : H1 → R+. Here Hg∗(p)
is the real horizontal tangent map of g at p; Hg∗(p) : HTp → HTg(p) for which the matrix
representation in the bases {Xp, Yp} and {Xg(p), Yg(p)} is given by

Hg∗(p) =
(

Xg1(p) Y g1(p)
Xg2(p) Y g2(p)

)
.
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Condition (5.13) implies then that

HgT
∗ (p)G(g(p))Hg∗(p) = λ(p)G(p)

holds for almost every p ∈ H1. The condition detG = 1 implies that

λ(p) = detHg∗(p) =: JH(gI , p)

agrees with the horizontal Jacobian determinant almost everywhere. Hence the horizontal
Beltrami equation in the real form reads

(5.14) HgT
∗ (p)G(g(p))Hg∗(p) = JH(gI , p)G(p).

Given a semigroup Γ of qr maps acting on H̄1, we say that a horizontal conformal structure
G is Γ-equivariant if (5.14) holds for a.e. p ∈ H1 and all g ∈ Γ. The existence of such an
equivariant horizontal conformal structure turns out to be equivalent to the existence of an
equivariant CR structure stated in Theorem 5.3. Yet another characterization of the existence
of a Γ-equivariant structure is that all g ∈ Γ are solutions to the following differential equation

(5.15) Z̄gI(p) = α(p, g(p))ZgI(p) + β(p, g(p))ZgI(p),

with

α(p, g(p)) :=
η(p)√

|η(p)|2 + 1 +
√
|η(g(p))|2 + 1

and

and

β(p, g(p)) :=
−η(g(p))√

|η(g(p))|2 + 1 +
√
|η(p)|2 + 1

for some function η. This is summarized in the following theorem:

Theorem 5.6. Let Γ be a semigroup of quasiregular self-mappings of a domain U ⊆ H̄1. The
following statements are equivalent:

(1) there exists a measurable Γ-equivariant horizontal conformal structure G on U ,
(2) there exists a measurable bounded function η : U → C such that (5.15) holds almost

everywhere in U for all g ∈ Γ,
(3) there exists a measurable Γ-equivariant CR structure µ on U .

Proof. The functions G, η and µ are related through the following identities

G(p) =
(

g11(p) g12(p)
g12(p) g22(p)

)
=

(
Re η(p) +

√
|η(p)|2 + 1 Im η(p)

Im η(p) −Re η(p) +
√
|η(p)|2 + 1

)

=
1

1− |µ(p)|2
(

2Re µ(p) + 1 + |µ(p)|2 2 Imµ(p)
2 Imµ(p) −2 Reµ(p) + 1 + |µ(p)|2

)

as well as
η(p) =

1
2
(g11(p)− g22(p) + i2g12(p)) =

2
1− |µ(p)|2 µ(p)

and

µ(p) =
g11(p)− g22(p) + i2g12(p)

g11(p) + g22(p) + 2
=

η(p)√
|η(p)|2 + 1 + 1

.

The computations to prove the equivalence of the above real and complex horizontal Beltrami
equations (1) and (2) follow the proof of the corresponding planar equations (10.29) and
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(10.32) in [1] verbatim. It can be seen by a direct computation that both the matrix given
with respect to η and the one given with respect to µ are symmetric, positive definite, with
determinant 1 and real entries.

Using the isometry (5.12), we find

log |G| = dS(2)(I, G) = dD(0, µ) = log
1 + |µ|
1− |µ| ,

hence G is essentially bounded with respect to the hyperbolic metric in S(2) if and only if
‖µ‖ = ess supp∈U |µ(p)| < 1. The last condition itself is equivalent to the boundedness of the
function η. ¤

To further illustrate the connection between an equivariant horizontal conformal structure
G and an equivariant CR structure µ it is illuminative to write down the quadratic form

qp(u) := 〈G(p)u, u〉 = γ(p)|z + µ(p)z̄|2,
where we present the vector u = (u1, u2) ∈ HTp as a complex number z = u1 + iu2, γ(p) =
1
4(g11(p) + g22(p)) + 1

2 ∈ R+ and µ is related to G as described in Theorem 5.6.
As a counterpart for Theorem 10.3.4 in [1], we obtain the following result.

Theorem 5.7. Let η be a bounded, measurable, complex-valued function defined on a domain
U in H̄1. Then the continuous contact mappings g ∈ HW 1,4

loc (U,U) which solve the uniformly
elliptic equation

(5.16) Z̄gI(p) =
1√

|η(p)|2 + 1 +
√
|η(g(p))|2 + 1

(
η(p)ZgI(p)− η(g(p))ZgI(p)

)
,

form a uqr semigroup closed under composition. The family of homeomorphic solutions forms
a uniformly quasiconformal group.

Proof. As remarked earlier, it will follow from ‖µg‖ < 1 that g is quasiregular. Yet, this last
condition is obviously satisfied for solutions of (5.16) since

|µg(p)| =
∣∣∣∣
Z̄gI(p)
ZgI(p)

∣∣∣∣ ≤
|η(p)|+ |η(g(p))|√

1 + |η(p)|2 +
√

1 + |η(g(p))|2
and η is assumed to be a bounded function.

Then let us note that there is a horizontal conformal structure G such that a quasiregular
map g : U → U is a solution of (5.16) if and only if

(5.17) HgT
∗ (p)G(g(p))Hg∗(p) = JH(gI , p)G(p) for almost all p ∈ U

(cf. proof of Theorem 5.6). Let g and h be two solutions of (5.17) and let p be a point such
that (5.17) is fulfilled for g in h(p) and for h in p (almost every point is such a point). Using
the chain rule (5.3), we conclude

H(g ◦ h)T
∗ (p)G(g ◦ h(p))H(g ◦ h)∗(p) = HhT

∗ (p)HgT
∗ (h(p))G(g(h(p)))Hg∗(h(p))Hh∗(p)

= JH(gI , h(p))HhT
∗ (p)G(h(p))Hh∗(p)

= JH(gI , h(p))JH(hI , p)G(p)

= JH((g ◦ h)I , p)G(p).
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It follows that the appropriately regular solutions of (5.16) form a uqr semigroup under
composition.

Similarly, one can prove that for a homeomorphic solution, i.e. a quasiconformal map g,
the inverse function g−1 is again a solution of (5.17) and hence of (5.16). In order to see this,
we use Hg−1∗ (g(p)) = Hg∗(p)−1 and JH((g−1)I , g(p)) = JH(gI , p)−1. ¤

One can also compare the set of solutions to (5.16) with the set of mappings preserving
the standard CR structure. In the complex case, each solution of the corresponding equation
is conformal (holomorphic) after an appropriate change of variables by a quasiconformal
mapping. This does not hold in full generality in our situation since a given CR structure
need not be realizable.

Remark 5.8. If we assume the CR structure µ is realizable for some quasiconformal map ϕ

on H̄1 , that is µ = µϕ or in other words solving the equation

Z̄ϕI = µZϕI ,

then for any solution g of (5.16) the mapping ϕ◦g ◦ϕ−1 preserves the standard CR structure.
Conversely, every function of form ϕ−1 ◦ h ◦ ϕ where h preserves the standard CR structure
satisfies the equation (5.16).

6. Final comments and open questions

There is by now a quite elaborate theory of quasiregular mappings on Heisenberg and more
general Carnot groups, however many important problems are still open. It would be of great
importance to have a tool-kit of interesting examples for quasiregular maps akin to the case
of Euclidean spaces [31].

The method of constructions of quasiregular maps in this paper are based on the flow-
technique of Korányi and Reimann [21] and [23] and seem not be powerful enough to produce
a Heisenberg analogue of quasiregular Zorich type maps omitting points from the target
space. It has been shown in [17] that a non-constant quasiregular map f : Hn → Hn on the
Heisenberg group equipped with a Riemannian structure cannot omit any value. Yet, it is still
an open question whether such a result holds for Heisenberg groups with a sub-Riemannian
structure.

In the Riemannian setting so called Lattès type mappings give plenitude of examples of
uqr mappings. In the Riemann sphere these mappings are generated by semi-conjugating a
dilation in the plane by the two periodic Weierstraß ℘-function. These mappings have been
studied in the sphere case in [28] and on other compact manifolds in [2]. It is then natural to
ask:

Question 6.1. Are there Lattès type mappings in the compactified Heisenberg group?

Among the Lattès type mappings there is a counterpart for planar power function acting
on the n-sphere with codimension 1-sphere as a Julia set and two superattracting fixed points
(origin and infinity). Hence this mapping has a uqr restriction acting on Rn as well as on
Rn\{0}. The existence of a similar mapping on the compactified Heisenberg group is an open
question. Moreover, we do not know the answer to the following:
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Question 6.2. Are there non-injective uqr maps acting on the (non-compactified) Heisenberg
group?

A further open question in this context is the following:

Question 6.3. Does every qr map f : H̄1 → H̄1 have a uqr counterpart?

More precisely, given a qr map f : H̄1 → H̄1 we would ask for the existence of a uqr map
g : H̄1 → H̄1 with the property that the two maps have the same branch set Bg = Bf .
The corresponding Euclidean statement [27] follows by Sullivan’s annulus quasiconformal
extension theorem (see [36]). In the positive case a Stöılow factorization for quasiregular
mappings would follow also in the Heisenberg group case. In [26] we show that all quasiregular
mappings f acting on the standard sphere have a factorization f = g ◦ h, where g is uqr and
h quasiconformal.

In [13] a quasiregular mapping is presented with branching branch set. With the techniques
from this paper one can construct a uqr map whose branch set is branching along a Cantor set.
Our results show that the branch set (and its image) for a uqr map of H1 can be arbitrarily
large in dimension. On the other hand, we can recall a result due to Markina [24] which gives
a lower bound on the dimension of the image of a branch set of a quasiregular map between
Carnot groups, i.e. the image of a branch set cannot become arbitrarily small. For the first
Heisenberg group, the precise statement is the following

Theorem 6.4 ([24]). Let f : Ω → H1, Ω ⊆ H1, be a quasiregular map with non-empty branch
set Bf 6= ∅. Then

H1(f(Bf )) > 0,

where H1 denotes the one-dimensional Hausdorff measure on H1 with respect to the Heisenberg
distance.

Question 6.5. Is the above lower bound on the size of the branch set sharp?

The currently known smallest non-empty branch set for a Heisenberg qr map is the t-axis
for the case of the winding map. The positive answer to the above question would follow
from the existence of a quasiconformal map which maps the t-axis to a rectifiable curve in
the Heisenberg group, which is exactly Question 25 in [15].

We think that the same methods can be used to produce uqr mappings also in higher
dimensional Heisenberg groups. The construction of an equivariant CR structure in the
higher dimensional case can be a more complicated task. Let us recall that in [18] Iwaniec
and Martin prove the existence of a conformal structure which is equivariant under an abelian
uqr semigroup acting on Euclidean spheres.

Analogously to the case of H̄1 one can introduce a horizontal conformal structure in higher
dimensional Heisenberg groups as well. Following the reasoning as in [18] one can prove for
a countable, abelian uqr semigroup Γ acting on the higher dimensional compactified Heisen-
berg groups Hn the existence of an invariant horizontal conformal structure. In the higher
dimensional case the connection between equivariant horizontal conformal structures and
equivariant CR structures is not at all clear. It would be interesting to explore the analogous
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identity between quadratic forms given by 2n-(real)dimensional horizontal conformal struc-
ture G and complex antilinear mapping µ : T 1,0 → T 1,0. For definition of higher dimensional
CR structures we refer to [22], [8].
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[23] Adam Korányi and Hans Martin Reimann. Foundations for the theory of quasiconformal mappings on

the Heisenberg group. Adv. Math., 111(1):1–87, 1995.

[24] Irina Markina. Hausdorff measure of the singular set of quasiregular maps on Carnot groups. Int. J. Math.

Math. Sci., (35):2203–2220, 2003.

[25] Irina Markina and Sergey Vodopyanov. On value distributions for quasimeromorphic mappings on H-type

Carnot groups. Bull. Sci. Math., 130(6):467–523, 2006.
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