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LATTÈS-TYPE MAPPINGS ON COMPACT MANIFOLDS

LAURA ASTOLA, RIIKKA KANGASLAMPI, AND KIRSI PELTONEN

Abstract. A uniformly quasiregular mapping acting on a compact riemann-
ian manifold distorts the metric by a bounded amount, independently of the
number of iterates. Such maps are rational with respect to some measurable
conformal structure and there is a Fatou-Julia type theory associated with
the dynamical system obtained by iterating these mappings. We study a rich
subclass of uniformly quasiregular mappings that can be produced using an
analogy of classical Lattès’ construction of chaotic rational functions acting on
the extended plane C̄. We show that there is a plenitude of compact manifolds
that support these mappings. Moreover, we find that in some cases there are
alternative ways to construct this type of mappings with different Julia sets.

1. Introduction

In recent years a theory analogous to that of the iteration of rational functions
in the riemann sphere C̄, distinct from that of iteration of holomorphic functions
in several complex variables has been developed in higher dimensions. A uniformly

quasiregular mapping (uqr mapping) is a mapping f : M → M acting on a com-
pact riemannian manifold M in such a way that all the iterates are quasiregular
with a uniform bound on the distortion constant. The basic theory of quasireg-
ular mappings f : D → R̄n defined in euclidean domains D ⊂ R̄n is extensively
studied in [13]. The surprising fact that there indeed exist non-injective examples
of uqr maps acting on sphere R̄n was first discovered by Iwaniec and Martin [4].
Moreover, it was later discovered [12] that there are many other compact manifolds
than just the ordinary sphere that support this type of mappings. Recently these
mappings have been constructed even in the presence of a subriemannian metric in
case of the Heisenberg group [1]. All these examples are variations of the so called
trapping method originally invented in [4] and further crystallized in [9]. There the
idea is to build a conformal trap, an area, where all the points whose neighbour-
hood is distorted, land after finite, uniformly bounded, number of iterates. Once
hitting the trap the points will also stay conformally inside the trap under further
iterates. This method always produces mappings, whose Julia set is a Cantor set.
If a uqr mapping g exists on a compact riemannian manifold, it is always possi-
ble to construct a bounded measurable conformal structure that remains invariant
under the action of the semigroup Λ of iterates fn, n ∈ N. In case of the Heisen-
berg group equipped with the natural subriemannian Carnot-Carathéodory metric
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this corresponds to the existence of a horizontal invariant conformal structure and
equivalently existence of a non-standard equivariant measurable CR structure [1].

In addition to the above trapping method, an other type of way to produce
uqr maps is also known. In 1997, 1998 Mayer discovered an important family of
examples of uniformly quasiregular mappings [10], [11]. They are analogues of the
rational functions that are called critically finite with parabolic orbifold. Mayer
generalized Lattès’ construction of so-called chaotic rational maps [8]. Moreover,
he showed that in addition to the chaotic analogue of the Lattès mapping on the
n-sphere R̄n there exist analogues of planar power mappings z 7→ zd as well as
Tchebychev polynomials like z 7→ z2 − 2 showing that with this respect the theory
of uqr maps in higher dimensional spheres is equally rich as in two dimensions.
The uniformly quasiregular counterparts for power mappings have a codimension
1 sphere as a Julia set with origin and infinity as super-attracting and completely
invariant fixed points. The uqr counterpart of Tchebychev polynomials have a
codimension 1 closed unit disk as a Julia set and completely invariant fixed point
infinity. In what follows, we recall these basic constructions and develop them for
further examples.

It is interesting to note, that the only manifolds that we know to support Lattès-
type maps as well as uqr maps that arise through the trapping method, are the
ordinary sphere and the projective space in odd dimensions. Since all spherical
space forms support trapping method [12], it remains a challenging open question
whether among these spaces Lattès-type mappings could be produced. On the
other hand we do not know whether we have reached all the compact manifolds
outside the spherical space forms that support Lattès-type maps either. Towards
classification of manifolds supporting Lattès-type uqr maps there is an interesting
characterization by Mayer [11] in terms of invariant conformal structures. Although
he formulated the theorem only for the sphere, the statement holds also for compact
riemannian manifolds.

The existence of a non-injective uqr map is a global obstruction for the manifold.
It is known [5], [7] that if such a map exists then the manifold Mn has to be elliptic,
that is there must exist a non-constant quasiregular mapping f : Rn → Mn. In
dimension three this is a characterization [7]. In higher dimensions the situation is
open. We do not know for example whether an elliptic manifold S2 × S2#S2 × S2

[14] supports non-injective uqr maps.
The paper is organized as follows: In section 2 we fix the notation and recall the

basic definitions and previous results needed here. In section 3 we study the spaces
that come up in dimension 3. In further sections 4 and 5 the dimensions 4 and
5 are treated separately to focus on increasing flexibility of mappings and variety
of possible Julia sets. In the last chapter we outline the constructions in higher
dimensions.

2. Notations and preliminaries

Let D ⊂ R̄
n be a domain and f : D → R̄

n a non-constant mapping of the
Sobolev class W 1,n

loc (D). We consider only orientation-preserving mappings, which
means that the Jacobian determinant Jf (x) ≥ 0 for a.e. x ∈ D. Such a mapping is
said to be K-quasiregular, where 1 ≤ K <∞, if

max
|h|=1

|f ′(x)h| ≤ K min
|h|=1

|f ′(x)h|
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for a.e. x ∈ D, when f ′ is the formal matrix of weak derivatives.
We can generalize this definition to riemannian manifolds with the help of bilip-

schitz-continuous coordinate charts. Let M and N be smooth n-dimensional rie-
mannian manifolds. A non-constant mapping f : M → N is K-quasiregular if
for every ε > 0 and every m ∈ M there exists bilipschitz-continuous charts (U,ϕ),
m ∈ U , and (V, ψ), f(m) ∈ V , so that the mapping ψ◦f◦ϕ−1 is (K+ε)-quasiregular.

A non-constant quasiregular mapping can be redefined on a set of measure zero
so as to be continuous, open and discrete [13]. We will henceforth assume that
quasiregular mappings always have these properties. The branch set Bf of the
mapping f : M → N is the set of those points x ∈ M where f is not locally
homeomorphic.

Let M be a compact riemannian n-manifold. A non-injective mapping f from
a domain D ⊂M onto itself is called uniformly quasiregular (uqr) if there exists a
constant 1 ≤ K ≤ ∞ such that all the iterates fk are K-quasiregular.

A K-quasiregular semigroup is a family of K-quasiregular mappings, which is
closed under composition of the mappings. We define Julia and Fatou sets of such
semigroups as follows:

Definition 2.1. Let Λ be a quasiregular semigroup. Then the Fatou set of Λ is

F(Λ) = {x ∈M : there exists an open set U ⊂M

such that x ∈ U and Λ|U is normal}.
The Julia set of the family Λ is J (Λ) = M \ F(Λ).

By the definition, Fatou sets are open, and therefore Julia sets are closed. If the
family Λ consists of iterates of a mapping f , that is Λ = {fk |k = 1, 2, . . .}, we call
these sets simply Fatou and Julia sets of the mapping f , denoted by Ff and Jf .
Fatou and Julia sets are completely invariant [7]. We call a uqr mapping chaotic if
the Julia set is the whole manifold M .

Since the derivative of a uqr mapping need not exist at a given point, the clas-
sification of different fixed point types is not available as for holomorphic maps.
To see how this difficulty can be overcome by establishing Lipschitz estimates near
fixed points see [3].

Let G be a measurable conformal structure on M . By that we mean a measurable
and bounded map G : M → S(n), where S(n) is the space of symmetric n × n
positive definite matrices of determinant 1. Moreover, for almost every point x ∈M ,
G(x) is a linear automorphism

G(x) : TxM → TxM

of the inner product space TxM given by a fixed riemannian metric 〈 , 〉 satisfying
a uniform ellipticity condition

(2.1) K−1|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ K|ξ|2

with K ≥ 1 independent of x. Such a conformal structure is a riemannian metric
with measurable coefficients. The normalization requirement detG(x) = 1 a.e. is
due to the fact that from the point of view of quasiconformal maps two structures
G and G′ are equivalent if they differ a.e. by a constant: G(x) = λxG

′(x) a.e. in
M .

For G satisfying 2.1 the solutions of the equation

(2.2) Dtf(x)G (f(x))Df(x) = Jf (x)
2
nG(x)
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for mappings of Sobolev class W 1,n
loc (M) form a semigroup under composition. Each

such solution is a K2 quasiregular mapping of M , where K is determined by the
ellipticity bound 2.1 on G. We call the semigroup of non-constant solutions to 2.2
the G-rational mappings or simply rational mappings if G is understood. Conformal
structure G is referred to as an invariant conformal structure for this semigroup.
In dimension 2 and G = I the identity matrix, the differential equation 2.2 reduces
to the usual Cauchy-Riemann equations and such solutions necessarily represent
rational endomorphisms of C̄. Conversely if f is a uqr mapping, then there exists a
equivariant conformal structure for the semigroup Λ = {fn|n ∈ N} generated by f .
The proof is analogous to the construction given for two dimensional quasiconformal
groups in [16] and is presented in [4]. For further discussion on conformal structures
see [5].

We recall, that in the plane a Lattès map is obtained by semi-conjugating an
expanding similarity with an elliptic function. The original example given by Lattès
[8] was the rational map

z 7→ (z2 + 1)2

4z(z2 − 1)
.

To end up with this and a whole family of similar chaotic examples in the extended
complex plane see for example [2], where the properties of the two periodic Weier-
strass ℘-function are used to characterize this class. The geometric nature behind
the algebraic properties can be captured for uqr-mappings of R̄n and more general
compact manifolds M , the principal tool being automorphic functions:

Definition 2.2. Let Γ be a discrete group of isometries of Rn. A mapping h :
R

n →M is automorphic with respect to Γ in the strong sense if

(1) h ◦ γ = h for any γ ∈ Γ,
(2) Γ acts transitively on the fibres Oy = h−1(y).

By the latter condition we mean that for any two points x1, x2 with h(x1) =
h(x2) there is an isometry γ ∈ Γ such that x2 = γ(x1). We have the following
theorem by T. Iwaniec and G. Martin [5, pp. 501-502]. The proof in [5] is written
for the case M = R̄n, but it holds more generally on a riemannian manifold M
without changes.

Theorem 2.3. Let Γ be a discrete group such that h : Rn → M is automorphic

with respect to Γ in the strong sense. If there is a similarity A = λO, λ ∈ R, λ 6= 0,
and O an orthogonal transformation, such that

AΓA−1 ⊂ Γ,

then there is a unique solution f : h(Rn) → h(Rn) to the Schröder functional

equation

(2.3) f ◦ h = h ◦A,
and f is a uniformly quasiregular mapping, if h is quasiregular.

By the condition AΓA−1 ⊂ Γ it is simply meant that for any γ ∈ Γ there exists
a γ′ ∈ Γ such that Aγ(x) = γ′A(x) for any x. The idea of the proof presented in [5]
is that if h is automorphic with respect to a discrete group, it does not recognize
whether the space has been ”moved” or not. If, in addition, A does not disturb
the action of the group, there is a solution to the Schröder equation. Note that
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following from (2.3) we have the equation fk ◦ h = h ◦ Ak for all k. Thus the
dilatation of the uqr mapping fk is exactly the dilatation of h2 for all k:

K(f) = K(fk) = K(h2).

Geometrically the Weierstrass ℘-function is obtained by first mapping the square
Q =]0, 1[2 quasiconformally onto the northern hemisphere of S

2 and then extending
this mapping to the complex plane using repeated reflections on the sides of Q and
on the equator in the range. The group Γ is given by the isometries that come from
an even number of reflections at the sides of Q. By multiplying with A : A(z) = 2z
the resulting uqr mapping fLat defined as a solution of 2.3 is chaotic.

Three different Lattès-type mappings exist in the holomorphic case in the ex-
tended complex plane. In addition to the above mentioned chaotic rational func-
tions, the original example fLat of Lattès, the power mappings z 7→ zd and Tcheby-
chev polynomials like z 7→ z2 − 2 belong to this class. The Julia set of the power
mapping is the unit circle and Fatou set with two component, while the Tcheby-
chev polynomials have closed line segment as the Julia set and Fatou set with
one component only. All these three types have analogues in higher dimensional
spheres.

We formulate the following characterization of Lattès-type mappings:

Theorem 2.4 ([11]). A non-injective uniformly quasiregular mapping f of Mn,

n ≥ 3, is of Lattès type if and only if it has an f -invariant conformal structure

which is flat at a repelling fixed point of some iterate fk of the mapping.

We recall that the flatness of a conformal structure G at a point p means that
there exists a neighbourhood U of p and a quasiconformal mapping ϕ defined on U
such that

Dtϕ(x)G (f(x)) (Dϕ(x) = Jϕ(x)
2
n I(x)

holds for a.e. x ∈ U . The symbol I denotes the n × n identity matrix. Although
the above theorem is formulated for the sphere only in [11] the proof generalizes to
compact manifolds verbatim.

In many examples below we end up with chaotic Lattès-type mappings. To this
direction, it is interesting to note that the situation is very rigid with respect to
possible conformal structures.

Theorem 2.5 ([10]). Let f be a chaotic Lattès type mapping acting on manifold Mn

and satisfying the Schröder functional equation 2.3. Then a conformal structure G
is f -invariant if and only if the pull back of G under h

H(x) = Jh(x)−
2
nDth(x)G (h(x))Dh(x)

a.e. in Rn is a constant Γ- and A-invariant structure. Moreover, when n ≥ 3, then

H has a diagonal form

H = diag(m1,m2, . . . ,mn), mi > 0 and m1m2 · · ·mn = 1.

The proof for this general setting follows as the spherical case presented in [10]
verbatim.

3. Constructions in three dimensions

In dimension three it is possible to construct uqr mappings with Julia sets that
have the same characteristics as the Julia sets of uqr maps in the plane. That
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is, chaotic mappings, and mappings with lower dimensional manifolds or Cantor
sets as Julia sets. Lattès-type uqr mappings can have Julia sets of the first two
types, Cantor sets can be obtained e.g. with the conformal trap method. Next we
construct some examples in detail.

3.1. Sphere S3. There is a number of examples of Lattès-type uqr mappings on
the three dimensional sphere by Mayer (see e.g. [10]). He constructs chaotic uqr
mappings acting on S3 and analogues of power mappings with Julia set S2. Some
of the constructions are presented generally on Sn. We recall three mappings on S3

that are essential in later examples. The first one is a generalization of the power
mapping acting in the plane. It is induced by the Zorich mapping, and has the Julia
set S2. The second one is chaotic, and it is based on the cubical decomposition of
the space. The last one uses an analogue of the Tchebychev polynomial, and has a
closed 2-disk D̄ × {0} as the Julia set.

3.1.1. Power mapping. Let us first show how a 4 to 1 uqr mapping arises on S3

via Zorich mapping, the higher dimensional counterpart of the planar exponential
function, as presented by Rickman [13, p.15]) and later Mayer [10]. Denote the
Zorich mapping by hZ : R3 → R3 \ {0}. This mapping is constructed by first
subdividing space into infinite cylinders with integer lattice base in the x1x2-plane.
Take a slice Z = {(x1, x2, x3) | 0 < x1, x2 ≤ 1, x3 ∈ R} in R3 first to an infinite
cylinder of radius 1 by a bilipschitz radial stretching, and then map the round
cylinder quasiconformally onto the upper half-space H by the mapping (r, ϕ, x3) 7→
(exp(x3), ϕ,

πr
2 ), where cylindrical and spherical coordinates, respectively, are used.

The mapping hZ is obtained by extending this map to a quasiregular map of R
3

to R3 \ {0} by using reflections on faces of Z and ∂H. So hZ alternately maps
neighbouring cylinders to the upper and lower half-space. The branch set of hZ

consists of the edges of Z and the reflected cyliders, i.e. Bh = Z2 × R.
If we semiconjugate the mapping A2 : x 7→ 2x in R3 with the Zorich mapping

hZ , a 4 to 1 mapping fpwr : R3 \ {0} → R3 \ {0} is induced via equation 2.3.
The mapping is further extended continuously to the origin and the infinity by

defining fpwr(0) = 0 and fpwr(∞) = ∞. Thus fpwr is a mapping acting on 3-
sphere, fpwr : S

3 → S
3. By theorem 2.3 this mapping is uniformly quasiregular. It

is a generalization of the power mapping in the plane (see Figure 1).
The Julia set is the image of the x1x2-plane in R3 under the Zorich mapping,

that is, a 2-sphere of radius 1, centered at the origin. The point hZ(0) is a repelling
fixed point of fpwr. The mapping fpwr has two basins of attraction, the inside
and the outside of the Julia set, the origin and infinity being superattractive fixed
points. The branch set consists of six half-lines that meet at the origin and infinity.
They correspond to images of six vertical lines in R3 under the Zorich mapping:
four lines in the middle of the faces of Z, one through its center and one through
the center of its neighbouring cylinder. The local index is 2 along the branch lines
outside the origin and infinity and 4 at the origin and infinity.

If we semiconjugate above a general dilation Aλ : x 7→ λx in R3 , λ = 2, 3, . . .
with the Zorich mapping hZ , a λ2 to 1 mapping fλ

pwr : R3 \ {0} → R3 \ {0} is
induced via equation 2.3. Note that while the branch set Bh of the Zorich mapping
constitutes the edges of the cylindrical decomposition of the space, the branch
set of the induced power mapping consists of 2(λ2 − 1) half lines meeting at the
origin and infinity. More precisely, the branch set of the power mapping is the set
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Figure 1. Constructing a uqr mapping fpwr on S3

h
(

(A−1
λ Bh)\Bh

)

. The local index is 2 along the branch lines outside the origin and

infinity and λ2 at the origin and infinity.

3.1.2. Chaotic mapping. The classical example fLat in the complex plane can be
easily adapted to higher dimensions. We replace Q =]0, 1]2 by the cube Q =
]0, 1]3 and find a quasiconformal homeomorphism h from this cube to the upper
hemisphere of S3. Then we again extend this map h using reflections with respect
to the faces of Q and inversion on the equator of S

3 in the range. The function
h : R3 → S3 that we obtain, is a quasimeromorphic version of the Weierstrass
℘ function. This map is automorphic with respect to a crystallographic group
Γ ⊂ Isom(R3). The branch set Bh of h is the one skeleton of the cubical subdivision
of space.

To describe the identifications in the subdivision of R3 we first find that the even
integer lattice gives cubes congruent to [0, 2)3 under translations (x1, x2, x3) 7→
(x1 + 2, x2, x3), (x1, x2, x3) 7→ (x1, x2 + 2, x3) and (x1, x2, x3) 7→ (x1, x2, x3 + 2).
Each such a cube is further divided into eight unit cubes. Let e1, e2 and e3 denote
the three orthogonal unit vectors in R3, and let x1, x2, x3 ∈ R be coordinates of
an arbitrary point in R3. All the points of the set

{(x1 + 2n1)e1 + (x2 + 2n2)e2 + (x3 + 2n3)e3,

(2 − x1 + 2m1)e1 + (2 − x2 + 2m2)e2 + (x3 + 2m3)e3,

(x1 + 2k1)e1 + (2 − x2 + 2k2)e2 + (2 − x3 + 2k3)e3,

(2 − x1 + 2l1)e1 + (x2 + 2l2)e2 + (2 − x3 + 2l3)e3

| ni,mi, ki, li ∈ Z, i = 1, 2, 3}

(3.1)
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will be identified under two repeated reflections with respect to 2-faces of the (unit)
cubical subdivision to represent the same point of the manifold S3. This identifi-
cation induces a branched covering h : R3 → S3. Each cube congruent to [0, 2)3

covers space S3 four times.
If the dilation A2 is taken in the equation 2.3 then an 8 to 1 mapping fcube ∈

UQR(S3) is obtained as a solution. It follows from the cocompactness of this group
that the solutions fcube are chaotic: the Julia set is the whole sphere. Again the
point h(0) is a repelling fixed point of fcube. The branch set of fcube is the set
h

(

(A−1
2 Bh)\Bh)

)

.

If we semiconjugate above a general Aλ : x 7→ λx in R3, λ = 2, 3, . . . with the
mapping h, a λ3 to 1 mapping fλ

cube : S3 → S3 is induced via equation 2.3.
The fact that mapping fλ

cube is well defined for arbitrary integer λ > 1 can be
seen as follows. Let x be a point on S3 and x1e1 + x2e2 + x3e3 ∈ R3, where x1, x2,
x3 ∈ [0, 2), one of its preimages under h. We see that the whole preimage set of
the point x under the branched covering map h is

h−1(x) = {(x1 + 2n)e1 + (x2 + 2m)e2 + (x3 + 2k)e3,

(2 − x1 + 2n′)e1 + (2 − x2 + 2m′)e2 + (x3 + 2k′)e3,

(x1 + 2n′′)e1 + (x2 + 2m′′)e2 + (2 − x3 + 2k′′)e3,

(2 − x1 + 2ñ)e1 + (2 − x2 + 2m̃)e2 + (2 − x3 + 2k̃)e3

| n,m, k, n′,m′, k′, n′′,m′′, k′′, ñ, m̃, k̃ ∈ Z}.

(3.2)

Consequently, the set

Aλ(h−1(x)) = {λ(x1 + 2n)e1 + λ(x2 + 2m)e2 + λ(x3 + 2k)e3,

λ(2 − x1 + 2n′)e1 + λ(2 − x2 + 2m′)e2 + λ(x3 + 2k′)e3,

λ(x1 + 2n′′)e1 + λ(x2 + 2m′′)e2 + λ(2 − x3 + 2k′′)e3,

λ(2 − x1 + 2ñ)e1 + λ(2 − x2 + 2m̃)e2 + λ(2 − x3 + 2k̃)e3

| n,m, k, n′,m′, k′, n′′,m′′, k′′, ñ, m̃, k̃ ∈ Z}
⊂ {(λx1 + 2n)e1 + (λx2 + 2m)e2 + (λx3 + 2k)e3,

(2 − λx1 + 2n′)e1 + (2 − λx2 + 2m′)e2 + (λx3 + 2k′)e3,

(λx1 + 2n′′)e1 + (λx2 + 2m′′)e2 + (2 − λx3 + 2k′′)e3,

(2 − λx1 + 2ñ)e1 + (2 − λx2 + 2m̃)e2 + (2 − λx3 + 2k̃)e3

| n,m, k, n′,m′, k′, n′′,m′′, k′′, ñ, m̃, k̃ ∈ Z}

(3.3)

becomes a single point y := y1e1 + y2e2 + y3e3 in S3 under the mapping h, where
yi is the fractional part of λxi, i = 1, 2, 3, 4. Thus Aλ descends to a well defined
mapping fλ

cube : S3 → S3.
Similar method works on higher dimensional spheres as well. One just takes an

n-dimensional cube instead of the 3-cube in the construction. The details for the
identifications are shown in sections 4.1, 5 and 6.

3.1.3. Tchebychev mapping. Yet another example on S3 that will be used in later
constructions is based on the analogues of Tchebychev polynomials. The obtained
uqr mapping has the Julia set D̄ × {0} = {(x1, x2, 0)| x2

1 + x2
2 ≤ 1} ⊂ R̄3. The

following construction has been presented in [11].
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Let Z =]0, 1[2×R and denote the lower half by Z− = Z ∩ {x3 < 0}. From the
above construction of Zorich’s mapping (Section 3.1.1) we have a quasiconformal
mapping hZ from the cylinder Z onto the upper half-space H = {(x1, x2, x3) ∈
R3|x3 > 0}, such that hZ(Z−) = H∩B(0, 1). The half-ball is conformally equivalent
to the quarter-space {(x1, x2, x3) ∈ R

3| x1 > 0, x3 > 0} via inversion with respect

to sphere S
(

(1, 0, 0),
√

2
)

:

I : x 7→ 2(x− q)

|x− q|2 + q, q = (1, 0, 0)

followed by a reflection with respect to the x2x3 plane: r : (x1, x2, x3) 7→ (−x1, x2, x3)
to preserve the orientation. The quarter-space is quasiconformally equivalent to
the half-space H via mapping s that is a composition of restriction of quasiregular
mapping (r, ϕ, x2) 7→ (r, 2ϕ, x2) and rotation of angle −π/2 with respect to the
positive x2-axis. Above (r, ϕ) refers to polar coordinates of the x3x1-plane. By
further applying mapping r ◦ I, the composition of all these mappings gives a qua-
siconformal mapping hT : Z− → H that maps the end −∞ of Z to ∞ and also
hT (Z− ∩ {x3 = 0}) = D̄ × {0} holds. The above steps are illustrated in Figure 2.
The half-lines parallel to the positive x1-axes on the right hand side symbolically
represent the circles orthogonal to the x2 axis going through point (1, 0, 0).

hT

hZ r ◦ I

r ◦ I

s

Figure 2. Construction of Tchebychev mapping hT on S3

Let us then extend hT to a quasiregular mapping of R3 onto itself. We use
reflections on the faces of Z− and ∂H on the range. This extension, still denoted
by hT , maps half-cylinders alternately onto the upper and lower half-space. By
construction, hT is automorphic with respect to the discrete group of isometries
Γ generated by the translations x 7→ x + 2e1, and x 7→ x + 2e2, and by the two
rotations x 7→ (−x1, x2,−x3) and x 7→ (x1,−x2,−x3).
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Now any mapping Aλ : x 7→ λx, where λ = 2, 3, . . ., induces a λ2 to 1 uqr
mapping fT of Lattès type on S3:

(3.4)

R3 A−−−−→ R3

hT





y





y

hT

S
3 fT−−−−→ S

3

The Julia set of such a mapping is JfT
= hT ({x3 = 0}) = D̄ × {0}. Its com-

plement, the Fatou set, is the only basin of attraction, and there the iterates fk
T

converge locally uniformly to the completely invariant fixed point ∞. In addition,
the infinity point is superattracting, since fT is not locally homeomorphic there
[3]. The set {(x1, x2, 0) ∈ R3| x2

1 + x2
2 > 1} consisting of the image points of the

faces of the infinite cylinders under the mapping hT is only forward invariant. The
point hT (0) is a repelling fixed point of the mapping fT . The branch set of fT is
hT

(

(A−1
λ (BhT

)\BhT

)

, where the branch set of the mapping hT constitutes of the
union of the edges of the cylindrical decomposition of the space and the one skeleton
of the unit square lattice in the x1x2 plane, and it is denoted by BhT

. Note that
although the branch set of hT is different to that of Zorich mapping hZ above, the
resulting branch set for the both induced mappings including local indeces are the
same: branch lines constitute 2(λ2 −1) half lines sharing local index 2 and meeting
at the origin and infinity with local index λ2.

3.2. Projective space P3. We construct two uqr mappings of Lattès type acting
on the three dimensional projective space P

3: a chaotic branched mapping and a
mapping with the Julia set P2. Other uqr mappings (not of Lattès type) on P3

have been constructed with the conformal trap method in [12]. The space P3 is,
in addition to the sphere, so far the only example of a manifold that supports uqr
maps that can be produced both via trap method and Lattès-type construction.

3.2.1. Chaotic uqr mapping on P3. We recall that a projective space is the space of
one-dimensional vector subspaces of a given vector space. The notation Pn denotes
the real projective space of dimension n (i.e., the space of one-dimensional vector
subspaces of R(n+1)). Pn can also be viewed as the set Sn/{x,−x}, where x and
−x denote the antipodal points.

We wish to present R
3 as a branched cover for P

3. Therefore we look at the
projective space P3 as a block in R3. We subdivide the projective space into two tiles
denoted by + and − in Figure 3. The gluing pattern in R3 is described in Figure 4.
Thus in Figure 4 any two adjacent pieces cover the space P3 once. From Figure 4 we
can count the Euler characteristic to be χ = #vertices−#edges+#faces−#cells =
6 − 10 + 6 − 2 = 0, so we are indeed dealing with a manifold.

Now we can define which points on R3 need to be identified to present R3 as a
branched cover for P3. Let e1, e2 and e3 be the three orthogonal unit vectors in R3

and let x1e1 + x2e2 + x3e3 be an arbitrary point in R
3, x1, x2, x3 ∈ R. We need to
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+

−

Figure 3. P3

+

+

+

+

+

+−

−

− −

−

− −

Figure 4. The gluing pattern of eight copies of P3

identify all the points in the set

{(x1 + 2n1)e1 + (x2 + 2m1)e2 + (x3 + 2k1)e3,

(2 − x1 + 2n2)e1 + (2 − x2 + 2m2)e2 + (x3 + 2k2)e3,

(1 − x1 + 2n3)e1 + (1 − x2 + 2m3)e2 + (1 + x3 + 2k3)e3,

(2 − x1 + 2n4)e1 + (x2 + 2m4)e2 + (1 − x3 + 2k4)e3,

(x1 + 2n5)e1 + (2 − x2 + 2m5)e2 + (1 − x3 + 2k5)e3,

(1 − x1 + 2n6)e1 + (1 + x2 + 2m6)e2 + (2 − x3 + 2k6)e3,

(1 + x1 + 2n7)e1 + (1 − x2 + 2m7)e2 + (2 − x3 + 2k7)e3,

(1 + x1 + 2n8)e1 + (1 + x2 + 2m8)e2 + (1 + x3 + 2k8)e3

| ni,mj , kl ∈ Z}

(3.5)
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in R3 to be the same point on P3, which can be seen from Figure 4.
Denote the above defined branched covering map by g : R3 → P3. This covering

map branches on each line of the Figure 4. We use the dilation A3 : R3 → R3,
where A3 : x 7→ 3x, to create a uqr-mapping. The mappings A3 and g induce a
mapping f to the manifold:

(3.6)

R3 A−−−−→ R3

g





y





y

g

P3 f−−−−→ P3

Let us check that the mapping f is a well-defined and uniformly quasiregular
mapping of Lattès type. Fix the origin to be at the bottom-left corner of Figure
4 and denote the orthogonal unit vectors again by e1, e2 and e3. Let x be such a
point on P3 that x1e1 + x2e2 + x3e3, where xi ∈ [0, 1) for all i = 1, 2, 3, is one of its
preimages under g. Then the set of preimage points of x on R

3 is

g−1(x) = {(x1 + 2n1)e1 + (x2 + 2m1)e2 + (x3 + 2k1)e3,

(2 − x1 + 2n2)e1 + (2 − x2 + 2m2)e2 + (x3 + 2k2)e3,

(1 − x1 + 2n3)e1 + (1 − x2 + 2m3)e2 + (1 + x3 + 2k3)e3,

(2 − x1 + 2n4)e1 + (x2 + 2m4)e2 + (1 − x3 + 2k4)e3,

(x1 + 2n5)e1 + (2 − x2 + 2m5)e2 + (1 − x3 + 2k5)e3,

(1 − x1 + 2n6)e1 + (1 + x2 + 2m6)e2 + (2 − x3 + 2k6)e3,

(1 + x1 + 2n7)e1 + (1 − x2 + 2m7)e2 + (2 − x3 + 2k7)e3,

(1 + x1 + 2n8)e1 + (1 + x2 + 2m8)e2 + (1 + x3 + 2k8)e3

| ni,mj , kl ∈ Z}.

(3.7)

Consequently,

A3(g
−1(x)) = {(3x1 + 6n1)e1 + (3x2 + 6m1)e2 + (3x3 + 6k1)e3,

(6 − 3x1 + 6n2)e1 + (6 − 3x2 + 6m2)e2 + (3x3 + 6k2)e3,

(3 − 3x1 + 6n3)e1 + (3 − 3x2 + 6m3)e2 + (3 + 3x3 + 6k3)e3,

(6 − 3x1 + 6n4)e1 + (3x2 + 6m4)e2 + (3 − 3x3 + 6k4)e3,

(3x1 + 6n5)e1 + (6 − 3x2 + 6m5)e2 + (3 − 3x3 + 6k5)e3,

(3 − 3x1 + 6n6)e1 + (3 + 3x2 + 6m6)e2 + (6 − 3x3 + 6k6)e3,

(3 + 3x1 + 6n7)e1 + (3 − 3x2 + 6m7)e2 + (6 − 3x3 + 6k7)e3,

(3 + 3x1 + 6n8)e1 + (3 + 3x2 + 6m8)e2 + (3 + 3x3 + 6k8)e3

| ni,mj , kl ∈ Z}

(3.8)

which under the mapping g is again just one point y := y1e1 +y2e2 +y3e3, where yi

is the fractional part of 3xi, i = 1, 2, 3. Thus A3 descends to a well defined mapping
f : P3 → P3.

The discrete group of isometries, Γ, now consists of all the translations 2e1, 2e2
and 2e3, the 180-degree rotation around the vertical middle axis of Figure 4, trans-
lation e1+e2+2e3 and the isometry defined by reflection by e2-axis and translation
1
2e3. Thus the group Γ has six generators. The mapping g is automorphic in the
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strong sense with respect to the group Γ, and for A3 : x 7→ 3x it holds that

A3ΓA
−1
3 ⊂ Γ.

Therefore, by Theorem 2.3, the mapping f : P3 → P3 is uniformly quasiregular.
The degree of this mapping is 27.

The Julia set of this uniformly quasiconformal mapping which we constructed
for P3 is the whole space, which can be seen as follows:

The origin is a repelling fixed point for the mapping A3 : x 7→ 3x. Consider
its Γ-orbit, Γ(0) = {γ(0) | γ ∈ Γ} = 3Z3. The set E = ∪k≥0A

−k
3 (Γ(0)) is a dense

subset of R3. Hence, g(E) is a dense subset of P3. We conclude that (fk) cannot be
equicontinuous in a neighbourhood of any point of P3. This means that the Fatou
set is empty and the mapping f is chaotic. Point g(0) is a repelling fixed point of
the mapping f . The branch set of f is the lattice g

(

(A−1
3 Bg)\Bg

)

, where Bg is
the branch set of g that consists of vertical edges and dotted horizontal lines of the
subdivision of R3 in figure 4. This mapping has a generalization that uses Aλ for
arbitrary odd λ > 1.

Remark 3.1. It is interesting to note that essentially the same chaotic mapping
is induced if one first takes the cubical subdivision of R3 as in 3.1.2 and then
introduces the antipodal condition by identifying point (x1, x2, x3) ∈ [0, 1)3 with
point (1 + x1, 1 − x2, 1 − x3) in cube [1, 2) × [0, 2)2. Then one attains three more
points due to the identification rules for the sphere: (1 − x1, 1 + x2, 1 − x3), (1 +
x1, 1 + x2, 1 + x3) and (1 − x1, 1 − x2, 1 + x3) to correspond a single point in P

3.
Each unit cube congruent to [0, 1)3 then gives a copy of P3 so that the points in
neighbouring cubes represent the same points up to reflection with respect to the
adjacent face. This identification pattern gives slightly different subdivision of R3

but the induced mappings are the same up to a quasiconformal deformation. It is
then possible to use the mapping Aλ, for odd λ > 1 to obtain the induced mapping
f̃ : P3 → P3 via diagram

(3.9)

R3 Aλ−−−−→ R3

g





y





y

g

S3 f−−−−→ S3

π





y





y

π

P3 f̃−−−−→ P3

where mapping π : S3 → P3 is the 2 to 1 covering projection.
Above we saw how the same mapping can be created from the structure of P3

itself. There one can find the corresponding representatives for a sphere from iden-
tifications on lines 1, 2, 4 and 5 in 3.5 and for the further subdivision for representa-
tives of the projective space for example the line 7 in 3.5. The other identifications
then follow up to translations modulo 2 from the spherical identifications.

The latter decomposition based on subdivision of 3.1.2 is more straightforward
to generalize into higher dimensions.

3.2.2. Uqr mapping on P3 with Julia set P2. In 3.1 we constructed the uqr mapping
fpwr : S

3 → S
3, a generalization of the power mapping. Now we use this mapping to
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construct another Lattès-type uqr mapping on P3. If we denote the 2 to 1 covering
map by π : S3 → P3, we will get the following commuting diagram for odd λ:

(3.10)

R
3 Aλ−−−−→ R

3

hZ





y





y

hZ

S3 fpwr−−−−→ S3

π





y





y

π

P3 f
P3−−−−→ P3

Next we prove in detail, that the mapping fP3 is well defined, and thus by 2.3 it
is a uqr mapping.

Consider S
3 as the unit sphere of complex 2-space C

2. Let τ : S
3 → S

3 be
the 2-periodic homeomorphism τ(z1, z2) = (z1e

iπ , z2e
iπ) = (−z1,−z2). Now S3 is

universal covering space for P3 and τ is a generator of the cyclic group of covering
translations.

Consider a point p ∈ P3. It has two preimage points on S3 ⊂ C2, let us denote
them by (ξ1, ξ2, ξ3, t) and (−ξ1,−ξ2,−ξ3,−t), where first and last two coordinates
represent a complex number. Thus ξ21 + ξ22 + ξ23 + t2 = 1 and ξ1, ξ2, ξ2, t ∈ [−1, 1].
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Aλ

hZhZ

fpwr

≃ ≃

R
3R

3

R3 ∪ {∞}R3 ∪ {∞}

P3P3

S3 ⊂ C2
S3 ⊂ C2

fP3

ππ

Figure 5. Construction of uqr mapping fP3 on P3
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We can consider the 3-sphere also as R3 ∪ {∞} via the stereographic projection
(see Figure 5). Denote the stereographic projection with respect to the north pole

by σ : S3 ⊂ C2 → R3 ∪ {∞}, σ(x1, y1, x2, y2) = (x1,y1,x2)
1−y2

. Now we denote the

obtained points by

u+ := σ(ξ1, ξ2, ξ3, t) =
(ξ1, ξ2, ξ3)

1 − t
,

u− := σ(−ξ1,−ξ2,−ξ3,−t) =
−(ξ1, ξ2, ξ3)

1 + t
.

It then holds that

|u+| =

√

1 + t

1 − t
=

1

|u−|
.

If we choose α ∈ R such that |u+| = eα, then |u−| = e−α holds.
Denote one preimage point of u+ in R3 under the Zorich mapping hZ as (x, y, α)

for some x, y ∈ R (see the definition of hZ in 3.1.1). Hence one preimage point
of u− is (1 − x, 1 + y,−α). The whole preimage set of a point p ∈ P3 in R3 is
h−1

Z (u+) ∪ h−1
Z (u−), where

h−1
Z (u+) = {(x+ 2n, y + 2m,α), (2 − x+ 2k, 2 − y + 2l, α) | n,m, k, l ∈ Z}
h−1

Z (u−) = {(1 − x+ 2n, 1 + y + 2m,−α), (1 + x+ 2k, 1 − y + 2l,−α)

| n,m, k, l ∈ Z}
Now we apply dilation Aλ(z) = λz, for λ ∈ Z+ and z ∈ R3. We obtain

Aλ(h−1
Z (u+)) = {(λx+ 2λn, λy + 2λm, λα),

(2λ− λx + 2λk, 2λ− λy + 2λl, λα) | n,m, k, l ∈ Z}.
Correspondingly

Aλ(h−1
Z (u−)) = {(λ− λx+ 2λn, λ+ λy + 2λm, λα),

(λ+ λx + 2λk, λ− λy + 2λl,−λα) | n,m, k, l ∈ Z}.
To gain a unique induced mapping fP3 , points Aλ(h−1

Z (u+)), Aλ(h−1
Z (u−)) must be

mapped onto a single point under π ◦ hZ .
For all λ ∈ Z+, points (2λ − λx + 2λk, 2λ − λy + 2λl, λα) can be written in

form (2−λx+ 2(λk+λ− 1), 2−λy+ 2(λl+λ− 1), λα) hence showing that points
Aλ(h−1

Z (u+)) land to a single point under π ◦ hZ since

(3.11) hZ ◦Aλ ◦ h−1
Z (u+) = hZ(λx, λy, λα)

holds.
However, the points Aλ(h−1

Z (u−)) respect the same symmetry only for odd λ.
Then one can write

(λ− λx+ 2λn, λ+ λy + 2λm,−λα)

=

(

1 − λx + 2

(

λn+
λ− 1

2

)

, 1 + λy + 2

(

λm+
λ− 1

2

)

,−λα
)

and

(λ+ λx+ 2λk, λ− λy + 2λl,−λα)

=

(

1 + λx+ 2

(

λk +
λ− 1

2

)

, 1 − λy + 2

(

λl +
λ− 1

2

)

,−λα
)

.
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Hence, for odd λ

(3.12) hZ ◦Aλ ◦ h−1
Z (u−) = hZ(1 − λx, 1 + λy,−λα)

holds and gives precisely the antipodal points for those in 3.11. For even λ the
corresponding points need no more be antipodal and hence the needed symmetry
breaks down.

Points 3.11 and 3.12 are of form ±(ξ̃1, ξ̃2, ξ̃2, t̃) on S3 ⊂ C2 for some ξ̃1, ξ̃2, ξ̃2, t̃ ∈
R, giving preimage points of single point p̃ on P3 under the covering map π.

Thus a well-defined mapping fP3 is induced between the two projective spaces
at the bottom of the diagram 3.10 for odd λ > 1. The mapping fP3 is uniformly
quasiregular by the Lattès theorem 2.3. The Julia set of the mapping fP3 is the
set corresponding to the sphere S2 (radius 1, centered at the origin) in S3. That
is, the Julia set is two-dimensional projective space P2 in the three-dimensional
projective space P3. The mapping fP3 has only one basin of attraction, since the
two basins of attraction in S3 are identified by the covering map π, and the origin
is a super-attractive fixed point. The branch set consists of three circles that meet
at one point. The degree of the mapping fP3 is λ2, when dilation Aλ is used.

Remark 3.2. Note that there is no analogous mapping acting on the projective
space that could be induced by the Tchebychev mapping acting on the sphere.
This is the case, since the Tchebychev mapping has only one basin of attraction
and especially only one superattractive fixed point, the infinity. Therefore it is not
possible to find the needed antipodal point for the infinity under any subdivision.

3.3. Manifold S2 × S1. A chaotic Lattès-type uqr mapping acting on S2 × S1

was constructed by Kangaslampi in [7]. We recall this mapping, that is based on
a cubical subdivision of euclidean space. Furthermore we show that the Zorich
mapping can be used to induce the same mapping.

3.3.1. Chaotic uqr mapping on S2 × S1. Consider S2 × S1 as a sphere S2, which
has a line segment attached to each of its points and the ends of each line segment
identified (see Figure 6(a)). Now we see that S2 × S1 has R3 as a branched cover:
let us divide R3 into cubes. The base of every other cube is identified with the
upper half space of S

2, every other with the lower half space (denoted by + and -
in Figures 6(a) and 6(b)). The top of the cube is identified with the bottom, thus
forming S1 to each point of S2.

+

−

(a) S2
× S1

+ −
(b) One block in R3 that covers S2

× S1.

Figure 6. How to see S2 × S1 as a block in R3.
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To be able to tile R3 with S2 ×S1, we have to make one reproducible block from
two images of S2 × S1 as in Figure 6(b). One building block, which thereby covers
S2 × S1 twice, is presented in Figure 7.

+ −

− +

Figure 7. One block which covers S
2 × S

1 twice.

Let us now define which points in R3 need to be identified to present the whole
R3 as a branched cover for S2 × S1. Let e1, e2 and e3 be the three orthogonal unit
vectors in R

3, and let x1, x2 and x3 ∈ R be an arbitrary point in R
3. We identify

all the points of the set

{(x1 + n)e1 + (x2 + 2m)e2 + (x3 + 2k)e3,

(x1 + n′)e1 + (2 − x2 + 2m′)e2 + (2 − x3 + 2k′)e3

| n, n′,m,m′, k, k′ ∈ Z}
(3.13)

to be the same point of the manifold. This identification presents R3 as a branched
cover for S

2 × S
1, see Figure 7. The branch set is the vertical edges of the skeleton

of the tiling.
Define the covering map to be g : R3 → S2 × S1. We use the mappings A2 :

R3 → R3, where A2 : x 7→ 2x for any x ∈ R3. The mappings A2 and g induce a
mapping f to the manifold, and the following diagram commutes:

(3.14)

R3 A2−−−−→ R3

g





y





y

g

S2 × S1 f−−−−→ S2 × S1

The mapping f is a well-defined and uniformly quasiregular mapping of Lattés
type, which we can prove as follows. Let {e1, e2, e3} be an orthonormal basis for
R3 and fix the origin to be at the bottom-left corner of Figure 7. Let x be such a
point on S2 × S1 that x1e1 + x2e2 + x3e3, where x1 ∈ [0, 1] and x2, x3 ∈ [0, 2), is
one of its preimages under g. The preimage set of the point x under the covering
map g is

g−1(x) = {(x1 + n)e1 + (x2 + 2m)e2 + (x3 + 2k)e3,

(x1 + n′)e1 + (2 − x2 + 2m′)e2 + (2 − x3 + 2k′)e3

| n,m, k, n′,m′, k′ ∈ Z}.
(3.15)
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Consequently,

A2(g
−1(x)) = {2(x1 + n)e1 + 2(x2 + 2m)e2 + 2(x3 + 2k)e3,

2(x1 + n′)e1 + 2(2 − x2 + 2m′)e2 + 2(2 − x3 + 2k′)e3

| n,m, k, n′,m′, k′ ∈ Z}
⊂ {(2x1 + n)e1 + (2x2 + 2m)e2 + (2x3 + 2k)e3,

(2x1 + n′)e1 + (2 − 2x2 + 2m′)e2 + (2 − 2x3 + 2k′)e3

| n,m, k, n′,m′, k′ ∈ Z, }

which under the mapping g is again just one point y := y1e1 +y2e2 +y3e3, where yi

is the fractional part of 2xi, i = 1, 2, 3. Thus A2 descends to a well defined mapping
f : S2 × S1 → S2 × S1.

In this case, the discrete group of isometries, Γ, consists of all the translations
between the four-parted blocks (see Figure 7) in R3 and the 180-degree rotation
around the middle axis of Figure 7. Thus the group Γ has four generators. The
mapping g is automorphic in the strong sense with respect to the group Γ, and
for A2 : x 7→ 2x it holds that A2ΓA

−1
2 ⊂ Γ. Therefore, by Theorem 2.3, the well-

defined mapping f : S2 × S1 → S2 × S1 is uniformly quasiregular. The degree of
the mapping f is 8. The branch set of f is the six disjoint, unlinked circles defined
by the lattice g

(

(A−1
2 Bg)\Bg

)

, where Bg is the branch set of g. The mapping f

generalizes to degree λ3 mapping when dilation Aλ is used for arbitrary integer
λ > 1.

Remark 3.3. The uqr counterpart of the power mapping constructed above in 3.1.1
acts on R3 \ {0}. Space R3 \ {0} is conformally equivalent to space S2 × R via
mapping c : R3 \ {0} → S2 × R, (θ, φ, r) 7→ (θ, φ, log r), since

c∗g̃ =
1

r2
g

holds for metric g = dr2 + r2 dθ2 + r2 dφ2, r > 0, θ ∈ (0, π), φ ∈ (0, 2π) on R3\{0}
and metric g̃ = ds2 + dθ2 + dφ2, s ∈ R on S2 × R.

We can further conjugate the power mapping fpwr : R3 \ {0} → R3 \ {0} with c
to gain a mapping c◦ fpwr ◦ c−1 acting on S2×R. By further semiconjugating with
the conformal covering mapping π : S2 × R → S2 × S1 a uqr mapping is attained
via equation 2.3.

(3.16)

R3 Aλ−−−−→ R3

hZ





y





y

hZ

R
3\{0} fpwr−−−−→ R

3\{0}

c





y





y

c

S2 × R
f

S2×R−−−−→ S2 × R

π





y





y

π

S2 × S1
f

S2×S1−−−−→ S2 × S1
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Due to cocompactness the induced mapping is chaotic. The degree of the map-
ping is λ3. The branch set consists of 2(λ2 − 1) disjoint, unlinked circles if dilation
Aλ is used.

3.4. Other examples of elliptic 3-manifolds. The only closed elliptic 3-manifolds
are those manifolds which are covered by S

3, S
2×R or R

3 [6]. The following theorem
for them has been proved by R. Kangaslampi in [7]:

Theorem 3.4. All quasiregularly elliptic compact oriented 3-dimensional riemann-

ian manifolds admit a nontrivial uniformly quasiregular mapping.

The case S3 follows from Peltonen’s results for spherical space forms in [12]: If
Mn is a smooth riemannian manifold with universal covering space S

n, then Mn

admits a branched uniformly quasiregular mapping. This theorem has been proved
by using a generalization of the so-called conformal trap method, due to G. Martin
and T. Iwaniec (see [5]). The Julia sets of these uqr-mappings are Cantor sets
[5, p. 500]. The uqr mappings constructed with the trap method are not Lattès-
type mappings. As we mentioned earlier, the only quotient space of S3 to which a
Lattès-type uqr mapping has so far been constructed is the projective 3-space.

The cases where M is a 3-dimensional compact riemannian manifold which has
R

3 or S
2 ×R as a universal covering has been proved in [7] by direct constructions.

There are eight different situations depending on the geometry of the manifold. The
constructions follow generally the same idea as the construction on the projective
space in Section 3.2.1, and the obtained Lattès-type uqr mappings are chaotic.
The manifolds covered by R3 are quotient spaces of the 3-torus. In chapter 4.6
we present a generalized version of the construction method developed in [7]. The
orientable manifolds covered by S2 × R are S2 × S1 and P3#P3.

4. Some Lattès-type mappings in dimension four

In this chapter we construct some uqr mappings of Lattès type on four-dimensional
orientable riemannian manifolds. Especially we consider their Julia sets, basins of
attraction, and branch sets. We see that also in four dimensions the Julia set can
be an orientable manifold and its codimension varies from zero to one. The cases
that we will consider are collected to Table 1.

Table 1. Some Lattès-type uqr mappings and their Julia sets in
four dimensions

Manifold Mapping Julia set
S4 fcube S4

S4 fpwr S3

S
4 fT D̄

3

S2 × S2 fcube S2 × S2

S3 × S1 fcube S3 × S1

P3 × S1 fcube P3 × S1

P3 × R fpwr P3

S2 × T 2 fcube S2 × T 2

T 4/Γ fcube T 4/Γ
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Since there are no orientable spherical space forms other than the sphere itself
in even dimensions [17], also dimension four lacks this type of examples.

4.1. Sphere S
4. The cubical decomposition in four dimensions gives us a chaotic

Lattès-type mapping fcube on S4. The construction is presented in 3.1.2 in three
dimensions. Here we just take four-dimensional cubes instead, and the rest follows
analogously as for the three sphere. For the identifications, one subdivides the even
integer lattice cubes further into 16 unit cubes which pairwise cover the sphere
8 times. Twice repeated reflections with respect to 3-faces of unit cubes identify
a point (x1, x2, x3, x4) ∈ [0, 2) × [0, 1)3 with 6 different points in [0, 2)4 whose
two coordinates are of form 2 − xj and other two of form xk. The eighth point
(2 − x1, 2 − x2, 2 − x3, 2 − x4) is obtained after 4 repeated reflections.

The Zorich mapping introduced in 3.1.1 can be generalized to higher dimensions
as well. We just operate on the first coordinates as we did in the three dimensional
case, and leave the last one to represent the height. That is, we operate on cylinders
of the form {x ∈ R4 | x = y + te4, y ∈ Q, t ∈ R}, where Q runs through the set of
3-cubes into which R3 is subdivided by the planes xk = i, k = 1, 2, 3, i ∈ Z [13,
p.15].

Thus the mapping A : x 7→ 2x on R4 can be taken to act on S4 by semiconjugating
with the Zorich mapping and extending it to the origin and infinity to gain mapping
hZ : R4 → S4:

(4.1)

R4 x 7→2x−−−−→ R4

hZ





y





y

hZ

S4 fpwr−−−−→ S4

We obtain by Theorem 2.3 a uqr mapping fpwr : S4 → S4. Analogously to the three
dimensional case, the Julia set of this uqr mapping is the 3-dimensional sphere
of radius 1, centered at the origin. The branch set is the two dimensional set
hZ

(

(A−1
λ (BhZ

))\BhZ

)

that is topologically a suspension of 1-skeleton of a sym-
metric triangulation of the three sphere to the origin and infinity. This subdivision
of the three sphere has 16 simpleces and 8 vertices (6 vertices can be taken on a
two sphere (4 along a fixed equator and the 2 poles) and one more both inside and
outside the two sphere). The points of attraction are the origin and the infinity.

The Tchebychev mapping fT defined in 3.1.3 can be generalized from S3 to other
spheres similarly as the power mapping. On Sn let the base of the cylinder in the
construction be (n − 1)-dimensional, and proceed with the remaining coordinate
as in the three-dimensional case. The Julia set of fT on Sn is a closed disk of
codimension 1, centered at the origin. Thus on S4 we have JfT

= D̄3 × {0}.

4.2. S2 × S2. Consider both spherical factors of S2 × S2 subdivided into two unit
squares with identifications on the boundary as for the S2-factor on figure 6(b).
Space S2 × S2 is then represented as a collection consisting of four unit 4-cubes
with induced identifications on the boundary. To produce a branched covering
g : R4 → S2 × S2 we subdivide R4 into cubes congruent to [0, 2)4 with even integer
lattice. Each such a cube is further divided into 16 unit cubes. Let e1, e2, e3 and
e4 denote the four orthogonal unit vectors in R

4, and let x1, x2, x3, x4 ∈ R be an
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arbitrary point in R4. We identify all the points of the set

{(x1 + 2n)e1 + (x2 + 2m)e2 + (x3 + 2k)e3 + (x4 + 2l)e4,

(2 − x1 + 2n′)e1 + (2 − x2 + 2m′)e2 + (x3 + 2k′)e3 + (x4 + 2l′)e4,

(x1 + 2n′′)e1 + (x2 + 2m′′)e2 + (2 − x3 + 2k′′)e3 + (2 − x4 + 2l′′)e4,

(2 − x1 + 2ñ)e1 + (2 − x2 + 2m̃)e2 + (2 − x3 + 2k̃)e3 + (2 − x4 + 2l̃)e4

| n, n′, n′′, ñ,m,m′,m′′, m̃, k, k′, k′′, k̃, l, l′, l′′, l̃ ∈ Z}

(4.2)

to be the same point of the manifold S2×S2 . This identification induces a branched
covering g : R4 → S2 ×S2. Each cube congruent to [0, 2)4 covers space S2 ×S2 four
times. The branch set is the two skeleton of the tiling consisting of faces

{(n,m, k, l)× R
2, R

2 × (n′,m′, k′, l′)| n,m, k, l, n′,m′, k′, l′ ∈ Z}.
Denote mapping Aλ : R

4 → R
4, where Aλ : x 7→ λx for any x ∈ R

4 and λ > 1
is a fixed integer. The mappings Aλ and g induce a mapping f acting on S2 × S2.
We can draw the following diagram:

(4.3)

R4 Aλ−−−−→ R4

g





y





y

g

S
2 × S

2 f−−−−→ S
2 × S

2

The mapping f is a well-defined and uniformly quasiregular mapping of Lattés
type, which we can prove as follows. Let x be a point on S2 ×S2 and x1e1 +x2e2 +
x3e3 + x4e4 ∈ R4, where x1, x2, x3, x4 ∈ [0, 2), be one of its preimages under g.
Now we see that the whole preimage set of the point x under the branched covering
map g is

g−1(x) = {(x1 + 2n)e1 + (x2 + 2m)e2 + (x3 + 2k)e3 + (x4 + 2l)e4,

(2 − x1 + 2n′)e1 + (2 − x2 + 2m′)e2 + (x3 + 2k′)e3 + (x4 + 2l′)e4,

(x1 + 2n′′)e1 + (x2 + 2m′′)e2 + (2 − x3 + 2k′′)e3 + (2 − x4 + 2l′′)e4,

(2 − x1 + 2ñ)e1 + (2 − x2 + 2m̃)e2 + (2 − x3 + 2k̃)e3 + (2 − x4 + 2l̃)e4

| n,m, k, l, n′,m′, k′, l′, n′′,m′′, k′′, l′′, ñ, m̃, k̃, l̃ ∈ Z}.
Consequently,

Aλ (g−1(x))

= {λ(x1 + 2n)e1 + λ(x2 + 2m)e2 + λ(x3 + 2k)e3 + λ(x4 + 2l)e4,

λ(2 − x1 + 2n′)e1 + λ(2 − x2 + 2m′)e2 + λ(x3 + 2k′)e3 + λ(x4 + 2l′)e4,

λ(x1 + 2n′′)e1 + λ(x2 + 2m′′)e2 + λ(2 − x3 + 2k′′)e3 + λ(2 − x4 + 2l′′)e4,

λ(2 − x1 + 2ñ)e1 + λ(2 − x2 + 2m̃)e2 + λ(2 − x3 + 2k̃)e3 + λ(2 − x4 + 2l̃)e4

| n,m, k, l, n′,m′, k′, l′, n′′,m′′, k′′, l′′, ñ, m̃, k̃, l̃ ∈ Z}
⊂ {(λx1 + 2n)e1 + (λx2 + 2m)e2 + (λx3 + 2k)e3 + (λx4 + 2l)e4,

(2 − λx1 + 2n′)e1 + (2 − λx2 + 2m′)e2 + (λx3 + 2k′)e3 + (λx4 + 2l′)e4,

(λx1 + 2n′′)e1 + (λx2 + 2m′′)e2 + (2 − λx3 + 2k′′)e3 + (2 − λx4 + 2l′′)e4,

(2 − λx1 + 2ñ)e1 + (2 − λx2 + 2m̃)e2 + (2 − λx3 + 2k̃)e3 + (2 − λx4 + 2l̃)e4

| n,m, k, l, n′,m′, k′, l′, n′′,m′′, k′′, l′′, ñ, m̃, k̃, l̃ ∈ Z}



22 LAURA ASTOLA, RIIKKA KANGASLAMPI, AND KIRSI PELTONEN

which under mapping g becomes a single point y := y1e1+y2e2 +y3e3+y4e4, where
yi is the fractional part of λxi, i = 1, 2, 3, 4. Thus Aλ descends to a well defined
mapping f : S2 × S2 → S2 × S2.

In this case, the discrete group of isometries, Γ, consists of the 180-degree rota-
tions (x1, x2, x3, x4) 7→ (−x1,−x2, x3, x4) and (x1, x2, x3, x4) 7→ (x1, x2,−x3,−x4),
and all the translations between the blocks [0, 2)4 in R4. The mapping g is au-
tomorphic in the strong sense with respect to the group Γ, and for Aλ : x 7→ λx
it holds that AλΓA−1

λ ⊂ Γ. Therefore, by Theorem 2.3, the well-defined mapping
f : S2×S2 → S2×S2 is uniformly quasiregular. The degree of the mapping f is λ4.
The branch set of f is the lattice g

(

(A−1
λ Bg)\Bg

)

of form {S2×{qi}∪{pj}×S2|i, j ∈
{1, 2, . . . 2(λ2 − 1)}}. Due to cocompactness the mapping g is chaotic.

4.3. S3 ×S1. Consider the first spherical factor of S3 ×S1 subdivided into two unit
cubes with boundary identifications induced by reflections with respect to adjacent
2-face. The second factor is considered as a unit interval with identified end points.
Space S3 × S1 is then represented as a collection consisting of two unit 4-cubes
with induced identifications on the boundary. To produce a branched covering
g : R4 → S3 × S1 we subdivide R4 into cubes congruent to [0, 2)3 × [0, 1). Each
such a cube is further divided into eight unit cubes. Let e1, e2, e3 and e4 denote
the four orthogonal unit vectors in R4, and let x1, x2, x3, x4 ∈ R be coordinates
of a preimage point of an arbitrary point x ∈ S3 × S1 under g. We identify all the
points of the set

{(x1 + 2n1)e1 + (x2 + 2n2)e2 + (x3 + 2n3)e3 + (x4 + n4)e4,

(2 − x1 + 2m1)e1 + (2 − x2 + 2m2)e2 + (x3 + 2m3)e3 + (x4 +m4)e4,

(x1 + 2k1)e1 + (2 − x2 + 2k2)e2 + (2 − x3 + 2k3)e3 + (x4 + k4)e4,

(2 − x1 + 2l1)e1 + (x2 + 2l2)e2 + (2 − x3 + 2l3)e3 + (x4 + l4)e4

| ni,mi, ki, li ∈ Z, i = 1, 2, 3, 4}

(4.4)

to be the same point of the manifold S3×S1. This identification induces a branched
covering g : R4 → S3×S1. Each cube congruent to [0, 2)3×[0, 1) covers space S3×S1

four times. The two-dimensional branch set is the product of the 1-skeleton of the
cubical subdivision of R

3 and R.
Analogously to the case S2 × S1 one can use mapping Aλ : R4 → R4, where

Aλ : x 7→ λx for any x ∈ R4 and λ > 1 is a fixed integer. The mappings Aλ and g
induce a mapping f acting on S3 × S1 and the following diagram commutes:

(4.5)

R4 Aλ−−−−→ R4

g





y





y

g

S3 × S1 f−−−−→ S3 × S1

The mapping f is a well-defined and uniformly quasiregular mapping of Lattés
type. For the proof, one can write down the sets g−1(x) and Aλ(g−1(x)) for an
arbitrary point x ∈ S3×S1. The fact that g

(

Aλ(g−1(x))
)

is a single point y ∈ S3×S1

for arbitrary λ > 1 follows from identical calculations for the factors as in case
S2 × S1.

In this case, the discrete group of isometries, Γ, consists of the 180-degree rota-
tions (x1, x2, x3, x4) 7→ (−x1,−x2, x3, x4), (x1, x2, x3, x4) 7→ (x1,−x2,−x3, x4), and
(x1, x2, x3, x4) 7→ (−x1, x2,−x3, x4), and all the translations between the blocks



LATTÈS-TYPE MAPPINGS ON COMPACT MANIFOLDS 23

[0, 2)3 × [0, 1) in R4. Thus the group Γ has seven generators. The mapping g is
automorphic in the strong sense with respect to the group Γ, and for Aλ : x 7→ λx
it holds that AλΓA−1

λ ⊂ Γ. Therefore, by Theorem 2.3, the well-defined mapping
f : S3 × S1 → S3 × S1 is uniformly quasiregular. The degree of the mapping f is
λ4. The two-dimensional branch set of f is the lattice g

(

(A−1
λ Bg)\Bg

)

which is

a product of S1 with a subset of the 1-skeleton consisting of edges of a symmetric
subdivision of the three sphere into 16 cubes. The edges of a cube containing eight
cubes are excluded. Due to cocompactness the mapping g is chaotic.

Remark 4.1. Via the uqr counterpart of the power mapping acting on R4 \ {0} and
conformal equivalence c : R4 \ {0} → S3×R, (ϕ1, ϕ2, ϕ3, r) 7→ (ϕ1, ϕ2, ϕ3, log r) the
same mapping as above is induced to act on S3 × S1.

(4.6)

R4 Aλ−−−−→ R4

hZ





y





y

hZ

R4\{0} fpwr−−−−→ R4\{0}

c





y





y

c

S3 × R
f

S3×R−−−−→ S3 × R

π





y





y

π

S3 × S1
f

S3×S1−−−−→ S3 × S1

4.4. P3×S1. Starting from the subdivision of R4 as for the chaotic mapping for the
space S3 × S1 we introduce the antipodal condition for the first factor and cyclic
identification for the second factor by identifying point (x1, x2, x3, x4) ∈ [0, 1)4 with
point (1+x1, 1−x2, 1−x3, x4) in cube [1, 2)× [0, 2)3. Then one attains three more
points due to the identification rules for the sphere: (1 − x1, 1 + x2, 1 − x3, x4),
(1+x1, 1+x2, 1+x3, x4) and (1−x1, 1−x2, 1+x3, x4) to correspond a single point
in P

3 × S
1. Each unit cube congruent to [0, 1)4 then gives a copy of P

3 × S
1 under

induced branched covering g̃ = π ◦ g : R4 → P3 × S1. If Aλ is dilation x 7→ λx for
odd integer λ > 1 then the induced mapping f̃ : P3 × S1 → P3 × S1 is obtained via
diagram

(4.7)

R4 Aλ−−−−→ R4

g





y





y

g

S3 × S1 f−−−−→ S3 × S1

π





y





y

π

P3 × S1 f̃−−−−→ P3 × S1

The induced mapping acting on S3 × S1 is uniquely defined for arbitrary integer
λ > 1 but the identification of points (x1, x2, x3, x4) ∈ [0, 1)4 with point (1+x1, 1−
x2, 1 − x3, x4) in cube [1, 2) × [0, 2)3 is coherent only for odd λ. This follows since
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then

Aλ ((1 + x1 + 2n)e1 + (1 − x2 + 2m)e2 + (1 − x3 + 2k)e3 + (x4 + l)e4)

= (λ+ λx1 + 2λn)e1 + (λ − λx2 + 2λm)e2 + (λ− λx3 + 2λk)e3 + (λx4 + λl)e4

⊂ (1 + λx1 + 2n)e1 + (1 − λx2 + 2m)e2 + (1 − λx3 + 2k)e3 + (λx4 + l)e4

holds for n, m, k, l ∈ Z.

Remark 4.2. Via the uqr counterpart of the power mapping acting on R4 \ {0} and
2 to 1 covering π : S3 → P3 for the first factor of S3×R we get an induced mapping
acting on P3 × R:

(4.8)

R4 Aλ−−−−→ R4

hZ





y





y

hZ

R4\{0} fpwr−−−−→ R4\{0}

c





y





y

c

S3 × R
f

S3×R−−−−→ S3 × R

π





y





y

π

P
3 × R

f
P3×R−−−−→ P

3 × R

The achieved mapping acting on noncompact P3 ×R is interesting, since it has the
projective 3 space as a Julia set. This property is not inherited for the quotient
map acting on P3 × S1 which agrees with the above chaotic mapping.

4.5. S2 × T 2. Consider the representatives of manifold S2 × T 2 in R4 to consist of
block [0, 2)× [0, 1)3 with boundary identifications for S2 × S1 factor as in case 3.3.
For the last factor 0 and 1 are identified. A block [0, 2)2 × [0, 1)2 is translated via
(x1, x2, x3, x4) → (x1+2m,x2+2n, x3+k, x4+l), n, m, k, l ∈ Z to tile the euclidean
4-space. The block [0, 2)2× [0, 1)2 (and each translate) contains two representatives
of manifold S2 × T 2 after identification of a point (x1, x2, x3, x4) ∈ [0, 2) × [0, 1)3

and (2−x1, 2−x2, x3, x4) ∈ [0, 2)× [1, 2]× [0, 1)2 respectively. These identifications
induce a branched covering g : R4 → S2 × T 2 whose branch set is Z2 × R2. The
given lattice of R4 is invariant under dilation Aλ : x 7→ λx and descends into a
mapping fλ : S2 × T 2 → S2 × T 2 for arbitrary integer λ > 1.

(4.9)

R4 Aλ−−−−→ R4

g





y





y

g

S2 × T 2 f−−−−→ S2 × T 2

The degree of the mapping fλ is λ4. The branch set of f is 2(λ2 − 1) disjoint,
unlinked 2-tori defined by the lattice g

(

(A−1
λ Bg)\Bg

)

, where Bg is the branch set
of g.

4.6. T 4 and its quotient spaces. Perhaps the most basic Lattès-type uqr map-
ping comes from dilation in R

4 and the usual covering map π : R
4 → T 4 (each
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1-cube in R4 covers the torus once):

(4.10)

R4 x 7→2x−−−−→ R4

π





y





y

π

T 4 ftorus−−−−→ T 4

Thus we get a chaotic uqr map ftorus on T 4.
Let us consider the quotient spaces T 4/Γ of the torus T 4. The group Γ consists

of the translation subgroup and the rotation subgroup. By the characterization
by Rinow [15, Theorem 13, p. 373] there exist coordinates {ei}4

i=1 of the covering
space R4 with the following properties:

(1) The elements of the translation part are of the form x 7→ x +
∑4

i=1miei,
mi ∈ Z.

(2) The general element is of the form x 7→ x +
∑4

i=1
ni

g
ei, ni ∈ Z, where g is

the order of the rotational part.
(3) The matrix of R representing the rotational part, when presented in this

fixed base, has only integer entries.

We present a general method of constructing Lattès-type uqr mappings on man-
ifolds T 4/Γ.

Theorem 4.3. A Lattès-type uqr map fq : T 4/Γ → T 4/Γ arises as a solution of

the equation

(fq ◦ π)(x) = (π ◦A)(x),

where the dilation A : R4 → R4 is

A : x 7→ (λg + 1)x,

g the order of the rotation matrix R, λ an integer, and π is conformal covering

projection.

Proof. We have to show that A preserves the needed lattice identifications, i.e.
that the mapping fq is well defined. Then by Theorem 2.3 the solution fq to the
Schröder functional equation is a uqr mapping.

Let x be an arbitrary point in T 4/Γ. Then its preimage points under π on R4

are of the form

R(x) +

4
∑

i=1

ni

g
ei,

where the coefficients ni are integers and R matrix with integer entries. If we now
multiply this preimage point by λg + 1, we get a point of the form

R((λg + 1)x) + (λg + 1)

4
∑

i=1

ni

g
ei = R((λg + 1)x) +

4
∑

i=1

ni

g
ei + λ

4
∑

i=1

niei.

The last sum just takes the point to another representative of T 4/Γ on R4. There-
fore by the covering map π each point of this form is mapped to (λg + 1)x. Thus
the mapping

fq = π ◦A ◦ π−1

is well defined on T 4/Γ, and by 2.3 fq is uniformly quasiregular. �

Remark 4.4. The same method works as well in higher dimensions.
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5. Uqr mappings in five dimensions

The situation in dimension five is described in Table 2. The power mapping,
the Tchebychev mapping and the chaotic mapping from the cubical decomposition
acting on 5 sphere give the basic examples. The projective space P5 admits both a
chaotic uqr map and a map with nonorientable Julia set P4. All possible product
spaces including spherical, torus or projective space components are chaotic. The
same method as in dimension four provides us with chaotic uqr mappings on the
quotient spaces of the five-torus (Remark 4.4).

Table 2. Julia sets of Lattès-type uqr-mappings in five dimensions

Manifold Mapping Julia set
S5 fcube S5

S5 fpwr S4

S
5 fT D̄4

P5 fcube P5

P5 fpwr P4

S4 × S1 fcube S4 × S1

S3 × S2 fcube S3 × S2

S2 × S2 × S1 fcube S2 × S2 × S1

S3 × T 2 fcube S3 × T 2

S2 × T 3 fcube S2 × T 3

T 5 fcube T 5

P3 × S2 fcube P3 × S2

5.1. Chaotic mappings in dimension five. The cubical decomposition for the
five dimensional sphere that gives a chaotic Lattès-type mapping fcube acting on S5

is attained as follows. Each cube in the even integer lattice is further subdivided into
32 unit cubes which pairwise cover the sphere 16 times. Twice repeated reflections
with respect to 4-faces of unit cubes identify a point (x1, x2, x3, x4, x5) ∈ [0, 1)5 with
10 different points in [0, 2)5 whose two coordinates are of form 2 − xj and other
three of form xk. The same point is also identified with five more points in [0, 2)5

that are obtained after 4 repeated reflections. Those points have four coordinates
of form 2 − xj and one of form xk.

To obtain the chaotic mapping for the projective space P5 the antipodal condition
can be given by identifying point (x1, x2, x3, x4, x5) ∈ [0, 2) × [0, 1)4 with point
(1 + x1, 1 − x2, 1 − x3, 1 − x4, 1 − x5) ∈ [1, 2) × [0, 1)4. Then one attains 15 more
points due to the identification rules for the sphere: four more with one factor of
form 1+xk and others of form 1−xj, ten with three factors of form 1+xk and other
two of form 1 − xj and one with all factors of form 1 + xk. This gives alltogether
32 copies of projective space in block [0, 2[5 and each of its translate. It is then
possible to use the mapping Aλ, for odd λ > 1 to obtain the induced mapping
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f̃ : P5 → P5 via diagram

(5.1)

R5 Aλ−−−−→ R5

g





y





y

g

S5 f−−−−→ S5

π





y





y

π

P5 f̃−−−−→ P5

where mapping π : S
5 → P

5 is the 2 to 1 covering projection. The degree of the
mapping f and f̃ is λ5. The mapping f acting on the sphere works also for even λ.

For spaces S4 × S1, S3 × S2, S3 × T 2, S2 × S2 × S1, S2 × T 3 and T 5 one gets a
mapping acting on it according to the diagram

(5.2)

R5 Aλ−−−−→ R5

g





y





y

g

M5 f−−−−→ M5

where M5 is any of the above spaces and λ > 1 is any integer. All the induced
mappings f are of degree λ5. In all cases the starting point is a cubical even integer
lattice subdivision of R5. In the presence of a S1-factor one takes a unit interval
cyclic identification pattern to the corresponding direction. For a S2 factor one
takes two coordinates xk and xk+1, k ∈ {1, 2, 3, 4} and identifies points having the
corresponding coordinates 2−xk and 2−xk+1 modulo translations by two units to
the directions of chosen axes. For a S3 factor we take three coordinates xk, xk+1,
xk+2, k ∈ {1, 2, 3} and identify four different points in each even integer lattice block
having the corresponding coordinates of form 2−xj and 2−xl, j, l ∈ {k, k+1, k+2},
j 6= l modulo translations by two units to the directions of chosen axes.

In case of S4 ×S1 a block congruent to [0, 2)4× [0, 1) contains 16 unit cubes that
pairwise give a copy of the space. Hence block [0, 2)4 × [0, 1) contains eight copies
of manifold S4 ×S1. For S3 ×S2 a block congruent to [0, 2)5 contains 32 unit cubes
and according to the above rules four of them is needed to give one copy of the
space. Cube [0, 2)5 hence covers manifold S3 × S2 eight times. For S2 × S2 × S1

a block congruent to [0, 2)4 × [0, 1) contains 16 unit cubes and according to the
above rules four of them is needed to give one copy of the space. Hence block
[0, 2)4 × [0, 1) contains four copies of manifold S2 × S2 × S1. For space S3 × T 2 a
block congruent to [0, 2)3 × [0, 1)2 contains 8 unit cubes that pairwise give a copy
of the space. Hence block [0, 2)3 × [0, 1)2 contains four copies of manifold S3 × T 2.
For space S2 × S2 × S1 a block congruent to [0, 2)2 × [0, 1)3 contains 4 unit cubes
that pairwise give a copy of the space. Hence block [0, 2)2 × [0, 1)3 contains two
copies of manifold S2 × S2 × S1.

5.2. Codimension one Julia sets. Analogously to the three dimensional case
one gets both Zorich mapping and the Tchebychev counterpart acting on S5. For
the projective space P5 a mapping with non-orientable space P4 as a Julia set is
induced.

For the 5-sphere a Zorich block is set [0, 2)4×R and all its translates xi 7→ xi+2n,
n ∈ Z with respect to first four coordinates. Each block covers S

5 (or rather R
5\{0})
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eight times according to the identification rules for S4. There is no identification
for the last factor. The degree of the induced mapping acting on S5 is λ4 for any
dilation x 7→ λx with integer λ > 1.

The induced mapping for the projective space is given by the following diagram:

(5.3)

R5 Aλ−−−−→ R5

hZ





y





y

hZ

S5 fpwr−−−−→ S5

π





y





y

π

P
5 f

P5−−−−→ P
5

Analogously to the three dimensional case, the covering translations are induced
by mapping (z1, z2, z3) 7→ (−z1,−z2,−z3). Stereographic projection σ : S5 ⊂ C3 →
R5 ∪ {∞} gives then two related points

u+ := σ(ξ1, ξ2, ξ3, ξ4, ξ5, t) =
(ξ1, ξ2, ξ3, ξ4, ξ5)

1 − t
,

u− := σ(−ξ1,−ξ2,−ξ3,−ξ4,−ξ5,−t) =
−(ξ1, ξ2, ξ3, ξ4, ξ5)

1 + t
.

on the projective space. As in three dimensions the relation

|u+| =

√

1 + t

1 − t
=

1

|u−|
holds and we can choose α ∈ R such that |u+| = eα and |u−| = e−α holds. The
set h−1

Z (u+) contains eight points with last coordinate α in each block [0, 2)4 ×
R and its translate according to the identification rules for S4 for the first four
coordinates. Similarly set h−1

Z (u−) contains eight points with last coordinate −α
in each block [0, 2)4 × R. There the identification pattern is given by identifying
point (x1, x2, x3, x4,−α) ∈ [0, 1)4×R and (1+x1, 1−x2, 1−x3, 1−x4,−α) ∈ [1, 2)×
[0, 1)3 × R. The rest six points in the same block are defined by the identification
rule for the sphere S4 with respect to the first four coordinates. All the coordinates
for Aλ(h−1

Z (u+)), Aλ(h−1
Z (u−)) are of the same form as in the three dimensional

case. Hence any odd λ > 1 will do also in this case.

6. General results in n dimensions

6.1. Chaotic mappings. All manifolds of form

M̃ = S
n1 × · · · × S

ni × Tm1 × · · · × Tmj × P
l1 × · · · × P

lk

support nontrivial chaotic uqr maps. Here we interpret T 1 = S1, integers nq > 1,
mr ≥ 1 and odd lp > 1, q ∈ 1, . . . , i, r ∈ 1, . . . , j, p ∈ 1, . . . , k. Denote further

N =
∑i

q=1 nq, M =
∑j

r=1mr, L =
∑k

p=1 lp. We assume M + N + L ≥ 3 but of

course spherical/torus/projective component need not be present at all. In that
case we define M = 0 or N = 0 or L = 0 correspondingly.

The starting point is a cubical decomposition of RM+N+L. For coordinates
corresponding spherical and projective factors we fix an even integer lattice and
integer lattice related to torus coordinates. Each block [0, 2)N+L × [0, 1)M and its
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translate contains 2N−1+L copies of the space. The identifications inside each block
are given by even number of reflections with respect to integer lattice faces. For an
even dimensional sphere S2n this gives all together

n
∑

k=1

(

2n
2k

)

copies of S2n. For odd dimensional sphere factor S2n+1 one gets correspondingly

n
∑

k=1

(

2n+ 1
2k

)

copies of S2n+1 under the even number of reflections with respect to codimension
one faces. Each spherical component Snq has 2nq unit nq-cubes for the correspond-
ing coordinates inside each block that pairwise give 2nq−1 copies related to this
factor.

If projective spaces Plk are present, then one can proceed as for same dimensional
spherical factor Slk and introduce the antipodal condition between point (x1, . . . ,
xN+M+1, . . . , xN+M+L) in [0, 2)N × [0, 1)M+L and point (x1, . . . , 1 + xN+M+1, 1 −
xN+M+2, . . . , 1 − xN+M+L) in [0, 2)N × [0, 1)M × [1, 2)× [0, 1)L−1. Rest of the 2lk

identifications follow from the identifications rules for the spherical factor Slk . To
obtain a well-defined mapping in the case where projective space factors exist one
needs to assume that the dilation Aλ : RM+N+L → RM+N+L, x 7→ λx is given for
odd integer λ > 1:

(6.1)

RM+N+L Aλ−−−−→ RM+N+L

g





y





y

g

M̃
f−−−−→ M̃

The degree of the mapping f is λM+N+L.

6.2. Codimension one Julia sets. Analogously to the low dimensional cases one
gets both Zorich mapping and the Tchebychev counterpart acting on any Sn. For
the projective space P

n a mapping with non-orientable space P
n−1 as a Julia set is

induced for odd n.
For the n-sphere a Zorich block is set [0, 2)n−1 × R and all its translates xi 7→

xi + 2m, m ∈ Z with respect to first n − 1 coordinates. Each block covers Sn (or
rather Rn\{0}) 2n−2 times according to the identification rules for Sn−1. There is
no identification for the last factor. The degree of the induced mapping acting on
Sn is λn−1 for any dilation x 7→ λx with integer λ > 1.

The induced mapping for the projective space is given by the following diagram:

(6.2)

R2n+1 Aλ−−−−→ R2n+1

hZ





y





y

hZ

S2n+1 fpwr−−−−→ S2n+1

π





y





y

π

P2n+1
f

P2n+1−−−−→ P2n+1
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Analogously to the three and five dimensional cases, the covering translations are
induced by mapping (z1, . . . , z2n−1) 7→ (−z1, . . . ,−z2n−1). Stereographic projection
σ : S2n+1 ⊂ Cn+1 → R2n+1 ∪ {∞} gives then two related points

u+ := σ(ξ1, . . . , ξ2n+1, t) =
(ξ1, . . . , ξ2n+1)

1 − t
,

u− := σ(−ξ1, . . . ,−ξ2n+1,−t) =
−(ξ1, . . . , ξ2n+1)

1 + t
.

on the projective space. As in lower dimensions the relation

|u+| =

√

1 + t

1 − t
=

1

|u−|
holds and we can choose α ∈ R such that |u+| = eα and |u−| = e−α holds. The
set h−1

Z (u+) contains 22n−1 points with last coordinate α in each block [0, 2)2n ×
R and its translate according to the identification rules for S2n for the first four
coordinates. Similarly set h−1

Z (u−) contains 22n−1 points with last coordinate −α
in each block [0, 2)2n × R. There the identification pattern is given by identifying
point (x1, . . . , x2n,−α) ∈ [0, 1)2n×R and (1+x1, 1−x2, . . . , 1−x2n,−α) ∈ [1, 2)×
[0, 1)2n−1 × R. The rest 22n−1 − 2 points in the same block are defined by the
identification rule for the sphere S2n with respect to the first 2n coordinates. All
the coordinates for Aλ(h−1

Z (u+)), Aλ(h−1
Z (u−)) are of the same form as in the low

dimensional cases. Hence any odd λ > 1 will do also in this case.
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