A rigidity theorem for two continuous functions

Matias Dahl

March 3, 2006

Let $S=\left\{v \in \mathbb{R}^{3}:\|v\|=1\right\}$.
Proposition 0.1. Suppose $f_{1}, f_{2}: S \rightarrow \mathbb{R}$ are two continuous functions such that $f_{1}(x)=f_{2}(x)$ only for finitely many $x \in S$. Suppose further that $g_{1}, g_{2}: S \rightarrow \mathbb{R}$ are continuous functions such that

$$
\left\{f_{1}, f_{2}\right\}=\left\{g_{1}, g_{2}\right\} \text { on } S
$$

Then $f_{1}=g_{1}, f_{2}=g_{2}$ or $f_{1}=g_{2}, f_{2}=g_{1}$.

Proof. Let $S^{\prime} \subset S$ be the set where $f_{1} \neq f_{2}$. By assumption there exists a function $\pi: S^{\prime} \rightarrow\{1,2\}$ such that

$$
\begin{equation*}
g_{1}(x)=f_{\pi(x)}(x), \quad x \in S^{\prime} \tag{1}
\end{equation*}
$$

To prove that π is constant on S^{\prime}, suppose that $x, y \in S^{\prime}$ are such that $\pi(x) \neq \pi(y)$. Since S^{\prime} is path connected, there exists a curve $\gamma:[0,1] \rightarrow S^{\prime}$ connecting x to y. By the intermediate value theorem, there exists a $t \in[0,1]$ where $\pi \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is not continuous; for all $\delta>0$ there exists an $s \in[0,1]$ such that $|s-t|<\delta$ and $\pi \circ \gamma(t) \neq \pi \circ \gamma(s)$. In this way we can construct a sequence $x_{1}, x_{2}, \ldots \in S^{\prime}$ converging to $\gamma(t)$, but such that $\pi\left(x_{i}\right) \neq \pi \circ \gamma(t)$ for all i. Then

$$
\begin{aligned}
f_{\pi \circ \gamma(t)}(\gamma(t)) & =g_{1}(\gamma(t)) \\
& =\lim _{i \rightarrow \infty} g_{1}\left(x_{i}\right) \\
& =\lim _{i \rightarrow \infty} f_{\pi\left(x_{i}\right)}\left(x_{i}\right) \\
& =f_{\pi\left(x_{1}\right)}(\gamma(t)),
\end{aligned}
$$

so π is must be constant on S^{\prime}. On $S \backslash S^{\prime}$, we have

$$
f_{1}=f_{2}=g_{1}=g_{2}
$$

and we can extend π to a constant function on S such that equation 1 holds.

