# The complex Riccati equation 

Matias Dahl

March 4, 2006

In the below, all matrices are assumed to be complex $n \times n$ matrices unless otherwise mentioned. By a positive definite matrix we mean a real symmetric matrix $A$ such that $\eta^{T} \cdot A \cdot \eta>0$ for all $\eta \in \mathbb{R}^{n} \backslash\{0\}$, or equivalently, if $\eta^{T} \cdot A \cdot \eta>0$ for all $\eta \in \mathbb{C}^{n} \backslash\{0\}$. If $A$ is a matrix we denote the transpose, conjugate transpose, and imaginary part of $A$ by $A^{T}, A^{*}$, and $\operatorname{Im} A$, respectively. By $\langle$,$\rangle we denote$ the usual inner product in $\mathbb{C}^{n}$; for $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}$,

$$
\langle\eta, \zeta\rangle=\sum_{k=1}^{n} \eta_{k} \overline{\zeta_{k}}
$$

Suppose $I \ni 0$ is an open interval, and suppose $B, C, D$ are real matrices depending continuously on $t \in I$, suppose $C, D$ are symmetric, and all matrices are bounded on $I$. Under these assumptions, we shall study the Riccati equation

$$
\begin{equation*}
\frac{d H}{d t}+B H+H B^{T}+H C H+D=0 . \tag{1}
\end{equation*}
$$

Following [1], we shall prove the following result:
Proposition 0.1. Suppose $H_{0}$ is a symmetric $n \times n$ matrix such that $\operatorname{Im} H_{0}$ is positive definite. Then equation 1 has a unique solution $H$ on I such that

1. $H(0)=H_{0}$,
2. $H$ is symmetric and $\operatorname{Im} H$ is positive definite for all $t$.

To prove this we first study the linear differential equation,

$$
\begin{align*}
\frac{d}{d t}\binom{Y}{Z} & =\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
D & B \\
B^{T} & C
\end{array}\right)\binom{Y}{Z}  \tag{2}\\
\left.\binom{Y}{Z}\right|_{t=0} & =\binom{Y_{0}}{Z_{0}} \tag{3}
\end{align*}
$$

Here $Y, Z$ are unknown matrices depending on $t \in I$, and the initial value $\left(Y_{0}, Z_{0}\right)$ is known. In [2] it is proven that equation 2 has a global solution on $I$ and this solution is uniquely determined by the initial condition $\left(Y_{0}, Z_{0}\right)$.
Lemma 0.2. Suppose $Y_{0}, Z_{0}$ are matrices such that $Y_{0}$ is invertible, $Z_{0} Y_{0}^{-1}$ is symmetric, and $\operatorname{Im}\left(Z_{0} Y_{0}^{-1}\right)$ is positive definite. Further, suppose $(Y, Z)$ is the solution to equations 2, 3 with initial value $\left(Y_{0}, Z_{0}\right)$. Then matrices

$$
Z^{T} Y-Y^{T} Z, \quad Z^{*} Y-Y^{*} Z
$$

are independent of $t \in I$, and $Y$ is invertible for all $t$.
Proof. Let $\tau \in\{T, *\}$. Since $(Y, Z)$ satisfies equation 2 , and $B, C, D$ are real matrices, we have

$$
\frac{d}{d t}\left(\binom{Y}{Z}^{\tau}\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)\binom{Y}{Z}\right)=0
$$

and the first two claims follows. Let us next show that $Y$ is invertible for all $t \in I$. For a contradiction, suppose $Y(s) \eta=0$ for some $s \in I, \eta \in \mathbb{C}^{n}$. Then

$$
\begin{aligned}
\left\langle\left(Z_{0}^{*} Y_{0}-Y_{0}^{*} Z_{0}\right) \eta, \eta\right\rangle & =\left\langle\left(Z^{*} Y-Y^{*} Z\right)(s) \eta, \eta\right\rangle \\
& =0
\end{aligned}
$$

For a complex number $\alpha \in \mathbb{C}$, we have $\operatorname{Im} \alpha=\frac{i}{2}(\bar{\alpha}-\alpha)$, so for any $\zeta \in \mathbb{C}^{n}$,

$$
\left\langle\operatorname{Im}\left(Z_{0} Y_{0}^{-1}\right) \zeta, \zeta\right\rangle=\frac{i}{2}\left\langle\left(Z_{0}^{*} Y_{0}-Y_{0}^{*} Z_{0}\right) Y_{0}^{-1} \zeta, Y_{0}^{-1} \zeta\right\rangle
$$

Putting $\zeta=Y_{0} \eta$ gives a contradiction with the assumption on $\operatorname{Im}\left(Z_{0} Y_{0}^{-1}\right)$.
The next lemma shows how equations 1 and 2 are related.

## Lemma 0.3.

1. Suppose $Y_{0}, Z_{0}, Y, Z$ are as in Lemma 0.2. Then

$$
H=Z Y^{-1}
$$

is a solution to equation 1 for all $t \in I$ with initial value $H(0)=Z_{0} Y_{0}^{-1}$.
2. Let $H$ be a solution to equation 1 with initial value $H_{0}$. Then there exist matrices $Y_{0}, Z_{0}$ such that $Y_{0}$ is invertible,

$$
H_{0}=Z_{0} Y_{0}^{-1},
$$

and

$$
H=Z Y^{-1}
$$

when $(Y, Z)$ is the solution to equations 2 , 3 , with initial value $\left(Y_{0}, Z_{0}\right)$.

Proof. For any matrix invertible and differentiable for all $t \in I$, we have

$$
\frac{d A^{-1}}{d t}=-A^{-1} \frac{d A}{d t} A^{-1}
$$

Thus, if $(Y, Z)$ is a solution to equation 2 , then

$$
\frac{d}{d t}\left(Z Y^{-1}\right)=-B H-H B^{T}-H C H-D .
$$

This formula implies the first claim. In the second claim, $Y_{0}=I, Z_{0}=H_{0}$ is a suitable choice of $Y_{0}, Z_{0}$. The representation $H=Z Y^{-1}$ follows since ( $H$ $\left.Z Y^{-1}\right)(0)=0$, and $\frac{d}{d t}\left(H-Z Y^{-1}\right)=0$.

Proof of Proposition 0.1. Since $H_{0}=Z_{0} Y_{0}^{-1}$ for the choice $Y_{0}=I, Z_{0}=H_{0}$, Lemma 0.3.1 implies that equation 1 has a global solution. For uniqueness, suppose $H, \tilde{H}$ are two solutions to equation 1 satisfying

$$
H(0)=\tilde{H}(0)=H_{0}
$$

Then Lemma 0.3.2 implies that there are matrices $Y_{0}, \tilde{Y}_{0}, Z_{0}, \tilde{Z}_{0}$ such that

$$
\begin{equation*}
H_{0}=Z_{0} Y_{0}^{-1}=\tilde{Z}_{0} \tilde{Y}_{0}^{-1} \tag{4}
\end{equation*}
$$

and

$$
H=Z Y^{-1}, \quad \tilde{H}=\tilde{Z} \tilde{Y}^{-1}
$$

where $(Y, Z)$ and $(\tilde{Y}, \tilde{Z})$ are the solutions to equation 2 with initial values $\left(Y_{0}, Z_{0}\right)$, $\left(\tilde{Y}_{0}, \tilde{Z}_{0}\right)$, respectively. We know that solutions to equation 2 are uniquely determined by the initial value. Thus

$$
\begin{equation*}
\tilde{Y}=Y\left(Y_{0}^{-1} \tilde{Y}_{0}\right), \quad \tilde{Z}=Z\left(Y_{0}^{-1} \tilde{Y}_{0}\right) \tag{5}
\end{equation*}
$$

Indeed, as $\left(Y_{0}^{-1} \tilde{Y}_{0}\right)$ is a constant matrix, the right hand sides in equation 5 satisfy equation 2 and the same initial condition as $(\tilde{Y}, \tilde{Z})$. By equation 4 ,

$$
\tilde{H}=\tilde{Z} \tilde{Y}^{-1}=Z Y^{-1}=H
$$

and the solution to equation 1 is unique. Suppose $H$ is a solution to equation 1 . Then $H^{T}$ is also a solution to equation 1 , and since $H$ and $H^{T}$ share the same initial value, $H$ is symmetric. It remains to prove that $\operatorname{Im} H$ is positive definite. Since $\operatorname{Im} H_{0}$ is symmetric, it follows that $\operatorname{Im} H_{0}=\frac{i}{2}\left(H_{0}^{*}-H_{0}\right)$, so

$$
\operatorname{Im} H_{0}=\frac{i}{2}\left(Y_{0}^{-1}\right)^{*}\left(Z_{0}^{*} Y_{0}-Y_{0}^{*} Z_{0}\right) Y_{0}^{-1}
$$

and since $\operatorname{Im} H$ is symmetric,

$$
\begin{aligned}
\operatorname{Im} H & =\frac{i}{2}\left(Y^{-1}\right)^{*}\left(Z^{*} Y-Y^{*} Z\right) Y^{-1} \\
& =\left(Y_{0} Y^{-1}\right)^{*} \operatorname{Im}\left(H_{0}\right)\left(Y_{0} Y^{-1}\right)
\end{aligned}
$$

by Lemma 0.2.

## References

[1] A. Kachalov, Y. Kurylev, M. Lassas, Inverse Boundary Spectral Problems, Chapman \& Hall/CRC, 2001.
[2] M. E. Taylor, Partial Differential Equations: Basic Theory, Springer, 1996.

