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Abstract

This work contains a short introduction to Finsler geometry. Special em-
phasis is put on the Legendre transformation that connects Finsler geometry
with symplectic geometry.
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Table of symbols in Finsler geometry

For easy reference, the below table lists the basic symbols in Finsler ge-
ometry, their definitions (when short enough to list), and their homogene-
ity (see p. 3). However, it should be pointed out that the quantities and
notation in Finsler geometry is far from standardized. Some references
(e.g. [Run59]) work with normalized quantities. The present work follows
[She01b, She01a].

Name Notation Homogeneity
(co-)Finsler norm F,H, h 1

gij = 1
2

∂2F 2

∂yi ∂yj 0

gij = inverse of gij 0

Cartan tensor Cijk = 1
2

∂gij

∂yk = 1
4

∂3F 2

∂yi ∂yj ∂yk −1

Ci
jk = gisCsjk −1

Cijkl =
∂Cijk

∂yl −2

Geodesic coefficients Gi 2

Geodesic spray G = yi ∂
∂xi − 2Gi ∂

∂yi no

Non-linear connection N i
j = ∂Gi

∂yj 1

Horizontal basis vectors δ
δxi = ∂

∂xi − N s
i

∂
∂ys no

Berwald connection Gi
jk =

∂N i
j

∂yk = ∂2Gi

∂yj ∂yk 0

Chern-Rund connection Γijk 0

Γi
jk = gisΓsjk 0

Landsberg coefficients Lijk

Curvature coefficients Rm
ijk 0

Rm
ij 1

Rij = Rm
ijky

kL −1
m 2

Legendre transformation L i = hijξj 1

L : T ∗M → TM L
−1
i = gijy

j 1
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1 Finsler geometry

Essentially, a Finsler manifold is a manifold M where each tangent space
is equipped with a Minkowski norm, that is, a norm that is not necessarily
induced by an inner product. (Here, a Minkowski norm has no relation to
indefinite inner products.) This norm also induces a canonical inner product.
However, in sharp contrast to the Riemannian case, these Finsler-inner prod-
ucts are not parameterized by points of M , but by directions in TM . Thus
one can think of a Finsler manifold as a space where the inner product does
not only depend on where you are, but also in which direction you are look-
ing. Despite this quite large step away from Riemannian geometry, Finsler
geometry contains analogues for many of the natural objects in Riemannian
geometry. For example, length, geodesics, curvature, connections, covariant
derivative, and structure equations all generalize. However, normal coordi-
nates do not [Run59]. Let us also point out that in Finsler geometry the unit
spheres do not need to be ellipsoids.

Finsler geometry is named after Paul Finsler who studied it in his doc-
toral thesis in 1917. Presently Finsler geometry has found an abundance
of applications in both physics and practical applications [KT03, AIM94,
Ing96, DC01]. The present presentation follows [She01b, She01a].

Let V be a real finite dimensional vector space, and let {ei} be a basis
for V . Furthermore, let ∂

∂yi be partial differentiation in the ei-direction. If

v ∈ V , then we denote by vi the i:th component of v. We also use the
Einstein summing convention throughout; summation is implicitly implied
when the same index appears twice in the same expression. The range of
summation will always be 1, . . . ,dimV . For example, for v ∈ V , v = v iei.

Homogeneous functions

A function f : V → R is (positively) homogeneous of degree s ∈ R (or
s-homogeneous) if f(λv) = λsf(v) for all v ∈ V , λ > 0.

The next proposition will be of great use when manipulating expressions
in Finsler geometry. For example, if f is 0-homogeneous, then ∂f

∂yi (y)yi =
0.

Proposition 1.1. Suppose f is smooth and s-homogeneous. Then ∂f
∂yi is

(s − 1)-homogeneous, and

∂f

∂yi
(v)vi = sf(v), v ∈ V.

The latter claim is known as Euler’s theorem. The proof is an application
of the chain rule.
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1.1 Minkowski norms

Definition 1.2. A Minkowski norm on V is a function F : V → [0,∞) such
that

1. F is smooth on V \ {0},

2. F is 1-homogeneous,

3. for all y ∈ V \ {0}, the symmetric bilinear form (see Remark 1.3.1)

gy : V × V → R,

(u, v) 7→
1

2

∂2F 2(y + su + tv)

∂s ∂t

∣∣∣
t=s=0

is positive definite.

Remarks 1.3.

1. The unit sphere of a Minkowski norm on V is called the indicatrix.

2. For u, v ∈ V , we have gy(u, v) = gij(y)uivj where

gij(y) =
1

2

∂2F 2

∂yi ∂yj
(y). (1)

Hence gy is bilinear.

3. Let F (x) = |x| be the usual Euclidean norm on V induced by a chosen
basis. It follows that every finite dimensional vector space has at least
one Minkowski norm, namely F .

4. Suppose u, v ∈ V , y ∈ V \ {0}. Then

gλy(u, v) = gy(u, v), λ > 0,

gy(y, u) =
1

2

∂F 2

∂yi
(y)ui =

1

2

∂F 2(y + tu)

∂t

∣∣∣
t=0

,

gy(y, y) = F 2(y).

5. F (y) = 0 if and only if y = 0. Indeed, since F is 1-homogeneous,
F (0) = 2F (0), so F (0) = 0. On the other hand, if y 6= 0, but
F (y) = 0, then 0 = F 2(y) = gy(y, y), which is impossible since gy

is positive definite.

6. Let | · | be any norm on V . Then SE = {v ∈ V : |v| = 1} is compact.
If m = min{F (v) : v ∈ SE}, M = max{F (v) : v ∈ SE}, then

m|v| ≤ F (v) ≤ M |v|, v ∈ V, (2)

and 0 < m ≤ M < ∞.
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7. F is continuous on V . Since F is differentiable on V \ {0}, it is
also continuous there. That F is continuous at 0 follows by taking a
sequence converging to 0 and using the latter estimate in inequality
(2).

8. B = {v ∈ V : F (v) ≤ 1} is compact. This follows as B is closed
and contained in the compact set {v ∈ V : |v| ≤ 1/m}.

9. Equation (2) implies that any two Finsler norms F , F̃ on V are equiv-
alent. That is, there are constants m,M > 0 such that

mF̃ (v) ≤ F (v) ≤ MF̃ (v), v ∈ V.

The next theorem shows that the unit ball B = {v ∈ V : F (v) ≤ 1} is
convex. It also shows that if F is symmetric, then F is a norm in the usual
sense.

Proposition 1.4 (Triangle inequality). [She01b] For v, w ∈ V , we have

F (v + w) ≤ F (v) + F (w)

with equality if and only if w = λv for some λ ≥ 0.

Proposition 1.5 (Cauchy-Schwarz inequality). [She01b] For v, y ∈ V ,
y 6= 0, we have

gy(y, v) ≤ F (y)F (v),

with equality if and only if v = λy for some λ ≥ 0.

The proofs of the above two propositions are somewhat technical (see
e.g. [She01b]) and are therefore omitted.

Proposition 1.6. [She01b] Suppose v, y ∈ V \ {0}, and

gv(v, w) = gy(y, w)

for all w ∈ V . Then v = y.

Proof. Setting w = v and w = y yields

F 2(v) = gy(y, v) ≤ F (v)F (y),

F 2(y) = gv(v, y) ≤ F (v)F (y).

Thus F (y) = F (v), so

gv(v, y) = F (v)F (y),

and by the Cauchy-Schwarz inequality, v = y.
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1.2 Legendre transformation

Definition 1.7 (Dual Minkowski norm). The dual Minkowski norm is the
function F ∗ : V ∗ → R is defined as

F ∗(ξ) = max{ξ(y) : y ∈ V, F (y) = 1}, ξ ∈ V ∗.

As {y ∈ V : F (y) = 1} is compact, the dual Minkowski norm is well
defined and finite. In what follows, we prove that a dual Minkowski norm
is a Minkowski norm on V ∗. For this purpose, we introduce the Legendre
transformation.

Definition 1.8 (Legendre transformation). The Legendre transformation
` : V → V ∗ is defined as `(y) = gy(y, ·) for y ∈ V \ {0}, and `(0) = 0.

The first part of the next proposition gives an algebraic relation between
F, F ∗ and `. The second part is essentially a variant of Riesz’ theorem.

Proposition 1.9.

1. F = F ∗ ◦ `.

2. The Legendre transformation is a bijection.

Proof. Property 1 is clear for y = 0, so suppose y 6= 0. Then

F (y) =
gy(y, y)

F (y)
= `y

(
y

F (y)

)
≤ F ∗ ◦ `(y),

and by the Cauchy-Schwarz inequality we have

F ∗ ◦ `(y) = sup
v 6=0

`y

(
v

F (v)

)
= sup

v 6=0

gy(y, v)

F (v)
≤ F (y),

so property 1 holds. For property 2, let us first note that `(y) = 0 if and
only if y = 0. It therefore suffices to show that ` : V \ {0} → V ∗ \ {0} is a
bijection. Proposition 1.6 implies injectivity. To prove surjectivity, suppose
ξ ∈ V ∗ \ {0}. Let λ = F ∗(ξ), and let y ∈ V be such that F (y) = 1 and
ξ(y) = λ. Now ξ(w) = 0, if

w ∈ Wy = {w ∈ V : gy(y, w) = 0}.

Indeed, if γ is the smooth curve γ : (−ε, ε) → F −1(1),

γ(t) =
y + tw

F (y + tw)
, t ∈ (−ε, ε),

then as y is a stationary point of v 7→ ξ(v), we have

0 =
d

dt
ξ(γ(t))

∣∣∣
t=0

= ξ

(
w

F (y)
−

y

F 2(y)

∂F

∂yi
(y)wi

)
,
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and as gy(y, w) = 0, the second term vanishes and ξ(w) = 0. For any v ∈ V
we have decomposition

v = w + gy(y, v)y, w = v − gy(y, v)y ∈ Wy.

This decomposition and ξ(w) = 0 for w ∈ Wy implies that ξ = `(λy).

Next we introduce some more notation. Let gij be the ij:th entry of the
inverse matrix of (gij), let {θi} be the dual basis to {ei}, and let `i(y) be the
i:th component of `(y),

`i(y) = `(y)(ei) =
1

2

∂F 2

∂yi
(y).

Proposition 1.10.

1. The dual Minkowski norm is a Minkowski norm on V ∗.

2. Let

g∗ij(ξ) =
1

2

∂2F ∗2

∂ξi ∂ξj
(ξ), ξ ∈ V ∗ \ {0}. (3)

Then

`(y) = `j(y)θj = gij(y)yiθj, y ∈ V \ {0}, (4)

`−1(ξ) = g∗ij(ξ)ξiej, ξ ∈ V ∗ \ {0}, (5)

gij(y) = g∗ij ◦ `(y), y ∈ V \ {0}. (6)

Proof. Let us first show that F ∗ is smooth on V ∗ \ {0}. In view of Propo-
sition 1.9.1, it suffices to prove that ` is a diffeomorphism ` : V \ {0} →
V ∗ \ {0}. By equation (4) (which is trivial), it follows that ` is smooth,
and that the Jacobian of ` is (D`)ij = gij . Hence, by the inverse function
theorem, the inverse of ` is smooth. It is evident that F ∗ is 1-homogeneous,
so it remains to check the positive definite condition on F ∗. Differentiating
1
2F 2 = 1

2F ∗2 ◦ ` with respect to yi and yj yields for y ∈ V \ {0},

1

2

∂F 2

∂yi
(y) =

1

2

∂F ∗2

∂ξk
◦ `(y)gki(y), (7)

gij(y) = (g∗kl ◦ `)(y)gki(y)glj(y) +
1

2

∂F ∗2

∂ξk
◦ `(y)

∂gki

∂yj
(y). (8)

Equation (7) implies that `i(y) = (g∗kj ◦ `)(y)`j(y)gki(y), so

yj = g∗jk ◦ `(y)`k(y).

As gij is 0-homogeneous, we have

1

2

∂F ∗2

∂ξk
◦ `(y)

∂gki

∂yj
(y) = (g∗km ◦ `)(y)`m(y)

∂gki

∂yj
(y) = yk ∂gij

∂yk
(y) = 0,
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so the second term in equation (8) vanishes, and equation (6) follows. Let
us recall that a matrix is positive definite if and only if all eigenvalues are
positive, and eigenvalues are transformed as µ 7→ 1/µ under matrix inver-
sion. Therefore equation (6) implies that g∗ij is positive definite, and F ∗ is
a Minkowski norm. Equation (5) follows since the mapping `−1 defined by
this equation satisfies `−1 ◦ ` = idV , and ` ◦ `−1 = idV ∗ .
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2 Finsler geometry

By an n-dimensional manifold M we mean a topological Hausdorff space
with countable base that is locally homeomorphic to Rn. In addition we as-
sume that all transition functions are C∞-smooth. That is, we only consider
C∞-smooth manifolds. The space of differential p-forms on M is denoted
by ΩpM , and the tangent space of M is denoted by TM . By X (M) we
denote the set of vector fields on M . When we consider an object at some
point x ∈ M , we use x as a sub-index on the object. For example, Ω1

xM is
the set of 1-forms originating from x. If f is a diffeomorphism, then by Df
we mean the tangent map and by f ∗ the pullback of f .

Suppose (xi) are local coordinates around x ∈ M . Then we denote by
∂

∂xi |x the standard basis vectors for TxM , and by dxi|x the standard basis
vectors for T ∗

xM . When the base point x is clear from context, we simply
write ∂

∂xi and dxi.

Definition 2.1 (Finsler manifold). A Finsler manifold is a manifold M and
a function F : TM → [0,∞) (called a Finsler norm) such that

1. F is smooth on TM\{0},

2. F |TxM : TxM → [0,∞) is a Minkowski norm for all x ∈ M .

Here TM\{0} is the slashed tangent bundle, that is,

TM\{0} =
⋃

{TxM \ {0} : x ∈ M}.

Example 2.2. Let (M, g) be a Riemannian manifold. Then

F (x, y) =
√

gx(y, y)

is a Finsler norm on M .

In addition to Finsler norms, we will also study co-Finsler norms. These
form a special class of Hamiltonian functions.

Definition 2.3 (co-Finsler norm). A co-Finsler norm on a manifold M is a
function H : T ∗M → [0,∞) such that

1. H is smooth on T ∗M \ {0},

2. H|T ∗

x M : T ∗
xM → [0,∞) is a Minkowski norm for all x ∈ M .

2.1 The global Legendre transforms

Next we generalize the pointwise Legendre transformations to a global trans-
formation between TM and T ∗M . As a result we prove that Finsler and
co-Finsler norms are in one-to-one correspondence.
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The Legendre transform T
∗
M → TM

Suppose H is a co-Finsler norm on a manifold M . Then for each x ∈ M
we have the pointwise Legendre transformation

`x : T ∗
xM → T ∗∗

x M

induced by the Minkowski norm H|T ∗

x M , and the canonical linear isomor-
phism

ι : TxM → T ∗∗
x M.

Then we define the global Legendre transformation as

L : T ∗M → TM,

ξ 7→ ι−1 ◦ `π(ξ)(ξ),

where π : T ∗M → M is the canonical projection. It is clear that L is well
defined. In local coordinates, let

hij(ξ) =
1

2

∂2H2

∂ξi ∂ξj
(ξ), ξ ∈ T ∗M \ {0}. (9)

Proposition 2.4. Suppose L is the Legendre transformation induced by a
co-Finsler norm H .

1. L is a bijection T ∗M → TM and a diffeomorphism T ∗M \ {0} →
TM \ {0}.

2. F = H ◦ L −1 is a Finsler norm on M .

3. If gij is as in equation (1), and hij is the inverse of hij , then

L (ξ) = hij(ξ)ξi
∂

∂xj
, ξ ∈ T ∗M \ {0}, (10)

L
−1(y) = gij(y)yi dxj, y ∈ TM \ {0}, (11)

gij(y) = hij ◦ L
−1(y), y ∈ TM \ {0}. (12)

Proof. Let us first prove equation (10) in part 3. For a fixed x ∈ M , let
{ei} be the usual basis ∂

∂xi induced by some local coordinates, and let {θi},
{∆i} be dual bases for T ∗

xM , T ∗∗
x M , respectively. That is, {θi}, {∆i} are

defined by conditions θi(ej) = δi
j and ∆i(θ

j) = δj
i , whence ι(ei) = ∆i,

ι−1(∆i) = ei, and {θi} = {dxi}. By equation (4),

L (ξ) = ι−1(hij(ξ)ξi∆j)

= hij(ξ)ξi
∂

∂xj
,
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and equation (10) follows. For equation (11), let us first notice that if wi are
coordinates for T ∗∗

x M , then

gij(y) =
1

2

∂2H2 ◦ `−1
x

∂wi ∂wj
(ι(y)),

so by equation (5),

L
−1(y) = `−1

x ◦ ι(y)

=
1

2

∂2H2 ◦ `−1
x

∂wi ∂wj
(ι(y))(ι ◦ y)iθj

= gij(y)yidxj ,

and equation (11) follows. Equation (12) follows using equations (6) and
(13);

hij(ξ) =
1

2

∂2H2 ◦ `−1
x

∂wi ∂wj
◦ `x(ξ)

= gij ◦ L (ξ).

In part 1, it is clear that L is a bijection. Equation (10) shows that L is
smooth on T ∗M \ {0}, and since the Jacobian of L is of the form

DL =

(
I 0
∗ hij

)
,

part 1 follows by the inverse function theorem. For property 2, let us first
show that F is 1-homogeneous. Suppose y ∈ TM . Then y = L (ξ) for
some ξ ∈ T ∗M , and as L is 1-homogeneous we have

L
−1(λy) = L

−1(L (λξ)) = λξ = λL
−1(y), λ > 0.

Since hij is positive definite, hij is positive definite, and gij is positive defi-
nite by equation (12).

The Legendre transform TM → T
∗
M

Suppose F is a Finsler norm on a manifold M . For each x ∈ M , we can
then introduce a pointwise Legendre transformation

`x : TxM → T ∗
xM

induced by the Minkowski norm F |TxM . Then we define the global Legen-
dre transformation as

L : TM → T ∗M,

y 7→ `π(y)(y),

where π : TM → M is the canonical projection.
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Proposition 2.5. Suppose L is the Legendre transformation induced by a
Finsler norm F .

1. L is a bijection TM → T ∗M and a diffeomorphism TM \ {0} →
T ∗M \ {0}.

2. H = F ◦ L −1 is a co-Finsler norm.

3. If gij be as in equation (1), hij be as in equation (9), and is hij be the
inverse of hij , then

L (y) = gij(y)yi dxj , y ∈ TM \ {0}, (13)

L
−1(ξ) = hij(ξ)ξi

∂

∂xj
, ξ ∈ T ∗M \ {0}, (14)

hij(ξ) = gij ◦ L
−1(ξ), ξ ∈ T ∗M \ {0}. (15)

Proof. The proof is completely analogous to the proof of Proposition 2.4,
but much simpler since there is no ι mapping.

Example 2.6 (Musical isomorphisms). Suppose (M, g) is a Riemannian man-
ifold. Then F (y) =

√
g(y, y) makes M into a Finsler manifold. The in-

duced Legendre transformation acts on vectors and co-vectors as follows:

L (y) = gij(x)yidxj , y ∈ TxM,

L
−1(ξ) = gij(x)ξi

∂

∂xj
, y ∈ TxM.

Here we use standard notation: gij(x) = g( ∂
∂xi

∣∣
x
, ∂

∂xj

∣∣
x
), and gij(x) is

the inverse of (gij). From the above formulas, we see that in this special
case, the Legendre transformation reduces to the musical isomorphisms in
Riemannian geometry; L (y) = y[, and L −1(ξ) = ξ].

The next two results show that the Legendre transformations are in some
sense well behaved.

Proposition 2.7. Suppose LH is the Legendre transformation induced by a
co-Finsler norm H , and LF is the Legendre transformation induced by the
Finsler norm F = H ◦ L

−1
H . Then

LF = L
−1
H . (16)

Similarly, if LF is the Legendre transformation induced by a Finsler norm
F , and LH is the Legendre transformation induced by the co-Finsler norm
H = F ◦ L

−1
F , then equation (16) also holds.

Proof. Both claims follow using equations (11) and (13).

Corollary 2.8. On a fixed manifold, Finsler and co-Finsler norms are in
one-to-one correspondence via the two Legendre transformations.
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Proof. Let T be mapping F 7→ F ◦L
−1
F that maps a Finsler norm F to a co-

Finsler norm, and let S be mapping H 7→ H ◦ L
−1
H that maps a co-Finsler

norm H to a Finsler norm. If H is a co-Finsler norm, then

T ◦ S(H) = T (F ) = F ◦ L
−1
F = H ◦ L

−1
H ◦ L

−1
F = H

where F = H ◦ L
−1
H , and similarly, S ◦ T = id.
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3 Geodesics

Suppose M is a manifold. Then a curve is a smooth mapping c : (a, b) → M
such that (Dc)t 6= 0 for all t. Such a curve has a canonical lift ĉ : (a, b) →
TM \ {0} defined as ĉ(t) = (Dc)(t), where Dc is the tangent of c. If,
furthermore, M is a Finsler manifold with Finsler norm F , we define the
length of c as

L(c) =

∫ b

a
F ◦ ĉ(t) dt,

and the energy as

E(c) =
1

2

∫ b

a
F 2 ◦ ĉ(t) dt.

A curve c that satisfies F ◦ ĉ = 1 is called path-length parameterized.
The next proposition shows that every curve can be path-length parametrized,
and the length of an oriented curve does not depend on its parametrization.
The latter claim need not be true for the energy.

Proposition 3.1. Suppose c is a curve on a Finsler manifold (M,F ).

1. If α : (a′, b′) → (a, b) is a diffeomorphism with α′ > 0, then ĉ ◦ α =
α′ĉ ◦ α, and L(c ◦ α) = L(c).

2. There is a diffeomorphism α : (0, L(c)) → (a, b) such that

F ◦ ĉ ◦ α = 1. (17)

Proof. The first claim follows since F is 1-homogeneous. For the second
claim, let us define β : (a, b) → (0, L(c)) by

β(s) =

∫ s

a
F ◦ ĉ(t) dt.

Then β′(s) = F ◦ ĉ(s) > 0, so by the inverse function theorem, β is smooth
and invertible with smooth inverse. The sought diffeomorphism is α = β−1;

F ◦ ĉ ◦ α = F ((β−1)′ĉ ◦ α)

=
1

β′ ◦ β−1
F ◦ ĉ ◦ α

= 1.

Definition 3.2 (Variation). Suppose c : (a, b) → M is a curve. Then a
variation of c is a continuous mapping H : [a, b] × (−ε, ε) → M for some
ε > 0 such that

1. H is smooth on (−ε, ε) × (a, b),
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and with notation cs(·) = H(·, s),

2. c0(t) = c(t), for all t ∈ [a, b],

3. cs(a), cs(b) ∈ M are constants not depending on s ∈ (−ε, ε).

Definition 3.3 (Geodesic). A curve c in a Finsler manifold is a geodesic if
L is stationary at c, that is, for any variation (cs) of c,

d

ds
L(cs)

∣∣∣
s=0

= 0.

Our next aim is to prove Proposition 3.6 which gives a local condition for
a curve to be a geodesic. To do this, we need to operate with vectors on TM ,
that is, with elements in T (TM). Let us therefore start by deriving their
transformation properties. First, if (xi) and x̃i = x̃i(x) are local coordinates
around some x ∈ M , then

∂

∂xi

∣∣∣
x

=
∂x̃j

∂xi

∂

∂x̃j

∣∣∣
x
. (18)

Here ∂x̃j

∂xi is the Jacobian of the mapping taking (xi)-coordinates into (x̃i)-
coordinates evaluated at the local xi-coordinates for x.

Next, suppose (xi, yi), (x̃i, ỹi) are standard local coordinates around y ∈
TxM . That is, x̃i = x̃i(x), ỹi = ỹi(x, y), and yi are coordinates in the ∂

∂xi

basis. It follows that vectors

∂

∂xi

∣∣∣
y
,

∂

∂yi

∣∣∣
y
,

∂

∂x̃i

∣∣∣
y
,

∂

∂ỹi

∣∣∣
y
∈ T (TM \ {0})

satisfy transformation rules

∂

∂xi

∣∣∣
y

=
∂x̃r

∂xi

∂

∂x̃r

∣∣∣
y

+
∂2x̃r

∂xi ∂xs
ys ∂

∂ỹr

∣∣∣
y
, (19)

∂

∂yi

∣∣∣
y

=
∂x̃r

∂xi

∂

∂ỹr

∣∣∣
y
. (20)

In fact, equation (18) implies that ỹi = ∂x̃i

∂xr yr, so

∂

∂xi

∣∣∣
y

=
∂x̃r

∂xi

∂

∂x̃r

∣∣∣
y

+
∂ỹr

∂xi

∂

∂ỹr

∣∣∣
y
,

and equation (19) follows. The proof of equation (20) is similar.

Lemma 3.4 (Euler equations). Suppose f : TM \ {0} → R is a smooth
function. Then a smooth curve c : (a, b) → M is stationary for c 7→

∫ b
a f ◦

ĉ(t) dt if and only if for each t there are local coordinates around ĉ(t) such
that

∂f

∂xi
◦ ĉ −

d

dt

(
∂f

∂yi
◦ ĉ

)
= 0. (21)

Moreover, condition (21) does not depend on local coordinates.
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Proof. The last claim follows from equations (19) and (20). Before the
proof, let us begin with an observation. Suppose c is a curve, and a = t1 <
· · · < tN = b is a partition of the domain of c such that each (ti, ti+1) is
mapped into one coordinate chart. Furthermore, suppose H(t, s) = cs(t) is
a variation of c and by restricting the value of s, we can assume that each
partition (ti, ti+1) is mapped into one coordinate chart by H . If K is the
mapping c 7→

∫ b
a f ◦ ĉ(t) dt, then

d

ds
K(cs)

∣∣∣
s=0

=
N−1∑

k=1

∫ tk+1

tk

[
∂f

∂xi
◦ ĉ(t)

∂Hi

∂s
(t, 0) +

∂f

∂yi
◦ ĉ(t)

∂2Hi

∂t ∂s
(t, 0)

]
dt

=

N−1∑

k=1

∫ tk+1

tk

[
∂f

∂xi
◦ ĉ(t) −

d

dt

(
∂f

∂yi
◦ ĉ(t)

)]
∂Hi

∂s
(t, 0) dt.

For the actual proof, suppose that c : (a, b) → M is a stationary curve. Then
restrictions of c to subsets of (a, b) are also stationary, so we can assume that
c is contained in one coordinate chart, and the claim follows from the above
calculation. On the other hand, if condition (21) holds, then c is stationary
since equation (21) is independent of local coordinates.

One can prove that a stationary curve is smooth if it is piecewise smooth
[She01b]. Intuitively, this is easy to understand; if a geodesic has a kink, it
can be shortened by smoothing.

Definition 3.5 (Geodesic coefficients). In a Finsler manifold, the geodesic
coefficients are locally defined functions

Gi(y) =
1

4
gik(y)

(
2
∂gjk

∂xl
−

∂gjl

∂xk

)
yjyl, y ∈ TM \ {0}. (22)

Proposition 3.6 (Geodesic equation). A curve c : I → M is stationary for
E if and only if for each t ∈ I there are local coordinates such that

d2ci

dt2
+ 2Gi ◦ ĉ = 0.

Proof. This follows by Lemma 3.4, relations F 2(y) = gij(y)yiyj , ∂F 2

∂yi (y) =

2gijy
j , and Euler’s theorem.

Definition 3.7 (Geodesic spray). Geodesic spray G ∈ X (TM \ {0}) on a
Finsler manifold is locally defined as

G|y = yi ∂

∂xi

∣∣∣
y
− 2Gi(y)

∂

∂yi

∣∣∣
y
. (23)
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In Proposition 7.14 we prove that G is well defined, that is, G does not
depend on local coordinates. Without any circular argument, let us assume
this to be known. (Alternatively, one can prove this by a very long calcu-
lation, but there is no need to do that here.) It follows that Gi satisfy the
transformation rule

G̃r =
∂x̃r

∂xi
Gi −

1

2

∂2x̃r

∂xi ∂xs
yiys. (24)

The next proposition is a coordinate independent restatement of Propo-
sition 3.6.

Proposition 3.8. Suppose π is the canonical projection π : TM → M . If c
is an integral curve of G, then π◦c is a stationary curve of E, and c = π̂ ◦ c.
Conversely, if b is a stationary curve for E, then b̂ is an integral curve of G.

It turns out that stationary curves of E and L almost coincide. The first
half of this equivalence is contained in the proposition below. After we
introduce some tools from symplectic geometry we also prove the converse
(Proposition 7.16); every stationary curve of E is a geodesic. In view of
this equivalence, it will be convenient to consider only stationary points of
E. Traditionally this is done for two reasons. First, it gives slightly simpler
formulas. For example, compare derivatives of F =

√
gij(x)yiyj and F 2 =

gij(x)yiyj , and second, stationary curves of E naturally generalize also to
the case when F is non-degenerate (which is not relevant here).

Proposition 3.9. If c is a geodesic, and α is a diffeomorphism such that c◦α
is parameterized with respect to pathlength, then c ◦ α is a stationary point
of E.

Proof. Using Lemma 3.4 and the 1-homogeneity of F , it follows that c◦α is
a stationary curve for L. By writing derivatives as ∂F

∂xi = 1
2F

∂F 2

∂xi and using
Lemma 3.4 again the result follows.
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4 Horizontal and vertical decompositions

In many respects, Finsler geometry is analogous to Riemann geometry. How-
ever, a typical difference is that in Finsler geometry objects exist on TM
whereas in Riemann geometry they exist on M . For example, in Finsler
geometry, curvature is a tensor on TM \ {0}, whereas in Riemannian ge-
ometry, it is a tensor on M . For this reason we need to study vectors and
co-vectors on TM , that is, elements in T (TM \ {0}) and T ∗(TM \ {0}).
Equations (19)-(20) already give the transformation rules for basis vectors
in T (TM \ {0}). In this section we define the horizontal–vertical decom-
position in T (TM \ {0}) and T ∗(TM \ {0}). This decomposition will
greatly simplify calculations in local coordinates. It will also give a certain
structure compatible with the Finsler metric. For example, the tangent of
a geodesic will be a horizontal vector. Also, the derivative of F will be a
vertical co-vector. Some immediate applications of the horizontal–vertical
decomposition are given in Section 4.1.

In order to introduce the horizontal–vertical decomposition, one needs a
non-linear connection, that is, one needs some structure on TM \ {0}.

Definition 4.1 (Non-linear connection). A non-linear connection on a man-
ifold M is a collection of locally defined 1-homogeneous functions N i

j on
TM \ {0} satisfying transformation rules

∂x̃j

∂xi
Ñh

j =
∂x̃h

∂xj
N j

i −
∂2x̃h

∂xi ∂xj
yj.

Let Gi be the coefficients for the geodesic spray, and let

N i
j =

∂Gi

∂yj
. (25)

Then N i
j are 1-homogeneous, and by differentiating equation (24) we see

that N i
j are coefficients for a non-linear connection. It is the only non-linear

connection we shall use in this work. However, let us emphasize that one
can study non-linear connections also without Finsler geometry. Concepts
such as covariant derivative, geodesics, and curvature can all be defined from
only a non-linear connection [MA94].

Decomposition of T (TM \ {0})

Equation (19) shows that the vector subspace span{ ∂
∂xi |y : i = 1, . . . , n}

depends on local coordinates. Therefore one can not talk about “ ∂
∂xi ”-

directions in T (TM \{0}). However, when M is equipped with a non-linear
connection N i

j , let

δ

δxi

∣∣∣
y

=
∂

∂xi

∣∣∣
y
− Nk

i (y)
∂

∂yk

∣∣∣
y
∈ T (TM \ {0}),
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whence
δ

δxi

∣∣∣
y

=
∂x̃r

∂xi

δ

δx̃r

∣∣∣
y
.

Thus, the 2n-dimensional vector space Ty(TM\{0}) has two n-dimensional
subspaces,

VyTM = span

{
∂

∂yi

∣∣∣
y

}
, HyTM = span

{
δ

δxi

∣∣∣
y

}
,

and these are independent of local coordinates. Let us also define

V TM =
⋃

y∈TM\{0}

VyTM, H TM =
⋃

y∈TM\{0}

HyTM,

whence pointwise

T (TM \ {0}) = V TM ⊕ H TM.

Vectors in V TM are called vertical vectors, and vectors in H TM are
called horizontal vectors.

The next example shows that the tangent of a geodesics is always a hor-
izontal vector. Thus, in some sense, horizontal vectors are more important
than vertical vectors. This also motivates that name; one can move horizon-
tally, but not vertically.

Example 4.2. The coefficients Gi for the geodesic spray are 2-homogeneous.
Hence 2Gi = yj ∂Gi

∂yj = yjN i
j , so

G = yi δ

δxi
,

and G(y) is horizontal for all y ∈ TM \ {0}.

Decomposition of T
∗(TM \ {0})

On TM , the 1-forms dxi and dyi satisfy

dxi
∣∣
y

=
∂xi

∂x̃r
dx̃r

∣∣
y
, (26)

dyi
∣∣
y

=
∂xi

∂x̃r
dỹr

∣∣
y

+
∂2xi

∂x̃r ∂x̃s
ỹrdx̃s

∣∣
y
. (27)

These transformation rules follow from transformation rules (19)-(20) and
the following lemma:

Lemma 4.3. Suppose {ai}, {ãi} are bases for a finite dimensional vector
space V . Furthermore, suppose that {αi}, and {α̃i} are corresponding
dual bases. Say, αi is defined by conditions: αi : V → R is linear, and
αi(aj) = δi

j . Then

α̃j =
∑

m

α̃j(am)αm.
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Proof. If α̃j =
∑

m Λj
mαm, then α̃j(am) = Λj

m.

Let

δyi|y = dyi|y + N i
j(y)dxj |y,

whence

δyi|y =
∂xi

∂x̃r
δỹr|y.

Thus the 2n-dimensional vector space T ∗
y (TM\{0}) has two n-dimensional

subspaces,

V
∗

y TM = span
{
δyi|y

}
, H

∗
y TM = span

{
dxi|y

}
,

and these are independent of local coordinates. Then pointwise

T ∗(TM \ {0}) = V
∗TM ⊕ H

∗TM.

Co-vectors in V ∗TM are called vertical covectors, and co-vectors in H ∗TM
are called horizontal covectors.

Proposition 4.4. Suppose δ
δxi , ∂

∂yi , dxi, and δyi are defined via the non-
linear connection (25). Then

dxi

(
δ

δxj

)
= δi

j , dxi

(
∂

∂yj

)
= 0,

δyi

(
δ

δxj

)
= 0, δyi

(
∂

∂yj

)
= δi

j , (28)

[
δ

δxj
,

δ

δxk

]
=

(
δNm

j

δxk
−

δNm
k

δxj

)
∂

∂ym
,

[
δ

δxi
,

∂

∂yj

]
=

[
δ

δxj
,

∂

∂yi

]
=

∂Nk
j

∂yi

∂

∂yk
, (29)

[
∂

∂yi
,

∂

∂yj

]
= 0.

Proof. The last three equations follow from the definition of the Lie bracket;
if X,Y are vector fields, then [X,Y ] is the vector field such that [X,Y ](f) =
X(Y (f)) − Y (X(f)). The first equality in equation (29) follows since

∂N i
j

∂yk
=

∂N i
k

∂yj
.

Proposition 4.5. If f : TM \ {0} → R is a smooth function, then

df =
δf

δxi
dxi +

∂f

∂yi
δyi.
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4.1 Applications

Suppose M is a manifold with a Finsler metric F . Then two immediate
applications of the horizontal–vertical decomposition are the Sasaki metric
and the almost complex structure for T (TM \ {0}).

Sasaki metric

Let
ĝ = gij(y)dxi ⊗ dxj + gij(y)δyi ⊗ δyj .

Then ĝ is a Riemannian metric on TM \ {0} known as the Sasaki metric.
The Legendre transformation induced by ĝ,

[ : T (TM \ {0}) → T ∗(TM \ {0})

is given by

[

(
δ

δxi

)
= gikdxk, [

(
∂

∂yi

)
= gikδy

k.

Another Riemannian metrics on TM \ {0} is the Cheeger-Gromoll met-
ric. For both of these metrics, one can derive explicit expressions for the
covariant derivative and curvature. For example, see [Kap01].

Almost complex structure

Suppose E is a even dimensional manifold, and J : TE → TE is a linear
map in each tangent space. Then J is an almost complex structure if J 2 =
− Id [MS97].

Using the horizontal–vertical decomposition we can define an almost
complex structure J : T (TM \ {0}) → T (TM \ {0}) by setting

J

(
δ

δxi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= −

δ

δxi
. (30)

Then J2 = − Id, and J does not depend on the local coordinates appearing
in the definition. The map J is compatible with the Sasaki metric. That is

ĝ(X,Y ) = ĝ(JX, JY ), X, Y ∈ T (TM \ {0}).

The Nijenhuis tensor associated with an almost complex structure J is
defined by

N(X,Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ]

for vector fields X,Y .

Proposition 4.6. Every Nijenhuis tensor N satisfies properties:
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1. N is bilinear over smooth functions.

2. N is anti-symmetric.

3. N(X, JX) = 0 for any vector field X .

Proof. If f, g are functions and X,Y are vector fields, then the Lie bracket
satisfies

[fX, gY ] = fX(g)Y − gY (f)X + fg[X,Y ].

Using this identity, it follows that

N(fX, gY ) = fgN(X,Y ),

and the first property follows. The latter two properties are immediate.

Proposition 4.7. The Nijenhuis tensor for the almost complex structure (30)
is given by

N

(
δ

δxi
,

δ

δxj

)
= −

[
δ

δxi
,

δ

δxj

]
,

N

(
δ

δxi
,

∂

∂yj

)
= J

[
δ

δxi
,

δ

δxj

]
,

N

(
∂

∂yi
,

∂

∂yj

)
=

[
δ

δxi
,

δ

δxj

]
.

The Newlander-Nirenberg theorem states that an almost complex struc-
ture is integrable (see [MS97]) if and only if the Nijenhuis tensor vanishes
identically. Thus, for the almost complex structure J : T (TM \ {0}) →
T (TM \ {0}), this is the case if

[
δ

δxi ,
δ

δxj

]
= 0 identically for all i, j. In

Section 6 we will see that this is equivalent to the curvature being zero.
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5 Finsler connections

5.1 Finsler connections

Definition 5.1 (Finsler connection). A Finsler connection is determined
by a triple (N,F,C) where N is a non-linear connection on M and F =
(F i

jk), C = (C i
jk) are collections of locally defined 0-homogeneous func-

tions F i
jk, C

i
jk : TM \ {0} → R satisfying the transformation rules

∂x̃l

∂xi
F i

jk =
∂2x̃l

∂xj ∂xk
+

∂x̃r

∂xj

∂x̃s

∂xk
F̃ l

rs, (31)

Ci
jk =

∂xi

∂x̃p

∂x̃q

∂xj

∂x̃r

∂xk
C̃p

qr. (32)

Suppose π : TM → M is the canonical projection. The Finsler connection
(induced by (N,F,C)) is the mapping

∇ : Ty(TM \ {0}) × X (M) → Tπ(y)(M), (Y,X) 7→ ∇Y (X)

defined by the properties

1. ∇ is linear over R in X and Y (but not necessarily in y),

2. If f ∈ C∞(M) and y ∈ TxM \ {0}, then in local coordinates

∇ δ

δxi |y
(f

∂

∂xj

∣∣∣
x
) = df(

∂

∂xi

∣∣∣
x
)

∂

∂xj

∣∣∣
x

+ fF m
ij (y)

∂

∂xm

∣∣∣
x
,

∇ ∂

∂yi |y
(f

∂

∂xj

∣∣∣
x
) = fCm

ij (y)
∂

∂xm

∣∣∣
x
.

From the transformation properties of F i
jk and C i

jk it follows that

∇ δ

δxi
(X) =

∂x̃r

∂xi
∇ δ

δx̃r
(X),

∇ ∂

∂yi
(X) =

∂x̃r

∂xi
∇ ∂

∂ỹr
(X),

for all X ∈ X (M), so ∇ does not depend on the local coordinates.
Below are four examples of Finsler connections [Ana96]. Of these, the

Berwald connection depends only on a non-linear connection. All the other
connections depend on the Finsler norm. Thus, a non-linear connection de-
fines a non-linear covariant derivative and a linear Finsler connection.

Chern-Rund connection

Let (M,F ) be a Finsler manifold, and let

Γijk =
1

2

(
δgik

δxj
+

δgij

δxk
−

δgjk

δxi

)
,

Γi
jk = girΓrjk,
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be locally defined functions. Then (N i
j ,Γ

i
jk, 0) is the Chern-Rund connec-

tion.
That Γi

jk satisfies the appropriate transformation rule follows from

Γijk =
∂x̃p

∂xi

(
∂2x̃q

∂xj ∂xk
g̃pq +

∂x̃q

∂xj

∂x̃r

∂xk
Γ̃pqr

)
, (33)

gij =
∂xi

∂x̃r

∂xj

∂x̃s
g̃rs. (34)

The latter transformation rule follows from

gij =
∂x̃r

∂xi

∂x̃s

∂xj
g̃rs. (35)

Berwald connection

Let Gi
jk =

∂N i
j

∂yk , where N i
j are given by equation 25. Then (N i

j , G
i
jk, 0) is

the Berwald connection.

Hashiguchi connection

On a Finsler manifold the Cartan tensor Cijk is defined as

Cijk =
1

2

∂gij

∂yk
=

1

4

∂3F 2

∂yi ∂yj ∂yk
,

C l
jk = gliCijk.

Coefficients C i
jk satisfy equation (32), and the connection (N i

j , G
i
jk, C

i
jk) is

the Hashiguchi connection.

Cartan connection

The Cartan connection is the Finsler connection (N i
j ,Γ

i
jk, C

i
jk).

5.2 Covariant derivative

Definition 5.2 (Covariant derivative). Suppose M is a manifold with a
non-linear connection N i

j . Then the covariant derivative (induced by N i
j ) is

a mapping

D : TxM \ {0} × X (M) → TxM \ {0}, (y,X) 7→ Dy(X)

determined by the following properties:

1. Dy(X + Y ) = Dy(X) + Dy(Y ) for all X,Y ∈ X (M) and y ∈
TM \ {0},
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2. Dy(fX) = df(y)X + fDy(X) for all X ∈ X (M) and f ∈ C∞(M),

3. in local coordinates, Dy(
∂

∂xi

∣∣
x
) = N j

i (y) ∂
∂xj

∣∣
x

for all y ∈ TxM \{0}.

Using the transformation rule for N i
j , it follows that

Dy(
∂

∂xi

∣∣
x
) =

∂x̃j

∂xi
Dy(

∂

∂x̃j
) + d(

∂x̃h

∂xi
)(y)

∂

∂x̃h

∣∣∣
x

and Dy is well defined. In general, Dy(X) does not need to be linear in the
lower argument. This is why N i

j called a non-linear connection.

5.3 Some properties of basic Finsler quantities

Let L : T ∗M → TM be the Legendre transformation induced by a co-
Finsler metric h. In local coordinates, let L (ξ) = L i(ξ) ∂

∂xi and L −1(y) =

L
−1
i (y)dxi for ξ ∈ T ∗M and y ∈ TM , whence

L
i(ξ) = hij(ξ)ξj , ξ ∈ T ∗M,

L
−1
i (y) = gij(y)yj , y ∈ TM.

Properties of Γ

Let Cijkl =
∂Cijk

∂yl . Furthermore, let us define Lijk as

Lijk =
∂Cijk

∂xs
ys − 2CijksG

s − N s
i Csjk − N s

j Csik − N s
kCsij.

These are components determining the Landsberg tensor [She01b]. The
functions Lijk are symmetric in the indices i, j, k; exchanging any two in-
dices of i, j, k does not change Lijk. Also, as Cijky

k = 0, and Cijkly
l =

−Cijk, it follows that

Lijky
i = Ljiky

i = Ljkiy
i = 0. (36)

Lemma 5.3 (Properties of Chern-Rund connection).

Γijk = gimGm
jk − Lijk (37)

Γijk = Γikj (38)

Γi
jky

j = N i
k (39)

Γi
jkL

−1
i = Gi

jkL
−1
i = Γijky

i (40)

Proof. Let first us prove equation (37). From the definition of Γijk it follows
that

Γijk = γijk − N s
j Csik − N s

kCsij + N s
i Csjk
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where

γijk =
1

2

(
∂gik

∂xj
+

∂gij

∂xk
−

∂gjk

∂xi

)
.

Differentiating the expression for gisG
s (see equation (22)) with respect to

yj and yk and using the identity ∂Cijk

∂yr yi = 0 gives

gisG
s
jk = γijk +

∂Cijk

∂xs
ys − 2CijksG

s − 2N s
j Csik − 2N s

kCsij,

and equation (37) follows. The other equations follow from equations (36)
and (37).

Lemma 5.4 (Derivatives of gij , h
ij).

∂L
−1
j

∂xk
=

∂gij

∂xk
yi = gjsN

s
k + Γijky

i (41)

∂L j

∂xk
=

∂hij

∂xk
ξi =

(
∂gij

∂xk
L

−1
i

)
◦ L =

(
−N j

k − gjsΓrsky
r
)
◦ L(42)

∂h2

∂xk
=

∂hij

∂xk
ξiξj =

(
∂gij

∂xk
L

−1
i L

−1
j

)
◦ L =

(
−2N r

kL
−1
r

)
◦ L(43)

Proof. Equation (41) follows from δgij

δxk = Γijk + Γjik and equation (39).
The second equality in equation (42) follows since hij = gij ◦ L , and

∂gij

∂yr
L

−1
j =

∂gij

∂yr
gjsy

s

= −gij ∂gjs

∂yr
ys

= 0.

The third equality in equation (42) follows by a similar calculation for ∂gij

∂xr L
−1
j .

Equality (43) follows from equations (42), (39), and (40).
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6 Curvature

In Riemann geometry, the Riemann curvature tensor is a tensor on M . We
next derive an analogous curvature tensor in a Finsler setting, which will be
a tensor on TM \ {0}.

Let us first note that
[

δ

δxj
,

δ

δxk

]
= −

(
δNm

k

δxj
−

δNm
j

δxk

)
∂

∂ym
.

where [·, ·] is the Lie bracket for vector fields. Let us define

Rm
jk =

δNm
k

δxj
−

δNm
j

δxk
.

Proposition 6.1 (Mo). [She01a] H (M) is a submanifold near y ∈ TM \
{0} if and only if all the Rm

ij -symbols vanish in a neighbourhood of y.

Proof. This follows from a standard result about commuting vector fields.
See for example [Con93], p. 110.

In addition to Rm
ij , let us furthermore define

Rm
ijk =

∂Rm
jk

∂yi
,

and the curvature tensor R, as

R = Rm
ijkdxi ⊗ dxj ⊗ dxk ⊗

δ

δxm
.

To see that R is a tensor, let us first note that on TM , the 1-forms dxi and
dyi satisfy

dxi
∣∣
y

=
∂xi

∂x̃r
dx̃r

∣∣
y
,

dyi
∣∣
y

=
∂xi

∂x̃r
dỹr

∣∣
y

+
∂2xi

∂x̃r ∂x̃s
ỹrdx̃s

∣∣
y
.

(Actually, similarly as on the tangent bundle, one can also define horizontal
and vertical 1-forms on TM \ {0}, but we shall not need these. See for
example [She01b, She01a].) Secondly, on overlapping coordinates,

[
δ

δx̃i
,

δ

δx̃j

]
=

∂xr

∂x̃i

∂xs

∂x̃j

[
δ

δxr
,

δ

δxs

]
,

so R̃m
ij = ∂xr

∂x̃i
∂xs

∂x̃j
∂x̃m

∂xn Rn
rs and R is well defined.
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Lemma 6.2. The 0-homogeneous functions Rm
ijk satisfy

0 = Rm
ijk + Rm

jki + Rm
kij , (44)

Rm
ijk = −Rm

ikj, (45)

Rm
ijk =

δGm
ik

δxj
−

δGm
ij

δxk
+ Gs

ikG
m
js − Gs

ijG
m
ks. (46)

Proof. Equation (45) follows from the definition, equation (46) follows from

Rm
jk =

∂Nm
k

∂xj
− N s

j Gm
sk −

(
∂Nm

j

∂xk
− N s

kGm
sj

)
,

and equation (44) follows from equation (46).
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7 Symplectic geometry

Next we show that T ∗M \{0} and TM \{0} are symplectic manifolds, and
study geodesics and the Legendre transformation in this symplectic setting.

Definition 7.1. Suppose ω is a 2-form on a manifold M . Then ω is non-
degenerate, if for each x ∈ M , we have the implication: If a ∈ TxM , and
ωx(a, b) = 0 for all b ∈ TxM , then a = 0.

Definition 7.2 (Symplectic manifold). Let M be an even dimensional man-
ifold, and let ω be a closed non-degenerate 2-form on M . Then (M,ω) is a
symplectic manifold, and ω is a symplectic form for M .

Definition 7.3 (Hamiltonian vector field). Suppose (M,ω) is a symplectic
manifold, and suppose H be a function H : M → R. Then the Hamiltonian
vector field induced by H is the unique (see next paragraph) vector field
XH ∈ X (M) determined by the condition dH = ιXH

ω.

In the above, ι is the contraction mapping ιX : ΩrM → Ωr−1M defined
by (ιXω)(·) = ω(X, ·). To see that XH is well defined, let us consider
the mapping X 7→ ω(X, ·). By non-degeneracy, it is injective, and by the
rank-nullity theorem, it is surjective, so the Hamiltonian vector field XH is
uniquely determined.

Proposition 7.4 (Conservation of energy). Suppose (M,ω) is a symplectic
manifold, XH is the Hamiltonian vector field XH ∈ X (M) corresponding
to a function H : M → R, and c : I → M is an integral curve of XH . Then

H ◦ c = constant.

Proof. Let t ∈ I . Since c is an integral curve, we have (Dc)(t, 1) = (XH ◦
c)(t), so for τ = (t, 1) ∈ TtI , we have

d(H ◦ c)t(τ) = (c∗dH)t(τ)

= (dH)c(t)

(
(Dc)(τ)

)

= (dH)c(t)

(
(XH ◦ c)(t)

)

= 0,

since ω is antisymmetric. The claim follows since d(H ◦ c) is linear.

Definition 7.5 (Symplectic mapping). Suppose (M,ω) and (N, η) are sym-
plectic manifolds of the same dimension, and f is a diffeomorphism Φ: M →
N . Then Φ is a symplectic mapping if Φ∗η = ω.

Proposition 7.6. Suppose (M,ω) is a symplectic manifold, and XH is a
Hamiltonian vector field corresponding to a function H : M → R. Further-
more, suppose Φ: I ×U → M is the local flow of XH defined in some open
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U ⊂ M and open interval I containing 0. Then for all x ∈ U , t ∈ I , we
have

(Φ∗
t ω)x = ωx,

where Φt = Φ(t, ·).

Proof. As Φ0 = idM , we know that the relation holds, when t = 0. There-
fore, let us fix x ∈ U , a, b ∈ TxM , and consider the function r(t) =
(Φ∗

t ω)x(a, b) with t ∈ I . Then

r′(t) =
d

ds

[
r(s + t)

]∣∣∣
s=0

=
d

ds

[
(Φ∗

sω)y(a
′, b′)

]∣∣∣
s=0

=
(
LXH

ω
)
y
(a′, b′),

where y = Φt(x), a′ = (DΦt)(a), b′ = (DΦt)(b), and the last line is the
definition of the Lie derivative. Using Cartan’s formula, LX = ιX ◦ d + d ◦
ιX , we have

LXH
ω = ιXH

dω + dιXH
ω

= ιXH
0 + ddH

= 0,

so r′(t) = 0, and r(t) = r(0) = ωx(a, b).

Suppose M,N are manifolds, Ψ: M → N is a diffeomorphism. Then
the pullback of Ψ for vector fields is the mapping

Ψ∗ : X (N) → X (M) ,

Y 7→ (DΨ−1) ◦ Y ◦ Ψ.

Proposition 7.7. Suppose (M,ω), (N, η) are symplectic manifolds, Φ: M →
N is a symplectic mapping such that Φ∗η = ω, and h : N → R is a smooth
function. Then

Φ∗(Xh) = Xh◦Φ.

What is more, if c : I → N is an integral curve of Xh ∈ X (N), then Φ−1 ◦ c
is an integral curve of Xh◦Φ.

Proof. The contraction operator satisfies

ιΦ∗X(Φ∗η) = Φ∗(ιXη)

for all η ∈ Ωk(N), X ∈ X (N). Thus,

ιΦ∗Xh
ω = Φ∗(ιXh

η)

= Φ∗(dh)

= d(h ◦ Φ)

= ιXh◦Φ
ω,
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and as ω is non-degenerate, Φ∗Xh = Xh◦Φ. In consequence,

D(Φ−1 ◦ c) = DΦ−1 ◦ Xh ◦ c = (Φ∗Xh)(Φ−1 ◦ c) = Xh◦Φ(Φ−1 ◦ c),

so Φ−1 ◦ c is an integral curve of Xh◦Φ.

7.1 Symplectic structure on T
∗
M \ {0}

For any manifold its cotangent bundle is a symplectic manifold.

Definition 7.8 (Poincaré 1-form). Suppose M is an manifold. Then the
Poincaré 1-form θ ∈ Ω1

(
T ∗M \ {0}

)
is defined as

θ = −ξidxi.

where (xi, ξi) are local coordinates for T ∗M \ {0}.

If (x̃i, ξ̃i) are other standard coordinates for T ∗M \{0}, then ξi = ∂x̃r

∂xi ξ̃r,

and ξidxi = ∂x̃r

∂xi ξ̃r
∂xi

∂x̃l dx̃l = ξ̃idx̃i. Hence θ is well defined.

Lemma 7.9 (Coordinate independent expression for θ). Let π be the can-
onical projection π : T ∗M → M . Then the Poincaré 1-form θ ∈ Ω1(T ∗M)
satisfies

θξ(v) = ξ
(
(Dπ)(v)

)

for ξ ∈ T ∗Q and v ∈ Tξ

(
T ∗Q

)
.

Proof. Let (xi, yi) be standard coordinates for T ∗Q near ξ. Then we can
write ξ = ξidxi|π(ξ) and v = αi ∂

∂xi |ξ+βi ∂
∂yi

|ξ , Thus (Dπ)(v) = αi ∂
∂xi |π(ξ),

and θξ(v) = yi(ξ)dxi|ξ(v) = ξiα
i = ξ

(
(Dπ)(α)

)
.

Proposition 7.10. The cotangent bundle T ∗M \ {0} of manifold M is a
symplectic manifold with a symplectic form ω given by

ω = dθ = dxi ∧ dξi,

where θ is the Poincaré 1-form θ ∈ Ω1
(
T ∗M \ {0}

)
.

Proof. It is clear that ω is closed. If X = ai ∂
∂xi + bi ∂

∂ξi
, and Y = vi ∂

∂xi +

wi ∂
∂ξi

, then ω(X,Y ) = a ·w− b · v. By setting v = w we obtain a = b, and
by setting w = 0 we obtain a = b = 0.

The next example shows that we can always formulate Hamilton’s equa-
tions on the cotangent bundle. This motivates the name for XH .
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Example 7.11 (Hamilton’s equations). Suppose M is a manifold, H is a
function T ∗M → R, and XH ∈ X (T ∗M \ {0}) is the corresponding
Hamiltonian vector field. If (xi, ξi) are standard coordinates for T ∗M \{0},
then

XH =
∂H

∂ξi

∂

∂xi
−

∂H

∂xi

∂

∂ξi
.

Suppose that γ : I → T ∗M \ {0} is an integral curve to XH and locally
γ = (c, p). Then

dci

dt
=

∂H

∂ξi
◦ γ,

dpi

dt
= −

∂H

∂xi
◦ γ,

that is, integral curves of XH are solutions to Hamilton’s equations in local
coordinates of T ∗M .

7.2 Symplectic structure on TM \ {0}

The previous section shows that T ∗M \ {0} is always a symplectic mani-
fold. No such canonical symplectic structure is known for the tangent bun-
dle. However, if M is a Finsler manifold, then TM \ {0} has a canonical
symplectic structure induced by the Hilbert 1-form on TM \ {0}.

Definition 7.12 (Hilbert 1-form). Let F be a Finsler norm on M . Then the
Hilbert 1-form η ∈ Ω1(TM \ {0}) is defined as

η|y = −gij(y)yidxj |y, y ∈ TM \ {0}.

The next proposition shows that η is globally defined.

Proposition 7.13. If L : TM → T ∗M is the Legendre transformation in-
duced by a Finsler norm, then

L
∗θ = η,

dη is a symplectic form for TM \ {0}, and L : TM \ {0} → T ∗M \ {0} is
a symplectic mapping.

Proof. The first claim follows directly from the definitions by expanding
the left hand side. Since dθ is non-degenerate, it follows that dη is non-
degenerate.

The next proposition shows that G is globally defined.
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Proposition 7.14. In a Finsler space (M,F ), the Hilbert 1-form η and the
geodesic spray G satisfy

dη(G, ·) = d(
1

2
F 2),

so X 1

2
F 2 = G. What is more, XF = G/F .

Proof. Using

dη = −
∂gij

∂xr
yidxr ∧ dxj + gijdxi ∧ dyj,

we obtain

dη(G, ·) =

((
∂gij

∂xs
−

∂gis

∂xj

)
yiyj + 2gisG

i

)
dxs +

1

2

∂F 2

∂yi
dyi

=
1

2

∂F 2

∂xi
dxi +

1

2

∂F 2

∂yi
dyi.

The second claim follows since ιXF
ω = dF = 1

F d(1
2F 2) = 1

F ιGω =
ιG/F ω.

Propositions 7.6 and 7.14 state that dη is preserved under the flow of G.
Another invariance property is the following:

Proposition 7.15. F is a constant on integral curves of G and G/F .

Proof. If c is in integral curve of G, and L is the symplectic mapping in-
duced by F , then L ◦ c is an integral curve of X 1

2
F 2◦L −1 . Proposition 7.4

implies that F 2 ◦L −1 ◦L ◦ c is constant. The proof of the second claim is
analogous.

Now we can prove the converse of Proposition 3.9.

Proposition 7.16. A stationary curve of E is a geodesic.

Proof. Suppose E is stationary for a curve c. Proposition 3.6 implies that ĉ
is a integral curve of G. Hence, by Proposition 7.15, F ◦ ĉ is constant, and
the result follows using Lemma 3.4.

The next proposition is analogous to Proposition 3.8.

Proposition 7.17. If γ : I → TM \ {0} is an integral curve of G/F , then
π ◦ γ is a stationary curve for E. Conversely, if c is a stationary curve for
E, then λ = F ◦ ĉ is constant and ̂c ◦ M1/λ (see below) is an integral curve
of G/F .

If s > 0, we denote by Ms the mapping Ms : t 7→ st, t ∈ R.
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Proof. Let c : I → TM \ {0} be an integral curve of G/F . If c = (x, y),
then

dxi

dt
=

yi

λ
,

dyi

dt
= −2

Gi ◦ c

λ
,

where λ = F ◦γ > 0 is constant. The first equation implies that c = λπ̂ ◦ γ.
Since Gi is 2-homogeneous, it follows that

d2xi

dt2
+ 2Gi(π̂ ◦ c) = 0,

so π ◦ c is a stationary curve for E. Conversely, if c : I → M is a stationary
curve for E, then λ = F ◦ ĉ is constant, and c ◦ M1/λ is also is a stationary

curve for E. Then γ = ̂c ◦ M1/λ is an integral curve of G, and since F ◦γ =
1, γ is an integral curve of G/F .

The next proposition shows how the Hamilton equations can be formu-
lated using the Legendre transformation and Finsler quantities on the tangent
bundle.

Proposition 7.18. Suppose h : T ∗M → R is a co-Finsler norm, L : T ∗M →
TM is the induced symplectic mapping, and G is the geodesic spray induced
by the Finsler norm F = h ◦ L −1. If γ is an integral curve of Xh, and
λ = h ◦ γ > 0, then

λπ̂ ◦ γ = L ◦ γ. (47)

A curve γ = (c, p) : I → T ∗M \ {0} is an integral curve to Xh if and only
if

dci

dt
=

1

λ
yi ◦ L ◦ γ, (48)

dpi

dt
=

1

λ
(Nm

i L
−1
m ) ◦ L ◦ γ. (49)

Proof. Equations (48)-(49) follow from Example 7.11 and equation (43).
Equation (47) follows from equation (48).

The next proposition shows how stationary curves of E are transformed
under the Legendre transformation.

Proposition 7.19. Suppose h, L , G, and F are as in Proposition 7.18, and
π is the canonical projection π : T ∗M → M .

1. If γ : I → T ∗M \ {0} is an integral curve of Xh, then π ◦ γ is a
stationary curve for E.
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2. If c : I → M is a stationary curve for E, then λ = F ◦ ĉ is constant
and L −1 ◦ ̂c ◦ M1/λ is an integral curve of Xh.

Proof. In the first claim, L ◦ γ is an integral curve of XF . Since XF =
G/F , the result follows from Proposition 7.17. The other proof is similar.

37



38



References

[AIM94] P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory
of sprays and finsler spaces with applications in physics and bi-
ology, Fundamental Theories of Physics, Kluwer Academic Pub-
lishers, 1994.

[Ana96] M. Anastasiei, Finsler Connections in Generalized Lagrange
Spaces, Balkan Journal of Geometry and Its Applications 1
(1996), no. 1, 1–10.

[Con93] L. Conlon, Differentiable manifolds: A first course, Birkhäuser,
1993.

[DC01] E.N. Dzhafarov and H. Colonius, Multidimensional fechnerian
scaling: Basics, Journal of Mathematical Psychology 45 (2001),
no. 5, 670–719.

[Ing96] R.S. Ingarden, On physical applications of finsler geometry, Con-
temporary Mathematics 196 (1996).

[Kap01] E. Kappos, Natural metrics on tangent bundle, Master’s thesis,
Lund University, 2001.
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