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Abstract

(Anti)-/ferromagnetic Heisenberg spin models arise from discretization of Landau-
Lifshitz models in micromagnetic modelling. In many applications it is essential to
study the behavior of the system at a fixed temperature. A formulation for thermo-
statted spin dynamics was given by Bulgac and Kusnetsov [5], which incorporates
a complicated nonlinear dissipation/driving term while preserving spin length. It
is essential to properly model this term in simulation, and simplified schemes give
poor numerical performance, e.g. requiring an excessively small timestep for stable
integration. In this paper we present an efficient, structure-preserving method for
thermostatted spin dynamics.

Keywords: Heisenberg ferromagnet, micromagnetics, spin dynamics, Landau-Lifschitz
equation, Gilbert damping, thermostats, constant temperature, domain walls, geometric
integrator, reversible method

1 Introduction

In recent years geometric integrators have become ubiquitous for numerical treatment
of differential equations. By a geometric integrator is meant a numerical method that
preserves some known structure of the continuous flow. Geometric integrators are partic-
ularly important for long term simulations, as are used in molecular sampling or celestial
mechanics. In this paper we consider the application of geometric integration principles
for the types of spin dynamics systems that arise frequently in modelling of ferromagnets
and anti-ferromagnets. Efficient Lie-Poisson schemes for classical spin dynamics described
by the Landau-Lifshitz (LL) equation were studied in [10], and related multisymplectic
schemes in [9]. Here we develop and test a geometric integrator for a semi-discrete Landau-
Lifshitz-Gilbert (LLG) equation which includes a nonlinear dissipative term. This dissip-
ative system forms the foundation for a more complicated thermostatted model, following
the approach of Bulgac and Kusnetsov [5, 2]. We design an effective splitting technique
for the full coupled system.

LL and LLG are part of a very active current field of research. Other approaches to
these equations can be found in [9, 24, 6, 10, 20, 22, 14, 17], which also provide further
references. However none of these articles consider a thermostatted version.
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Simulation with the thermostatted version shows fascinating global behavior: the sys-
tem first arranges into patterns (spin domains) with slowly moving domain walls, then
visits a quasi-chaotic state and quickly rearranges itself into completely new spin do-
mains. This kind of transition would not be possible with local interactions only. Here
the thermostatting variable is defined in such a way that it has a global character.

A number of recent articles have focussed on the geometric integration of molecular
systems in the canonical ensemble [4, 15, 3, 12]. In these articles, the aim has been to
work from a Hamiltonian formulation for thermostatted molecular simulation and then to
provide a suitable symplectic integrator. The starting point is typically Nosé dynamics,
although generalizations are possible.

Since the constant energy Heisenberg spin system is Lie-Poisson, it is natural to seek
a Lie-Poisson system to model the action of the thermostat. Unfortunately, the straight-
forward approach to this problem based on rescaling spin vectors by a scaling variable
(analogous to Nosé dynamics) fails since the spin length, rather than the rescaled spin
length, remains invariant. While it is possible (with some additional complication, due
to the presence of constraints) to develop such a model for the thermostatted Heisenberg
system, based on the ideas in [12], it is much different in character from the corresponding
molecular dynamics models. Moreover, the Lie-Poisson thermostats add additional com-
plexity in the form of a relatively complex bath model. This method will be considered
in future work.

Given these complications, we believe that the best available starting point for geomet-
ric integration of thermostatted spin dynamics is the alternative framework of Bulgac and
Kusnetsov, based loosely on Nosé-Hoover (NH) dynamics. Like NH molecular dynamics,
these formulations sacrifice Hamiltonian structure, while retaining a reversing symmetry.
It is unclear the extent to which this loss of structure affects the stability of methods and
the ultimate resolution of macroscopic features of the spin model. Although in molecular
dynamics it is known that the reversible-only methods are often inferior to their sym-
plectic counterparts [13], it is also well established that NH-type methods are far superior
to methods that are neither symplectic nor reversible.

The rest of the paper is organized as follows: in Section 1.1 we review splitting methods
and apply them to our models. In Sections 2-4 we present the models and methods in
detail. In Section 5 we present numerical results. Finally in Section 6 we present some
conclusions and discussion.

1.1 Background: Review of splitting methods

The reader is referred to [16, 18] for a detailed discussion of splitting methods. To briefly
describe their basic construction, consider a differential equation u̇ = f(u), with flow map
Φτ,f . If f = f1 + f2, we have Φτ,f = Φτ,f1

◦ Φτ,f2
+ O(τ 2). If the flows on vector fields f ,

f1, and f2 share a first integral, then the composed map will preserve it as well. In this
way, geometric integrators can be developed to preserve general classes of Lie groups. If
the vector field is time-reversible, i.e. f(Ru) = −Rf(u) for some linear involution R, then
the symmetric concatenation or “Strang Splitting” Φ̂τ,f = Φ 1

2
τ,f1

◦ Φτ,f2
◦ Φ 1

2
τ,f1

, where

f1, f2 are reversible vector fields, gives a time-reversible map (RΦ̂−1
τ,f = Φ̂τ,f ◦ R), which,

moreover, provides a second-order approximation of the solution on a finite time interval.
As an example, if H = H(q, p) = T (p) + V (q), the leapfrog (Störmer/Verlet) integrator
results from the concatenation Φ̂τ,H = Φ 1

2
τ,V ◦ Φτ,T ◦ Φ 1

2
τ,V .

The construction of splitting methods for various types of flows, and with various orders
of accuracy, is discussed in a number of papers (see, e.g, [25, 21]). Practical splitting-based
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geometric integrators have been constructed by mathematicians, chemists and physicists
for a wide variety of important applications, including the rigid body, general holonomic
constraints, particle accelerator models, and the solar system. Vector field splittings were
used in [10] to obtain efficient time-reversible integrators for (undamped) spin systems; it
is this fundamental scheme that we have extended in this paper to treatment of dissipative
and thermostatted systems.

2 The original Landau-Lifshitz model as a Poisson

system

There are several versions of the Landau-Lifshitz equation depending on which forces and
fields are taken into account. The version we use here is that of [7], discarding the external
and demagnetizing field. (Schemes for more general formulations would build on the work
presented here.) The equation can be written in the form:

∂

∂t
S = S ×∇2S + S × DS, (1)

where x ∈ I×I ⊂ R
2, I an interval, S(x, t) is a unit vector in R

3 representing the classical
spin at position x and time t, and D is a diagonal matrix representing anisotropy. Clearly
|S| = constant in time:

∂

∂t
|S(x, t)|2 = 2S(x, t) · ∂

∂t
S(x, t) = 0 ∀x, t.

Following the usual practice, we discretize the spatial variable x using second order central
differences on a regular lattice as in [10] so that in the discretized system the unit length
property is conserved. We then get a Poisson system on a lattice. Without loss of
generality we may assume the lattice size to be 1:

S(x, ·) 7→ zij,

∇2S(x, ·) 7→ zi,j−1 + zi,j+1 + zi−1,j + zi+1,j − 4zij,

hence (1) becomes

żij = zij × (zi,j−1 + zi,j+1 + zi−1,j + zi+1,j − 4zij) + zij × Dzij. (2)

Observe that the −4zij term may be omitted. We thus have an n× n lattice of spins: the
variable zij is on the unit sphere in R

3 for i, j ∈ {1, . . . , n}. The i or j index is zero or
n + 1 at boundaries. Except in the case of periodic boundary conditions, the boundary
terms should be viewed as artifacts of discretization, and do not have a counterpart in the
continuum case (1). In particular, they are not necessarily of unit length.

By periodic boundary conditions we mean

z0j = znj, zi0 = zin. (3)

Next we define the Poisson structure matrix. Let us denote

z :=
[

zT
11 | zT

12 | . . . | zT
1n | zT

21 | zT
22 | . . . | zT

nn

]T
,
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i.e. z is a column vector. For an arbitrary v =: [a, b, c]T ∈ R
3 we write

v̂ :=





0 −c b
c 0 −a
−b a 0



 , v̂u = v × u ∀u.

The Poisson structure matrix is defined as the block diagonal matrix

J(z) :=















ẑ11

ẑ12

ẑ13

. . .

ẑnn















. (4)

Now (2) becomes
ż = J(z)∇H(z), (5)

if we choose the Hamiltonian H

H := −1

2





∑

i,j

∑

(a,b)∈NN(ij)

zij · zab +
∑

i,j

zT
ij Dzij + H0



 , (6)

where NN refers to “nearest neighbours”:

NN(ij) = {zi,j−1, zi,j+1, zi−1,j , zi+1,j},
and H0 represents the boundaries. For example, if we have zero boundaries (zi0 = 0, z0j =
0, zi,n+1 = 0, zn+1,j = 0), then

H0 := 0,

while if we have periodic boundary conditions, then

H0 :=
∑

j

z0j · z1j +
∑

i

zi0 · zi1. (7)

We can easily extend this to a model to include the both ferromagnetic and antiferromag-
netic cases:

H := −jK

1

2

(

∑

i,j

∑

NN

zij · zab +
∑

i,j

zT
ij Dzij + H0

)

, (8)

where jK is the so called exchange integral [1], assumed constant here, as in [2], and

jK

{

> 0 for the ferromagnetic model

< 0 for the antiferromagnetic model.

For an individual spin at the lattice point (i, j) the equation becomes

żij = −jKzij ×





∑

(a,b)∈NN(ij)

zab



− jKzij × Dzij

= zij ×∇H(z),

(9)

in both periodic and non-periodic cases. From now on we employ the notation
∑

NN(ij)

z :=
∑

(a,b)∈NN(ij)

zab.
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Lemma 2.1. Any system of the form ż = J(z)v(z) with (4) and v an arbitrary vector
function, conserves the spin lengths in time:

|zij(t)| = |zij(0)|, ∀i, j, t. (10)

Proof.
d

dt
|zij|2 = 2zij · żij = 2zij · zij × v(z) ≡ 0.

This gives us useful freedom in modelling. Next, the anisotropy term DS is approx-
imated by an average:

Dzij 7→ D
1

4
(zi,j−1 + zi,j+1 + zi−1,j + zi+1,j). (11)

this is sometimes referred to [10] as the Roberts discretization. Now (9) becomes

żij = −jKzij × M(zi,j−1 + zi,j+1 + zi−1,j + zi+1,j)

= zij ×∇H(z),
(12)

where M = I + D/4 is a diagonal matrix and H is modified according to (11).

A Numerical Method

As we noted above, (5) is a Lie-Poisson system whose meaning we briefly recall. Define a
bilinear form by

{f, g}(z) := ∇f(z) · (J(z)∇g(z)),

which fulfills the Jacobi identity

{{f, g}, h} + {{g, h}, f}+ {{h, f}, g} = 0,

hence {·, ·} is a Poisson bracket and J is a Poisson structure matrix. Since J is linear with
respect to z, this Poisson structure can be derived from a Lie algebra structure, hence it
is called a Lie-Poisson structure.

For a detailed discussion on how to integrate this type of system, see [10]. To sum-
marize that paper, the best available method is to split the vector field in even-odd (or
red-black) way:

żij = V1 + V2, (13)

where

V1 =







−jKzij × M
∑

NN(ij) z, i + j even

0, i + j odd,

V2 =







0, i + j even

−jKzij × M
∑

NN(ij) z, i + j odd.

Both of these flows can be explicitly solved. For example V1: for i + j odd zij(t) = zij(0).
For i + j even, the sum over NN(ij) includes only pairs a, b with a + b odd, hence they
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are constants (during V1). Likewise in V2 the sum is a constant. Denote the integrator of
V1 by Φ̂1,t and that of V2 by Φ̂2,t. That is,

Φ1,t = exp(tV1), Φ2,t = exp(tV2).

The implemented integrator is a symmetric composition of these exact flows:

Φ̂t := Φ2, t
2

◦ Φ1,t ◦ Φ2, t
2

. (14)

This integrator

• is time reversible

• conserves spin lengths

• preserves energy in the isotropic case (D = I),

since Φ1,t and Φ2,t do.

3 Dissipated version

It is customary to add a dissipation term to (1). In our case the corresponding dissipated
version is derived from (12) and becomes

żij = zij ×∇H(z) + αzij × zij ×∇H(z), (15)

where α is a dissipation constant and the corresponding term is known as the Gilbert
damping term.

Clearly (15) can be written more compactly

ż = J∇H + αJ2∇H. (16)

From Lemma 2.1 it follows that |z| = 1 everywhere, i.e. the dissipation does not affect
spin lengths. Let us first look at the Gilbert damping term more closely through the
equation

ż = αz × (z × B), (17)

where z ∈ R
3, and α ∈ R and B ∈ R

3 are constants. Or, more compactly,

ż = αJ2B.

This can be explicitly solved. Put

v := z · B,

w := z × B,

then (17) is

v̇ = α(−C1 + v2), (18)

ẇ = αvw, (19)

ż = αz × w, (20)

where C1 > 0 constant,
C1 = |z|2|B|2.
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We can solve for v (we have assumed |z(0)| = 1):

v(t) = −|B|E
2 C2 − 1

E2 C2 + 1
, (21)

where

E := exp(α|B|t),

C2 :=
|B| − v0

|B| + v0

.

Observe that, as t → ∞,

α > 0 ⇒ v(t) → −|B| ⇒ z, B become antiparallel,

α < 0 ⇒ v(t) → |B| ⇒ z, B become parallel.

Substituting v we can solve for w, which is a scalar function times a constant vector:

w(t) = f(t)w(0),

f(t) =
E(C2 + 1)

E2C2 + 1
−→ 0 as t → ∞, if α 6= 0.

Substituting w we can solve for z:

z(t) = exp(gŵ0)z(0), (22)

= cos(g|w0|)z0 +
sin(g|w0|)

|w0|
w0 × z0, (23)

where

g ≡ g(t) := −α

t
∫

0

f(τ)dτ =
C2 + 1

|B|C (arctan C − arctan(CE)) , (24)

C :=
√

C2 =

√

|B| − v0

|B| + v0

. (25)

Here exp(gŵ0) is expanded as a Magnus series [11]: the direction of w(t) is constant, hence
gŵ0 commutes with its integrals and the Magnus series truncates after the first term. The
evaluation of that term is best accomplished by Rodrigues’ formula, hence (23).

Evaluating g numerically is a problem because eventually v approaches ±|B| (phys-
ically this means z becomes (anti-)parallel to B) so the C in (24) becomes zero. g itself
is not singular, but the expression is difficult to evaluate stably. We used the following
Taylor expansions in the implementation. If ||B| − v0| < 0.0001,

g = −1 + E + C2

(

−2

3
+ E − 1

3
E3

)

+ O(C4),

and if ||B| + v0| < 0.0001,

g = 1 − E−1 + C−2

(

2

3
− E−1 +

1

3
E−3

)

+ O(C−4).
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A Lyapunov Function

Note that

|w|2 = (z × B) · (z × B) = −(B × z) · (z × B) = −B · z × (z × B) =
−B

α
· ż = − v̇

α
,

hence
d

dt
v = −α|z × B|2 ≤ 0, if α ≥ 0.

Evidentally, v is a Lyapunov function when α is positive. If H(z) := Cv = Cz · B, C a
scalar constant, then

d

dt
H = −αC|z × B|2, (26)

that is, H is a Lyapunov function iff sgn(αC) = 1. In the next section sgn(C) chooses
between a ferromagnet and an antiferromagnet.

Multiple Spins

Now we continue from (15), which can be written

żij = zij × (−jK)M
∑

NN(ij)

z + αzij × zij × (−jK)M
∑

NN(ij)

z. (27)

Recall from the previous discussion that α < 0 implies zij tends to become parallel to

(−jK)M
∑

NN(ij)

z.

This means, see (26), that if jK > 0, then sgn(αjK) = −1 and energy H is decreasing. In
other words, for a ferromagnet, negative α implies damping of energy.

To summarize, a ferromagnetic or antiferromagnetic spin system subject to Gilbert
damping will uniformly dissipate energy for appropriate choice of the sign of the damping
coefficient. Moreover, a Gilbert-damped system is spin-length conserving.

A Numerical Method

To integrate the damped system, we split the vector field in even-odd way as in the
conservative case:

żij = V1 + V2 + V3 + V4, (28)

where

V1 =

{

−jKzij × M
∑

NN(ij) z, i + j even

0, i + j odd,

V2 =

{

0, i + j even

−jKzij × M
∑

NN(ij) z, i + j odd,

V3 =

{

−jKαzij × zij × M
∑

NN(ij) z, i + j even

0, i + j odd,

V4 =

{

0, i + j even

−jKαzij × zij × M
∑

NN(ij) z, i + j odd.
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Now, all of these flows can be explicitly solved. For example V1: for i+j odd zij(t) = zij(0).
For i + j even, the sum over NN(ij) includes only pairs a, b with a + b odd, hence they
are constant (during V1). Likewise in V2, V3, and V4 the sums include only constants.

Hence in V1 and V2 we solve

żij = zij × B, B constant, (29)

and in V3 and V4 we solve

żij = αzij × zij × B, B constant, (30)

which are calculated above. Note that (29), (30) have different constants B. The imple-
mented integrator is a symmetric composition of these exact flows:

Φ̂t := Φ4, t
2

◦ Φ3, t
2

◦ Φ2, t
2

◦ Φ1,t ◦ Φ2, t
2

◦ Φ3, t
2

◦ Φ4, t
2

, (31)

where Φi,t = exp(t Vi) are the exact flows.
An important feature of our method is that it dissipates energy when the flow (15)

does. This can be seen in the following way: we solve the flows V1, . . . , V4 exactly, hence
every step in the composition (31) follows the energy of the associated vector field exactly.
Now V1 and V2 conserve H, and V3 and V4 are (weakly) dissipating H. By [19, Theorem
2] our H is conserved by Φ1 and Φ2, and Φ3 and Φ4 do not increase it. Therefore, the
composition Φt is (weakly) dissipating H.

4 A Thermostatted Integrator

The purpose of a thermostatted dynamical model is to enable sampling from the canonical
ensemble, i.e. maintaining constant average temperature by modelling the effect of a“heat
reservoir”. In such a model, the system must be allowed to exchange energy with its
surroundings. That is, we allow the energy to fluctuate. But, at the same time, we want
to keep the spin lengths constant. This will be carried out by modifying the dissipation
term introduced in previous sections.

We use the thermostatting term suggested in [2]. Given a parameter T (temperature),
we introduce a coefficient α allowed to vary with time: α = α(t) and

α̇ = −
( κ

NT

)2∑

ij

(

I − kT∇zij

)

· (zij × zij × I) , (32)

where k is Boltzmann’s constant which we hereafter take to be 1. N is number of degrees
of freedom, i.e. N = 3n2 since we have an n×n square lattice, κ is coupling strength and
typically κ ≈

√
N . Here we take κ/N := 1/n. I is given by

I ≡ ∇zij
H := −jKM

∑

NN(ij)

z. (33)

The thermostatting variable α has been given the nickname “global demon” [2], so called
due to its non-local (hence non-physical) character: it affects all spins simultaneously.

The resulting thermostatted system is

żij = zij × I + αzij × zij × I, (34)

α̇ = −
( κ

NT

)2∑

ij

(

I − T∇zij

)

· (zij × zij × I) . (35)
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It is possible to show that the ferromagnetic system thermostatted using (34),(35)
samples from the canonical ensemble. This system also conserves spin length. Finally,
one easily demonstrates that these equations are invariant under the simultaneous time-
coordinate transformation t 7→ −t, z 7→ −z, α 7→ −α, i.e. the equations are time-
reversible.

Thermostatted integrator

To integrate the thermostatted model (34)-(35), we split the vector field in an even-odd
way as in Section 2, but including the α̇ term:

(

żij

α̇

)

= V1 + V2 + V3 + V4 + V5, (36)

where V1, V2, V3, V4 are as in Section 3 (with α = α0 =constant) and

V5 ↔







zij = constant,

α̇ =
∑

ij ((zij · B)2 − B · B − 2Tzij · B) .
(37)

Here we have simplified:

B := I = −jK M
∑

NN(ij)

z (indep. of zij),

∇z · (z × z × B) = ∇z · ((z · B)z − B) = 2z · B,

B · (z × z × B) = (z · B)2 − B · B.

In V5 all terms are constant so the equation with V5 is trivially solved. But note that
the update step of α requires O(n2) computational work. Finally, we have

Φ̂t := Φ1, t
2

◦ Φ2, t
2

◦ Φ3, t
2

◦ Φ4, t
2

◦ Φ5,t ◦ Φ4, t
2

◦ Φ3, t
2

◦ Φ2, t
2

◦ Φ1, t
2

, (38)

where the Φi,t = exp(t Vi) are the exact flows on each of the vector fields.
An important feature of this discretization is that it is time-reversible with respect to

the mapping z 7→ −z, α 7→ −α, t 7→ −t. This can be seen by recalling from Section
1.1 that if f(Ru) = −Rf(u) for some linear involution R, then the Strang splitting gives
a time-reversible map. Here u := (z, α) and Ru := (−z,−α). Applying the rule four
times in a row: first to Φ4 and Φ5 in the roles of Φτ,f1

and Φτ,f2
of Section 1.1, secondly

to Φ3 and Φ4 ◦ Φ5 in a similar way, next to Φ2 and Φ3 ◦ Φ4 ◦ Φ5 and finally to Φ1 and
Φ2 ◦ Φ3 ◦ Φ4 ◦ Φ5, we get the claim.

5 Numerical results

In all our simulations we used n = 50, that is, a 50 × 50 lattice. We used ferromagnets
with anisotropy D =diag(1, 1, λ). This is known as “easy plane” or “easy axis” anisotropy,
corresponding to λ < 1 or λ > 1, respectively.
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5.1 Dissipated system

Example 1. In Figure 1 we see evidence of the dissipation of energy. In the top panel,
we show the energy, while the bottom panel shows the maximum norm of the discrete
Laplacian during each time step. Here we used periodic boundary conditions, λ = 1.1,
α = −0.5, and timestep ∆t = 0.1. The initial configuration was random (top left of Figure
2).

The graph of the discrete Laplacian suggests the convergence of the solution to a steady
state, as seen in Figure 2, which contains snapshots of the graphs of z-component in the
same simulation. The order of the pictures is sequential by row and left to right across
rows. Intensity (dark/light) is associated to z-component: black represents the spin-down
configuration, white spin-up.

The result shown is typical for this model: the lattice converges to two bands of up
and down spins. We also tested zero boundary conditions, in which case the dissipated
system typically converged to a single band.

0 50 100 150 200 250 300 350 400 450 500
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e
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Figure 1: Energy of the dissipated system.

5.2 Thermostatted system

Example 2. In Figures 3 and 4 we diagram the solution of the thermostatted system with
periodic boundaries, λ = 0.9, T = 0.04 and timestep ∆t = 0.01. The initial condition
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Figure 2: Snapshots of z-components (black: z = (0, 0,−1), white: z = (0, 0, 1)) of the
dissipated system.
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is random. In the top panel of Figure 3, we plot the thermostatting variable α, in the
middle panel the energy, and in the bottom panel the maximum norm of the discrete
Laplacian. After an initial phase both α and energy settle to an aperiodic oscillatory
motion, α between −10 and +10, and the energy between −4800 and −4300. We plotted
only 2000 steps but the behavior continued similarly for at least 25000 steps. In Figure 4
we can see a slow evolution; the reader is asked to compare the white areas. At t = 5.2
the dynamics suddenly appear chaotic, then gradually transition back to a smooth phase.
After 25000 steps we still observe slow motion: the system does not converge to any
particular formation.
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Figure 3: Energy, α, and norm of Laplacian for the thermostatted system of Example 2.

Example 3. As another illustration of the dynamics in this spin model, we exhibit, in
Figures 5-9 the numerical solution of the thermostatted system for a system of “wandering
vortices”. This system has random initial conditions, periodic boundaries, and parameters
λ = 0.9, T = 0.05 and timestep ∆t = 0.05. Figures 5 and 6 represent the evolution of
α, energy, and averages of the energy over different time windows. Interestingly, the
behavior of α is much more erratic than in Example 2. The snapshots in Figures 7-9
show the z−components of the lattice. From a random state, the system very quickly
forms vortices. The dynamics consists of smooth gyration with brief chaotic interludes
as the thermostat variable is driven between positive and negative values. Sometimes
the vortices die out completely leaving an apparently smooth surface, but then reappear
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Figure 4: Snapshots of z-components (black: z = (0, 0,−1), white: z = (0, 0, 1)) of the
thermostatted system in Example 2.
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Figure 5: Energy and α of the “wandering vortices”, Example 3.

Comparison to RK4 with projection

For comparison we implemented the classical Runge-Kutta 4th order method (RK4) with
projection: after every step we normalize

zij,new := zij,RK/|zij,RK|,

where zij,RK denotes the result of RK4 step. At very small timesteps for which the RK4
method could successfully integrate the problem, it was slightly faster than splitting,
but the RK4 method became rapidly unstable as the stepsize and/or anisotropy were
increased. The splitting method was able to handle large anisotropies (λ = 3) and step
sizes (∆t = 0.3). However, we did not seek the limits of our splitting method. The values
λ = 3 and ∆t = 0.3 indicate the superior stability well enough at this stage.

We tested the projected RK4 on Examples 2 and 3. We kept the other parameters
intact but changed the step size. As a sign of failure, we stopped the computation when the
code became unstable. In Example 2 the maximum timestep was 0.01, while in Example
3 ∆tmax = 0.015. The results are summarized in Table 1.
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Figure 6: Averages of the energy of the “wandering vortices”, Example 3.

6 Discussion

In this paper we have developed and tested a geometric integrator for a semi-discretized
Landau-Lifshitz-Gilbert (LLG) equation which includes a nonlinear dissipative term, as
well as for a more complicated thermostatted model, following the approach of Bulgac
and Kusnetsov.

The integrator for the dissipated system is shown to have a dissipative property. LLG
is currently a very active topic of research as mentioned in the introduction. However, it
seems that until now there has not been a geometric integrator proposed for the thermo-
statted system.

Trying to simulate the thermostatted systems with projected RK4 revealed both the
features of a stiff ODE and some features of a conservative system. The combination is
extremely difficult for standard form numerical methods. The key feature of our splitting
method is that it is constructed from composition of building blocks that simulate each
of the two components of the system correctly.

Simulation with our new thermostatted method has demonstrated interesting phe-
nomena: slowly creeping boundaries, or wandering vortices, both of which appear from
random initial conditions. Our informal term “wandering vortices” in Example 3 refers
not to certain particular vortices that survive throughout the whole simulation, but to a
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Figure 7: Snapshots of “wandering vortices”, Example 3.
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Figure 8: Snapshots of “wandering vortices”, Example 3.
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Figure 9: Snapshots of “wandering vortices”, Example 3.
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Example 2 ∆t RK4 survived up to t =
0.020 0.060
0.015 0.075
0.012 0.084
0.011 0.099
0.0105 0.116
0.0102 0.235
0.010 > 200

Example 3 ∆t RK4 survived up to t =
0.020 0.080
0.019 0.095
0.017 0.102
0.016 0.112
0.015 > 150

Table 1: Failure of projected RK4.

situation where we have two or more vortices which wander for a while, then violently
crash and form new vortices. Intermediate states include a “quasi-chaotic” state, by which
we mean a state that suddenly appears and looks random but is not, since it transitions
immediately back to (almost) the same smooth motion.

The RK4 method is less stable than the geometric integrator. The stepsize restriction
is an order of magnitude more severe compared to our splitting method. This is evidence
of stiffness in the ODEs, and a better choice might seem to be a stiff solver on this
account, but if one uses a stiff solver the result would be poor resolution of the conservative
evolution which is also an important component of the dynamics of the system. The best
compromise is therefore a composition scheme, such as that outlined here, which separately
and appropriately resolves each term of the system.

We anticipate that this work will stimulate further research in the development of
thermostatted numerical methods for systems with complicated nonlinear structure.
Acknowledgements. The authors are grateful to Jason Frank both for valuable com-
ments and providing the code of [10]. The author TA was supported by the Academy of
Finland. BL was supported by the Engineering and Physical Sciences Research Council,
grant GR/R03259/01. We also wish to thank the referees for their helpful suggestions.

References

[1] J.C. Anderson. Magnetism and Magnetic Materials. Chapman and Hall, 1968.

[2] V.P. Antropov, M.I. Katsnelson, B.N. Harmon, M. van Schilfgaarde, and D. Kus-
nezov. Spin dynamics in magnets: equation of motion and finite temperature
effects. Phys. Rev. B, 54(2):1019–1035, 1996.

[3] E. Barth, B. Laird, and B. Leimkuhler. Generating generalized distributions
from dynamical simulation. J. Chem. Phys., 118, 5759-5768, 2003.

[4] S. Bond, B. Laird, and B. Leimkuhler. The Nosé-Poincaré method for constant
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