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Abstract

We present a matrix formalism to study univariate polynomials. The structure of this for-
malism is beautiful enough to be worth seeing on its own, yet we give (another) motivation to
this by presenting three new theorems and applying the formalism to give new proofs of some
known results. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

We study univariate polynomials over a field of characteristic zero. For this we
develop a matrix formalism to represent the elementary operdpis) := p(x +
1), Ap(x):=px+ 1) — p(x) and some others. Although these operators are cer-
tainly well known and widely used also in context of more general functions than
polynomials, it seems that they have not been studied as matrices. Probably because
of such approach is considered too elementary.

However, studying them as matrices reveals beautiful interplay between binomi-
al coefficients, stirling numbers and integer vandermonde matrices. Our approach
is (indeed!) elementary and requires nothing more than simple linear algebra. We
present three theorems which we were unable to find from literature, despite rather
extensive search through literature. Also, as further applications of our formalism,
we give new proofs of some known results: Kalman’s formula for power sums of
consecutive integers, Euler polynomials, Verde-Star’s generalized Stirlings.
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Many, perhaps all, of our results could be proved in an even more elementary
way by using suitably chosen induction arguments, but we believe that the structure
presented here offers a new viewpoint which might turn out to be valuable also for
other situations as for those described here.

We mention also the interesting book [2] which is in the same spirit as this paper,
but in a sense dual direction: there are polynomials used to study linear algebra,
while here we use linear algebra to study polynomials.

2. Notation and conventions

We will stick to the fieldR, for convenience. Denote H§* the direct sum of
numerably manyRs, that is, the collection dR-sequences with only finitely many
nonzero elements. Clearly a polynomjak R[x] can be interpreted as an element
in R* by its coefficients, i.e. define mapping k&[x] — R* by

ke: po+ pix + pax®+ -+ pyx" = (po, p1, P2, .., PN, 0,0, ...

If p € R[x], we denote by ; the coefficient ofc/ of p.

Some conventions:%0=1. We will use the same notatiop, whetherp € R[x]
or p = ke(p(x)) € R*. It will be clear from context which one is meant. Binomial
coefficient is sometimes considered as a polynomial in the upper argument (the lower
argument will always be a nonnegative integer)

<8) —1, (i):%x(x—l)(x—Z)...(x—k+l) fork e N.

Note that

-1 _ k

and more generally

—n\ _ sk (ntk—-1
(7)== ("57)
The stirling numbers of the first kind, denoted heresby, k), are defined by
k

x(x—=1) - (x—k+1 = Zs(n,k)x”
n=0

and the stirling numbers of the second kind, denoted her#tw k), are defined by

k
x* = Z&”(n,k)x(x -1D---(x—n+12.
n=0
A matrix or a vector ‘is integers’ means that its elements are integers. Nothtion
, J) is thejth column ofA andA(}, :) is thejth row of A. We will numerate the rows
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and columns of a matrix beginning from 0, to make the formulas simpler. That is, the
toprow of an(N + 1) x (N + 1)-matrix A is Agp, Ao1, Aoz, ..., Aogy. Vectors are
considered as elements®f°. That is, when two vectors of different length are add-
ed, the shorter one is filled with zeros at the end. Deppte- (0,...,0,1,0,...) €

R with the 1 atnth place, wheres =0, 1, ... In other wordsg, = ke(x") - diag

(as, ..., a,) means a diagonal matrix with elemeiis, ..., a,).

3. Definitions
Fix a positive integelN. Suppose € R[x] with deg p) < N. The polynomials

o)

in x are linearly independent ov&, because

deg (;i) =k.

Hence we can write
N
X
px) =: Zbu (u) .
u=0

Definition 3.1. Mappings bin, valR[x] — R* by

bin(p)::(bo by by --- by 0 O ...)GROO

val(p):=(p(©) p@) p@ -~ p(N) 0 0 ...)eR™
Clearly mappings ke and bin are bijective and linear. So is val when we Keep
fixed and restrict val to polynomials of degrgeN. Since we have fixed/, we can
present kép), bin(p), val(p) asN + 1—vectors for any degp) < N.

We want a matrix/ such that kép(x + 1)) = M ke(p(x)). That is,M shifts the
graph of a polynomial one step to the left. It turns out that (see also [3])

0060
B 6 -
o R

(.

N
N

1)
2)
)
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Indeed,
J .
pa+D =Y pia+0 =Y p Y (i) .
' k=0
Now the coefficient of* is the sum éver such indicgsthatN > j > k:
N .
coefficient ofx* = jz::k <i> pj

but this is just(Mp), i.e. thekth element ofM p.

Definition 3.2. We shall make use of the following vandermonde matrix
V:= vandermond®, 1, ..., N)
the stirling matrices

St = (s, j))i, j—o.N »

St = (L, j)i, j=o0..n -
Further we defingwith a a scalar

A:= diag©, 1, ..., N),

atl:= diagl, a, az, aN),

Al:= diag0!, 1!, 2!,..., N!).

That s,
s(0,00 s(0,1) (0,2 ... s(ON)
0 s(L,L) s(1,2 ... s(L,N)
sy=| O 0 522 ... s@&N) [ stirling 1stkind
0 0 0 ... s(N,N)
40,00 £0,1) £0,2) ... ZO,N)
0 1,1) 14,2 ... LAN)
sp=| O 0 22 .. F2N)
0 0 0 . y(z\}, N)

Stirling 2nd kind

11 1 1 ... 1
01 2 3 N
v=|0 1 2 32 N?
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It is easily checked tha} o2 o s(n, v).% (v, m) = 8, (Kronecker delta) which im-
plies S{* = St.

4. Structure
We begin with a simple lemma whose proof can be omitted.

Lemma4.1l. Supposel is an(N + 1)—square matrix p(x) a polynomial and <
R. Then
1. (s Ash);; = s/~ Ajj, s # 0,

2. (M7LAAY;; = LA,

il

3. ke(p(sx)) = s" ke(p(x)),

s+1\ (s s .
4,< k >_(k>+<k—l>’ wherek =1, 2, ...

As Kalman has noted in [3]M = exp(D) where

0 0O ... 0
2

1
0 0
0O N

0

Note that in Kalman’s definition the transpose of ddrhas been used. Now clearly
ke(Dp) = ke(p’) where prime indicates the usual derivative. From the definition of
M it follows that M" ke(p(x)) = ke(p(x + n)) for all n € N. Moreover we have:

Proposition 4.1.

ke(p(x +5)) = M°ke(p), whereM* :=exp(sD), 2
M = s Ms" Vs e R\{0} 3)

especiallywhens € Z, M* coincides with theth power of M.

Proof. First we need to show (3) far = 1. Now D is nonzero only at its first
diagonal, henc®* is nonzero only akth diagonal, whei =0, ..., N andD* =0
for k > N. More precisely,

(Dk)ij =

jG =1 (j—(k—-1) whenj=i-+k, (4)
0 otherwise
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(D5 = jit, k=j—i.
Hence

Al | 1 i
D k j—i _ — ..
(e )ij:(g ED)__Z(j—i)!(DJ )ij—(i)—Mljs (5)
ij

k=0

which shows that the claim is true for= 1. By Lemma 4.1
sDs"=sD VseR (6)

and by induction

s DK = (s DsM) (s D L) = s D sF DAL = sk Dk, 7)
Hence
Noa N o1
sD __ S kpk _ —4 k) A _ —Aps.A
e’ —XQJk!sD =3 (Zok!D>s =5 “"Ms (8)
k= k=

which proves (3). To prove (2) note that

p(x-f-S):ijZ(‘l]_)xl_g]—l :le (?)51_117./ (9)
j=0 0 =i

j=i

i= i=0 Jj

and by Lemma 4.1,

l

(f) sT7 = (sTMsM)ij = (M°);;. (10)
Combining (9) and (10) gives kg(x + s)); = Z?’:i (M*);jp; = (M* ke(p(x)));.
The final claim follows from the fact that:

expnA) = (expA)' VneZ

for any square matrid. [

An immediate corollary is thaw/*™* = M*M' for all s, t € R. This proposition
also has, by Lemma 4.1, a nice geometrical interpretatiéfpy = “translate the
graph ofp s units” = s~ Ms4p = “zoom outs units, translate 1 unit, zoom in
units”.

Next we look at relations between ke, bin, val:

Proposition 4.2. VT ke(p) = val(p) = M7 bin(p).
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Proof. Writing the definitions in suitable form:

N .
(val p); =p(i) = Y_(bin p), (;) = M, hbin(p) = (M bin(p));,

v=0

N
(valp)i=p(i) =) (kep),i’ = V(,ike(p) = (V ke(p))i. O
v=0

Let 4 be the difference operatofp(x) := p(x + 1) — p(x). Now in ke— ke bas-
es clearlyd = M — I. It turns out thatd has a particularly simple form in bis bin
bases: it is a shift. More precisely,

Proposition 4.3.  bin(4p) = Sbin(p) where S is the shift matrix S;; = §; ;41
(kronecker delta

Proof. Clearly,

A@:o

and by Lemma 4.1,

X X
A(k)=<k—1) Vx e R, ke N,

hence

N N
Ap=43 b (}) - > o (")

N-1 <
= Y tinpraa (7). 1)
k=0
which shows thatbin(4p));, = (binp)gyr1. O
We have the following decompositions:
Theorem 1.
1. TheL DU decomposition of = Sty A! M,
2. The Jordan decomposition 8 = (St; A!=1)(I + §)(A! Sb).
Proof. 1. With afixedk € {0, 1, ..., N} define
p(x)i=x(x—-1...x —k+1) =k! (;i) = Zs(n, kx"

n

as follows from definitions of}) ands(n, k). Now ke(p) = Sti(:, k) and
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0
0
K (g)
val(p) = =kIMTG k)= MT ANG, k) (12)

on the other hand, from Proposition 4.2,al = V" ke(p) = (V' St)(:, k), which
holds for allk € {0, 1, ..., N}, thereforeM™ A! = VT St;. This is equivalent with
V= szr A!' M which is theL DU decomposition since both Sand M are upper
triangulars with unit diagonal.

2. By Proposition 4.3, fop an arbitrary polynomial,

bin p(x + 1)= bin(p(x)) + bin(4p(x)) = bin(p(x)) + S bin(p(x))
= (I 4+ S)bin(p(x)) (13)

and by Proposition 4.2 and the part 1 just proven:

binp =M TvTkep = A!Sbkep
hence from (13),

AlSbkep(x +1) = (I + S)A! Shke p(x) (14)
sinceM ke(p(x)) = ke(p(x + 1)) this becomes

ke(p(x + 1)) = Mke(p(x)) = (A!Sk) (I + S)A!Skkep(x) Vp (15)
henceM has the claimed form. O

The following proposition shows that stirling matrices intertwine difference and
derivative:

Proposition 4.4. SttA = DSt andASt; = Sty D, whered = M — [ i.e. the matrix
for the difference operator ike — ke bases.

Proof. The claims are clearly equivalent, it is enough to prove the first one.

SbAd= Stb(M — I) = St (Stl AY 45— DA Stz)
= A"1SA1St = D Sh, (16)
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where the second equality follows from Theorem 1 and the last one from Lemma
4.1. O

We can use those properties to invert (up to an additive constant)

Proposition 4.5. If ¢ is a polynomial such thatg = p, then for any p given g is
uniquely defined except for an additive consigftl) and given by

0)
ke(q) = Sty AT (9 > 17
@ =sua’ (500, an
where AT = diag1, 1,1/2,1/3,...,1/N) i.e. AT4 =diag0,1,1,...,1). Recall

that we are interpreting vectors as elementsRiff, hence the concatenated vec-
tor in right-hand side does not cause conflict with vector lengths. Note also that
deqg St p) = deq p), hence degree of right-hand side indeed equiagq).

Proof. As aboved = A~1S A with A = A! St invertible, hence kerd = ker S =

{€ e0 | € € R} = the set of constant polynomials which proves the claimed unique-
ness up to an additive constant. To prove (17), first note that

p=S<i) VE € R, p e R™.

Hence
0

ke(4q) = ke(p) = Sty Sbke(p) =St S (Stz ke(p)> ) (18)

Noting thatS = D A" this becomes, by Proposition 4.4,
_ T 0

ke(4q) = A4St A <St2 ke(p)> , (19)
hence

q=5t1/1*< Q )+seo (20)

St ke(p)

for some scalat. Thaté = ¢(0), follows from multiplying (20) from left by(eg) "
and noting that; (0) = (eg)" keg and(eg) " Sty = (eg)". O

Proposition 4.6. Supposé =+ 0 a scalar. Then

1 k1 k2 ... kN
1 k1
1
(M—(k+1))’1=—ESt1A!’1 1 - g2 | A4St (21)
k_l

1
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Proof. Applying Theorem 1 we only need to simplity + S — (k + 1)7)~1 which
equals to-#(/ — +5)~1. Now S is nilpotent withs¥+1 = 0. Hence

1Nt &
<1 - %S> = Zk"S’. O
i=0
An interesting corollary is thatM — 2)~1 is integers, which is perhaps not so

obvious otherwise.

Proposition 4.7. Let p be a polynomial. Then

p(Z) C 7 < binp is integers (22)
Proof. If bin p is integers, then

px) = Z(binp),- (7) eZ Vxel.

On the other hand, from Proposition 4.2 we get pin= M ~Tval(p) and from Prop-
osition 4.A1M~T = (=1)"MT(—1)" is integers, hencp(Z) C Z = val(p) is inte-
gers= bin(p) isintegers. O

5. Applications
We begin with a theorem which appears to be new: this resolves a question on
polynomials with a “multiplication property”, by which is meant (see e.qg. [1,5]) that

the value of the polynomial at a poimtx can be sampled from the interjal, x + 1[
of unit length, in the following sense:

m—1
k
p(mx) = Z k.m P <x + —) Vx e R, Vme N, (23)
k=0 mn

where thez ,, are independent of.

Theorem 2. Suppose given an € N and a sefag, a1, . .., an—1}. Then there ex-
ists a polynomiap with property(23) (for this fixedm) if and only if
Z ar =m" (24)

k

with somen € N. Moreover deq p) = n and if we requirep to be monic it is
unique.
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Proof. Apply ke to (23), use Lemma 4.1 and Proposition 4.1 to get

ke p(mx)= mkep(x) = E aikep (x + E) = E arM*'"Mke p(x)
m
k k

=m1 (Z akMk> m”ke(p). (25)
k
That is,

m~ (ZakMk — m/'> mip =0, (26)
k

wherep :=ke p(x). Sincem* are invertible, the existence pfis equivalent with

det(z akMk — mA> =0, (27)

k

which is, sinceM is upper triangular with unit diagonal, equivalent to

det((Xk: ak) I— mA) =0 (28)

which is equivalent t@) ", ay = m" for somen € {0, 1, ..., N}. Note that we can
chooseN as large as we want. This implies the first claim. To see what polynomials
fulfill (26) note that)_, apM* —m* is of the block matrix form

1 * =
0 x1, (29)
1>

whereTy, T, are upper triangulars and the zero is tite diagonal element. Now
T» is invertible (as isf1) because its diagonal elements are of the forina; — m/
with j > n (respectively forTy, with j < n). Denoteq:=m"p andg; = (keq);.
From (26) follows, by invertibility off», thatg; = O for j > n. SinceTy is invertible
there are no more free parameters tharhence we must requikg, # 0 to makeg
nonzero polynomial therefore dgg = n = ded p). Choosingg,, = m" (to makep
monic) makeg;, hencep, unique. O

5.1. Euler polynomials

One way to define Euler polynomials is by the property

E.xc+1D)+E,x)=2", n=0,1,..., (30)
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which is in matrixformalism(M + 1)E,, = 2¢, and definest,, uniquely, hence the
matrix of first N Euler polynomialsk, is

| | |
E:= (keEo | keE1 | ... | keEy ) =2M+17 L. (31)
I | |

From this we can, using Proposition 4.6, deduce an easy algorithm to compute
the coefficients of ang,:

ke(E,) = StA"H(=2)1T (-2~ A!Sbe,, (32)

whereT is the upper triangular with all elements equal to one.

Remark 5.1. We also could define the Euler polynomials of odd degree by using
Theorem 2 witha,, := (—1)*m", whence fom 0dd ", ax, = m" andE, (x) is the
uniqgue monic polynomial given by Theorem 2.

5.2. Newton'’s theorem

The title refers to

Proposition 5.1.

> A4 f () (;) — f(x) VxeR. (33)
k

This is so well known and elementary that it is probably included (as an exercise)
in every textbook which introduces the difference operator, but we will prove it here
just for fun, the proof is a neat example of our formalism.

Proof.

bin (i) = e,

hence claim is equivalent wittbin ), = A* f(0). But, evaluating ak = 0 is just
multiplying left by ef, i.e. 4% £(0) = elbin(4* f) = el S¥bin f = (S¥bin f)o =
(bin f)e. O

5.3. Bernoulli polynomials

There is a vast amount of literature for Bernoulli polynomials. We shall prove,
as an example to use our formalism, a property which appears to be new despite its
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elementarity. Among several equivalent definitions we choose the followingtlthe
Bernoulli polynomial,B,,, is the unique polynomial satisfying

By(x +1) — By(x) = nx""1, (34)
B/ (x) = nB,_1(x). (39)

That B, is unique will be shown shortly. Moreover, we define

| | |
B:=|keBy | keB1 | ... | keBy |. (36)

Theorem 3. The Bernoulli matrixB defined above is the unique matrix which maps
differences to derivatives and commutes with both. That is

BA=D,
DB=BD,
AB=BA,

whered = M — I, as in Propositior4.4.

Proof. We put the definitions in matrix formalism using ke. First! 1 = d/dxx",
hence (34) says thatB, = De, and thereforedB = D. As noted in the proof of
Proposition 4.5, this define®, except for its 0. order term. Then, the left-hand side
of (35) is DB, so the left-hand side i® B when we look at all columns oB
(that is, alln) simultaneosly. How about the right-hand side? Again, looking at all
simultaneosly, itsith column isnB,_1, which means that, firstly, the columns Bf
are shifted one step to right, that is multiplying Byn the right (sincé€X S)(:, n) =

X (:,n — 1) for any matrixX), and, secondlyjth column is multiplied by:, which is
multiplying by 4 from the right. Hence (35) say3B = BSA. Noting thatS4 = D
gives DB = BD. Now evaluating (35) at = 0, which is in matrixformalism just
multiplying left byeg, we getB,,_1(0) = %Bnl forn > 1. Herefrom we see that this
defines the top row oB, henceB is unique. Especially, sincg and D are upper
triangular and the *1 diagonal of4 is equal to the ¥ diagonal of D, we see that
B is upper triangular with unit diagonal. We still need to show tBatommutes
with 4. NowABB = DB = BD = BAB andB is invertible, hencelB = BA and
AB = D becomesBA =D. [

Remark 5.2. B, could also be defined by using Theorem 2 with, :=m" 1. This
is actually the starting point used in [5]. In context of Bernoulli polynomials, Theo-
rem 2 has been generalized, see [1].
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5.4. Kalman's formula for the sum of consecutive powers

There is, like in the Bernoulli case, a vast amount of literature on evaluating the
sum

pn):= Zk"
k=1

with n € N. Quite a common nickname for this ishe power sum”. To author’s
knowledge, studying this was the original motivation why Bernoulli discovered his
polynomials. We are interested in the formula that Kalman proved in [4]. We state it
here in our notation (Kalman also uses the transpose of this):

Proposition 5.2. Suppose is a polynomial witldeq p) = r + 1. Then

p(x) = p0) = (4p(0) Ap@Q) ... Ap())

()

M@O:rO0: r)’1 : . (37)

(-3)

Now the power sum is a special cages Kalman noted takep(n):= > j_; k.
Thenp(0) =0, (4p)(n) = (n +1)" and dedp) = r + 1, and the identity above
(take a transpose of)ibecomes

1r
n 2}‘
r n n . L oN—
P(n)=];k =|:(1>...<r+1>:|M(0.r,0.r)T :
B r+1)

Proof. Let N =r + 1. Evaluatingp atx:

; 9

X
p(x) = bin(p)T (1> = p(0) + bin(p)Ly
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Now, by Propositions 4.3 and 4.2, b 1.y = S bin(p) = bin(4p) = M~Tval(4p)

o 8

p(x) = pO) =binAp)T| : |=valap M| : |. (38)

(%) %)

We remind the reader of otR*°-convention: sincé/ 1 is of size(N + 1) x (N +

1), the multiplication
1 X X T
(6 ()
1 X X T
(G5 () o)
Now the last element of
is zero sinceM ~1 is upper triangular. Therefore the last element ofAp) as well
as the last row and last column #f~1 do not affect the value op(x) — p(0) in

is by definition equal to
1 X X T
(G) - () o)
(38) and can be replaced by zero, hence we get (37).
5.5. Verde-Star’s generalized Stirlings

In [6] Verde-Star defines generalized binomial coefficients (denote g.b.c): they
are combinatorial objects associated to some given sequence. For example, the usu-
al binomial coefficients are g.b.c’s associated to the sequentell .. and the
Stirling numbers of 2nd kind are g.b.c’s associated,tb, @, . . . Further he defines
“generalized Stirling numbers of the second kind” as the g.b.c’s associated to the
sequencea + bk}2 ; and shows [6, (6.21)] that they are equivalently defined as:

m

Sapn,m) =" (’Z) bk ak P (n, k) (39)

k=0
and he proves [6, (6.26)] a generalization of this:

m
Lacadip(m) =Y (’Z) "R TS g, k). (40)
k=0
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We shall give a proof of this by writing them in our formalism: first, by Lemma 4.1,

(’,f) b = (M)

anda* "% (n, k) = (a=" Sta™),x hence (39) says,

m
Lap,m) =Y (M)m(a™"Sta" )k = (a~"Sta” MP)m (41)
k=0
hence
Sa.p:= the matrix of %, ,(n, m)'s = a~"Sa' M". (42)

From this it is immediate to conclude (40), sink&4+t = prad prb:

Sac,ad+b = (ac)_AStz(aC)AMad+b
= (@ "¢ St(c"a™) (@ "d~ " Md"a")M"
= a_ASC,daAMh, (43)

which is exactly (40), by the same reasoning as above: now
(@ "Se.qa™ne = a* " S ca(n, k).

Further,S1 5, is called “shifted Stirling numbers of the second kind” which is a
convenient name, sincg , = StM® and M? indeed is a shift, in the sense that
MPkep(x) = kep(x + b), i.e. it translates the graph of a polynomiasteps to the
left (even wherb ¢ 7).

We emphasize that these results are by no means any ‘main theorem’ of [6], but
we have included here a new proof of them as an example of using our formalism.
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