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Abstract

We continue our study of the structure initiated in [Arp03]. Our main emphasis
is exploring further structure into the formalism introduced in [Arp03]. This formal-
ism reveals beautiful interplay between certain elementary operators, and provides
tools for example for checking, handling and generalizing combinatorial identities,
as we show in examples. In addition to that we discover a group structure among
Vandermonde matrices, a fascinating diophantine equation and new proofs and gen-
eralizations of recently found related results.
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1 Introduction

We continue the study of our matrix approach to polynomials, initiated in [Arp03]. Our
main emphasis is that we have found this matrix formalism very convenient and useful
for handling polynomials and combinatorial identities: to check the validity of a claimed
(or guessed) identity, or to get new insight, or to generalize them.

We will study further the fascinating interplay between Pascal, Stirling, and Van-
dermonde matrices, yet we will focus particularly on Vandermondes. We give certain
decompositions for them and reveal a group structure among Vandermondes with linearly
spaced nodes. A bit surprisingly, though maybe not unexpectedly, these can be derived
with the help of two associated operations: translation (C) and scaling (D) who themselves
have interesting properties.

Recently we have learnt that the same subject, namely matrix formalism in this con-
text, has been treated also in many recent publications we were unaware of during writing
[Arp03]. In particular our matrix M , or its transpose, is apparently widely known as the
Pascal matrix. See [BP92, CV93, BT00, AT01, CK01] and references therein. Here we
must note that these seem to be unaware of the work of D. Kalman et al. from 1980s, see
[Kal83, KU87] and references therein.

∗moved to Helsinki University of Technology, Finland. teijo.arponen@hut.fi
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In most of the references Pascal matrix is defined in a lower triangular form, while we
defined it in [Arp03] as an upper triangular. The reason for the latter is that we want to
consider matrices as operating on vectors, and it is quite customary that matrices operate
from the left on column vectors. Hence M turned out to be upper triangular.

Our main result in this paper is the formalism itself as a useful tool, and to support
this, we give several applications: first, we discover a fascinating group structure among
Vandermonde matrices. Second, we give explicit LDU decompositions of those. Third,
new proofs and generalizations of some known results. And last but not least, properties
of C and D can be visualized as a Diophantine problem.

2 Preliminaries

2.1 Notation

We recall the notation and conventions from [Arp03]. Denote by R
∞ the direct sum

of numerably many R’s, that is, the collection of R−sequences with only finitely many
nonzero elements. Clearly a polynomial p ∈ R[x] can be interpreted as an element in R

∞

by its coefficients, i.e. define mapping ke : R[x] → R
∞ by

ke : p0 + p1x + p2x
2 + · · · + pNxN 7→ (p0, p1, p2, . . . , pN , 0, 0, . . . ).

If p ∈ R[x], we denote by pj the coefficient of xj of p.
Some conventions: 00 := 1. We will use the same notation, p, whether p ∈ R[x] or

p = ke(p(x)) ∈ R
∞. It will be clear from context which one is meant. Binomial coefficient

is considered as a polynomial in the upper argument (the lower argument will always be
a nonnegative integer):

(

x
0

)

= 1,
(

x
k

)

=
1

k!
x(x − 1)(x − 2) . . . (x − k + 1) for k ∈ N.

The Stirling numbers of the first kind, denoted here by s(n, k), are defined by

x(x − 1) · · · (x − k + 1) =:
k

∑

n=0

s(n, k)xn.

Note that some authors, for example [CK01, EFP98], define the Stirling number of first
kind to be the absolute value of our s(n, k); in our case sgn(s(n, k)) = (−1)n−k.

The Stirling numbers of the second kind, denoted here by S(n, k), are defined by

xk =:
k

∑

n=0

S(n, k) x(x − 1) · · · (x − n + 1).

A matrix or a vector ’is integers’ means that its elements are integers. Notation A(:, j)
is the jth column of A and A(j, :) is the jth row of A. We will numerate the rows and
columns of a matrix beginning from 0, to make the formulas simpler. That is, the top row
of an (N + 1)× (N + 1)−matrix A is A00, A01, A02, . . . , A0N . Vectors are considered as
elements of R

∞. That is, when two vectors of different length are added or dot-producted,
the shorter one is filled with zeros at the end. Denote by en := (0, . . . , 0, 1, 0, . . . ) ∈ R

∞

the nth column of unit matrix, where n = 0, 1, . . . . In other words, en = ke(xn). For
a matrix A, diag(A) means the vector of diagonal elements of A. And, diag(a1, . . . , an)
means a diagonal matrix with elements (a1, . . . , an).
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2.2 Definitions

Fix a positive integer N . Suppose p ∈ R[x] with deg(p) ≤ N . The polynomials
(

x
0

)

, . . . ,
(

x
N

)

in x are linearly independent over R, because deg
(

x
k

)

= k. Hence we can write p(x) =:
∑N

u=0 bu

(

x
u

)

.

Definition 2.1. Mappings bin, val : R[x] → R
∞ by

bin(p) :=
(

b0 b1 b2 · · · bN 0 0 . . .
)

∈ R
∞

val(p) :=
(

p(0) p(1) p(2) · · · p(N) 0 0 . . .
)

∈ R
∞.

Mappings ke and bin are bijective and linear. So is val when we keep N fixed and
restrict val to polynomials of degree ≤ N . Since we have fixed N , we can present ke(p),
bin(p), val(p) as N + 1−vectors for any deg(p) ≤ N .

In [Arp03] we introduced the matrix M which shifts the graph of a polynomial one
step to the left, in the sense that ke(p(x + 1)) = M ke(p(x)). It turns out that this is the
upper triangular form of a Pascal matrix:

M =















(

0
0

) (

1
0

) (

2
0

)

· · ·
(

N
0

)

(

1
1

) (

2
1

)

· · ·
(

N
1

)

(

2
2

)

· · ·
(

N
2

)

. . .
...

(

N
N

)















.

Recall that

Vandermonde(x0, x1, x2, x3, . . . , xN) :=















1 1 1 1 . . . 1
x0 x1 x2 x3 . . . xN

x2
0 x2

1 x2
2 x2

3 . . . x2
N

...
. . .

...
xN

0 xN
1 xN

2 xN
3 . . . xN

N















.

Definition 2.2. We shall make use of the following Vandermonde matrix:

V := Vandermonde(0, 1, . . . , N)

and the upper triangular Stirling matrices:

St1 := (s(i, j))i, j=0...N

St2 := (S(i, j))i, j=0...N .

Further we define, with a a scalar,

Λ := diag(0, 1, . . . , N)

aΛ := diag(1, a, a2, . . . , aN)

Λ! := diag(0!, 1!, 2!, . . . , N !).

Now St−1
1 = St2 and of course we could use St−1

2 in place of St1 (as is quite customary
in literature), but in our opinion there are two reasons not to: first, the formulas are
simpler when we use both of these, and, the simpler formulas, the clearer result. Second,
and more importantly, using notation St1 instead of St−1

2 reminds us that we know the
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inverse of St2 explicitly and even recursive rules for its elements, facts worth remembering
if we are to develop algorithms from our theory. However, in this paper we are not
emphasizing development of practical algorithms.

The shift and derivation matrices, again upper triangular, are denoted by S and D,
respectively:

S :=















0 1
0 1

0
. . .
. . . 1

0















, D :=















0 1
0 2

0
. . .
. . . N

0















.

That D is the derivation matrix means here ke(Dp) = ke(p ′) for all polynomials p with
deg(p) ≤ N where prime indicates the usual derivative.

3 Structure

In this section we first revise our previous relevant results and after that state and prove
the new results.

3.1 Revision

In this section we state the results from [Arp03] which are needed in this paper. For proofs
as well as further results we refer to [Arp03].

Proposition 3.1.

ke(p(x + a)) = M ake(p), where Ma := exp(aD), (1)

Ma = a−ΛMaΛ ∀a ∈ R \ {0} (2)

especially, when s ∈ Z, M s coincides with the sth power of M .

Remark 3.1. An immediate consequence is commutativity: M sM t = M s+t as well as
M sT M tT = M (s+t)T . This property was apparently first proven in [Kal83] and, independ-
ently, in [BP92, CV93].

Proposition 3.2. V T ke(p) = val(p) = MT bin(p).

Proposition 3.3. Let ∆ be the difference operator: ∆p(x) := p(x + 1) − p(x). Then

• ke(∆p) = (M − I) ke(p)

• bin(∆p) = S bin(p).

Proposition 3.4. Decompositions:

• the LDU decomposition of V = StT
2 Λ! M

• the Jordan decomposition of M = (St1 Λ!−1 )(I + S)(Λ! St2).

The LDU decomposition of V has been proven, independently, by several other authors
as well, for example in [MS58, CK01, EFP98, AT01]. The Jordan decomposition of M
has been proven also in [AT01]. In section 4.3 we give the LDU decomposition of a
Vandermonde matrix with linearly spaced nodes, which seems to be a new result.

Proposition 3.5. Intertwining property: St2∆ = DSt2 and ∆St1 = St1D, where ∆ =
M − I i.e. the matrix for the difference operator in ke − ke bases.
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3.2 Further structure

Proposition 3.6. The Pascal matrix M acts as a shifting (or translation) operator in
two ways; for any a ∈ R:

• Make(p(x)) = ke(p(x + a)) for all polynomials p

• MaT













1
x
x2

. . .
xN













=













1
x + a

(x + a)2

. . .
(x + a)N













.

Proof. The first claim is already stated in proposition 3.1. The second claim comes from
binomial theorem: the ith component of the left hand side is

N
∑

ν=0

(Ma)νix
ν =

i
∑

ν=0

(

i
ν

)

ai−νxν = (a + x)i

which is the ith component of the right hand side.

Remark 3.2. The latter property appears, in case x = 0, in [AT01] (in their notation,
W (a) = P (a)W (0)). Also, for a ∈ Z this is the same as the “swapping lemma” in [BP92].

Lemma 3.1. Some properties of the mapping bin:

1. bin(p) =
(

p(0) ∆p(0) . . . ∆Np(0)
)T

2. bin(p) = Λ! St2 ke(p)

3. ke(p) = St1Λ!−1 bin(p).

We note that the base changing (ke 7→ bin) matrix is the same as the Jordan trans-
formation matrix of M .

Proof. The first result uses proposition 3.3 and is in the proof of Newton’s theorem in
[Arp03]: ∆kp(0) = eT

0 bin(∆kp) = eT
0 Skbin(p) = (Skbin p)0 = (bin p)k. The second and

third claim are clearly equivalent and come from applying the LDU decomposition of V
(proposition 3.4) to proposition 3.2.

Next we look at some implications of the Jordan decomposition of M : denote first
J := I + S so the latter part of proposition 3.4 is

M = St1 Λ!−1 J Λ! St2

which we can use to define Ja for all a ∈ R:

Ja := Λ! St2 Ma St1Λ!−1 = exp(Λ! St2 aD St1 Λ!−1). (3)

Especially, when a ∈ Z, Ja coincides with the ath power of J (this is immediate from the
properties of exp, proof is as in proposition 3.1). See also proposition 3.7.
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Lemma 3.2.

Jabin(p) =











p(a)
∆p(a)

...
∆Np(a)











∀a ∈ R. (4)

Proof. Applying lemma 3.1 and proposition 3.1:

Jabin(p) = Λ! St2 Ma St1Λ!−1 bin(p) = Λ! St2 Ma ke(p)

= Λ! St2 ke(p(· + a)) = bin(p(· + a)) =











p(a)
∆p(a)

...
∆Np(a)











.
(5)

As a corollary we get an equivalent definition for J a:

Proposition 3.7. For all a ∈ R,

(Λ! St2 Ma St1Λ!−1)jk =

{

(

a
k−j

)

, k ≥ j

0, k < j.

Proof. Let p be an arbitrary polynomial (of degree ≤ N , as before). From lemma 3.2 and
the proof of lemma 3.1:

∆jp(a) =
N
∑

k=j

(Ja)jk(bin p)k =
N
∑

k=j

(Ja)jk(S
jbin p)k−j =

N−j
∑

ν=0

(Ja)j,ν+j(bin ∆jp)ν .

Since this is true for any p, by definition of bin coefficients (see also proposition 4.2) we
get (Ja)j,ν+j =

(

a
ν

)

for all ν = 0 . . . N − j. Hence the claim follows.

Proposition 3.8. Let us define log(J) := Λ! St2 D St1 Λ!−1 compatibly with (3). Then

1. V −1DjT V = M−1(log(J))jT M, j ∈ N

2. Λ!−1SΛ! = D

3. Ma = Λ!−1 exp(aS)Λ! s ∈ R.

Proof. The first claim:

V −1DjT V = (V −1DT V )j = (M−1 Λ!−1 StT1 DT StT2 Λ! M)j = M−1 (Λ! St2 D St1 Λ!−1)jT M

where the expression inside the parenthesis is by definition log(J).
The second claim is straightforward: only Si,i+1 is different from zero, and ith row of

S is multiplied by 1/i! and (i + 1)st column of S is multiplied by (i + 1)!, hence we get
Di,i+1.

The last claim comes from M a = exp(aD) by using the second claim.

For the following proposition we do not have any particular application, but included
it for the sake of peculiarity: the exponentials of M (and hence of D) can essentially be
achieved by transforming M itself by Stirling matrices. Denote e := exp(1).
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Proposition 3.9.

M = exp(D) = I + St1 D St2 (6)

exp(M) = e St1 M St2 = eI + (St1)
2 (eD) (St2)

2 (7)

exp(exp(M)) = (St1)
2 (eM)e (St2)

2. (8)

Proof. For (6): the first equality is just a restatement of proposition 3.1, and the second
equality is immediate from proposition 3.5. To get (7) we evaluate, by using (6),

exp(M) = St1 exp(I + D) St2 = St1 exp(I) exp(D) St2 = e St1 M St2

where the middle equality is due to I and D commute. For (8): we need to evaluate

exp(eM) = St1 exp(eI + eD) St2 = St1 exp(eI) exp(eD) St2 = St1 eeM e St2

hence
exp(exp(M)) = St1 exp(eM) St2 = (St1)

2 (eM)e (St2)
2.

Remark 3.3. The first equality in (6) has been rediscovered in literature several times but
we believe [Kal83] to be the first one.

4 Applications

4.1 Group structures associated with Vandermonde matrices

First we define the basic building block for handling Vandermondes:

Definition 4.1. Let z ∈ R. Since V is invertible, the following defines the vector cN(z)
uniquely:

V cN(z) :=















1
z
z2

...
zN















. (9)

As before we assume N an arbitrary, fixed, positive integer. Previously we have
supressed it from notations as unnecessary but here, in context with cN(z), we have
found it convenient to include N into the notation. These have a number of interesting
properties as shown in the following.

Theorem 1. Properties of cN(z). We remind the reader of our R
∞ convention, which is

needed in the second statement.

1. cN(z) is integers if and only if z is an integer

2. cN(z) = cN−1(z) + M−1(:, N)
(

z
N

)

3. cN(z) = M−1







(

z
0

)

...
(

z
N

)






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4. if z ∈ {0, . . . , N}, then cN(z) = ez

5. cN(z0), . . . , cN(zN) are linearly independent if and only if z0, . . . , zN ∈ R are mutu-
ally distinct.

Proof. We prove first property 3: denote 1 := (1, 1, . . . , 1) ∈ R
N+1. Using LDU decom-

position of V and definition of cN(z):

V cN(z) = StT2 Λ! M cN(z) = zΛ 1 (10)

hence
M cN(z) = Λ!−1 StT1 zΛ 1. (11)

Now

(Λ!−1 StT1 zΛ 1)j =
1

j!

N
∑

n=0

s(n, j) zn =
1

j!

j
∑

n=0

s(n, j) zn =
(

z
j

)

(12)

where the last equality follows from definition of s(n, j). Hence (M cN(z))j =
(

z
j

)

and
property 3 is proven.

Property 2: write open property 3:

cN(z) = M−1









(

z
0

)

. . .
(

z
N−1

)

0









+ M−1









0
. . .
0

(

z
N

)









= M−1





(

z
0

)

. . .
(

z
N−1

)



 + M−1(:, N)
(

z
N

)

= cN−1(z) + M−1(:, N)
(

z
N

)

(13)

where the second equality follows from our R
∞ convention and the last from property 3.

Property 1: note first that M−1 = (−1)Λ M (−1)Λ is integers since M and Λ are. If
z ∈ Z then

(

z
j

)

∈ Z for all j. By property 3, cN(z) is then integers. On the other way,
suppose cN(z) is integers. Now (cN(z))N =

(

z
N

)

(since M−1 has unit diagonal) hence
(

z
N

)

∈ Z. By property 2,

cN−1(z) = cN(z) − M−1(:, N)
(

z
N

)

hence cN−1(z) is integers. Arguing as before, (cN−1(z))N−1 =
(

z
N−1

)

∈ Z. By induction,
(c1(z))1 =

(

z
1

)

∈ Z hence z ∈ Z.

Property 4 is trivial since
(

1 j j2 . . . jN
)T

= V (:, j) for j ∈ {0, . . . , N}.
Property 5: since V is invertible the claim is equivalent with

(

V cN(z0) | . . . | V cN(zN)
)

being an invertible matrix. But this is, by definition of cN , the Vandermonde(z0, . . . , zN )
which is well known to be invertible if and only if the nodes z0, . . . , zN are distinct.

Definition 4.2. Let N ∈ N and z ∈ R be given.

Cz :=





| | |
cN(z) | cN(z + 1) | . . . | cN(z + N)

| | |





Dz :=





| | |
cN(0) | cN(z) | . . . | cN(Nz)

| | |



 .
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Most fascinating for us is that these act on cN(z) as shifting and scaling operators,
respectively.

Proposition 4.1. Let a ∈ R and N, z as before. Then

1. Dac
N(z) = cN(a z) (scaling),

2. Cac
N(z) = cN(a + z) (shifting),

3. V Ca = MaT V ,

4. V Da = aΛV ,

5. Vandermonde(a, a + b, a + 2b, . . . , a + Nb) = V CaDb.

Proof. First,
V cN(az) = (az)Λ 1 = aΛ zΛ 1 = aΛ V cN(z). (14)

Especially,
V cN(aj) = aΛ V (:, j) ∀j ∈ {0, . . . , N} (15)

hence
V Da =

(

aΛ V (:, 0) | . . . | aΛ V (:, N)
)

= aΛV (16)

which proves the property 4.
From (14) we get cN(az) = V −1aΛ V cN(z). By property 4, Da = V −1aΛV hence

property 1 is proven.
From proposition 3.6 we get (M aT V )ij = (a + j)i ∀a ∈ R. Now, (V Ca)ij = (a + j)i =

(MaT V )ij which proves property 3.
The latter part of proposition 3.6 can be written as

MaT zΛ 1 = (z + a)Λ 1

which is equivalent with

MaT V cN(z) = V cN(a + z) = V Cac
N(z)

where the last equality comes from property 3. Multiplying by V −1 gives property 2.
Property 5:

Vandermonde(a, a + b, a + 2b, . . . , a + Nb)

= V





| | |
cN(a) | cN(a + b) | . . . | cN(a + Nb)

| | |





= V Ca





| | |
cN(0) | cN(b) | . . . | cN(Nb)

| | |



 = V CaDb.

(17)

Theorem 2. Both Cz and Dz have a group structure:

• {Cz}z∈R is a (commutative) group: CxCy = Cx+y. In particular, C0 = I and C−1
x =

C−x. Moreover, it has {Cm}m∈Z as a subgroup.
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• {Dz}z∈R, z 6=0 is a (commutative) group: DxDy = Dxy. In particular, D1 = I and
D−1

x = D1/x.

Proof. That {Cz}z∈R is a group stems from the similarity of Cz to M zT , shown in propos-
ition 4.1. The commutativity is due to remark 3.1. In a similar fashion, Dz gets its group
properties from similarity with zΛ. Details:

CxCy = (V −1MxT V )(V −1MyT V ) = V −1M (x+y)T V = Cx+y

DxDy = (V −1xΛV )(V −1yΛV ) = V −1(xy)ΛV = Dxy.

If z = m ∈ Z, then C−1
m = C−m and the subgroup property is clear.

Let N ∈ N be fixed, as before. Denote by V the set of (N +1)× (N +1) Vandermonde
matrices with linearly spaced nodes. That is, if V1, V2 ∈ V they are of the form

V1 = Vandermonde(a, a + b, a + 2b, . . . , a + Nb) (18)

V2 = Vandermonde(c, c + d, c + 2d, . . . , c + Nd).

Theorem 3. There is a group structure in V with respect to the operation:

µ : (V1, V2) 7→ V1V
−1V2.

The unit of this group is V and the inverse elements are given by

inv(V1) = V V −1
1 V ∈ V ∀V1 ∈ V

where V −1
1 is the usual matrix inverse. Furthermore, if V1 and V2 are as in (18), their

product in this group is equal to

µ(V1, V2) = Vandermonde(a + bc, a + bc + bd, a + bc + 2bd, . . . , a + bc + Nbd).

Proof. By property 5 of proposition 4.1

V1 = V CaDb

V2 = V CcDd

and the claim is
V1V

−1V2 = V Ca+bcDbd ∈ V .

Expanding the product, this is equivalent with

V CaDbCcDd = V Ca+bcDbd.

By proposition 4.1 and theorem 2:

⇔ V CaDbCcDd = V CaCbcDbDd

⇔ DbCc = CbcDb

⇔ (V −1bΛV )(V −1M cT V ) = (V −1M bcT V )(V −1bΛV )

⇔ bΛM cT = M bcT bΛ

(19)

and the last claim is true by proposition 3.1. Hence µ(V1, V2) ∈ V . Next, V V −1
1 V ∈ V

follows again from proposition 4.1 and theorem 2:

V V −1
1 V = V (D1/bC−aV

−1)V = V D−1
b C−1

a ∈ V .

Other group properties are easily checked:
10



• µ(V1, V ) = V1 = µ(V, V1) (V is the unit)

• µ(V1, µ(V2, V3)) = µ(µ(V1, V2), V3) (associativity)

• µ(V1, V V −1
1 V ) = V , hence inv(V1) = V V −1

1 V ∈ V .

Remark 4.1. From theorem 2 follows immediately that V has (at least) two commutative
subgroups, namely {V Cz}z∈R and {V Dz}z∈R, z 6=0. For example inv(V Cz) = V C−z and
inv(V Dz) = V D1/z.

Remark 4.2. From (19) we get as a corollary, by setting c = 1,

Cb = DbC1Db−1

which has a nice geometrical interpretation, operating on an arbitrary cN(z): “shift b
units” is equal to “scale by b−1, shift one unit, rescale by b”.

This should be compared to a similar property of the translation M s = s−ΛMsΛ,
operating on an arbitrary ke(p): “shift s units = scale by s, shift one unit, rescale by s−1”.

4.2 Further structure with Ca,Db

Proposition 4.2. Denote 1 := (1, 1, . . . , 1) ∈ R
N+1. Polynomial evaluation can be ex-

pressed by ke, bin, and val coefficients: Here we remind the reader about our R
∞ conven-

tion.

p(z) = ke(p)T zΛ1

= val(p)T cn(z)

= bin(p)T







(

z
0

)

...
(

z
n

)






.

(20)

Proof. The first and last equalities follow trivially from definitions, but the second one
needs proposition 3.2 to see that

val(p)T cn(z) = (V T ke(p))T cn(z) = ke(p)T V cn(z) = ke(p)T zΛ1.

Proposition 4.3.

(

p(a) p(a + b) . . . p(a + Nb)
)T

= DT
b CT

a val(p). (21)

Proof. From propositions 4.2 and 4.1:











p(a)
p(a + b)

...
p(a + Nb)











=











cN(a)T val(p)
cN(a + b)T val(p)

...
cN(a + Nb)T val(p)











=











cN(0)T

cN(b)T

...
cN(Nb)T











CT
a val(p) = DT

b CT
a val(p).

11



4.3 Decompositions

Proposition 4.4. We have the explicit LDU decompositions:

1. Vandermonde(a, a + b, a + 2b, . . . , a + Nb) = (M aT bΛ StT2 b−Λ) (bΛ Λ!) M

2. Vandermonde(a, a + 1, a + 2, . . . , a + N) = (M aT StT2 ) Λ! M

3. Vandermonde(0, b, 2b, . . . , Nb) = (bΛ StT2 b−Λ) (bΛ Λ!) M .

Proof. The first one becomes, using propositions 4.1 and 3.4:

V CaDb = MaT V Db = MaT bΛ V = MaT bΛ StT2 Λ! M

which is almost the LDU decomposition, except for the lower triangular part: since both
MaT and StT2 have unit diagonal, we have diag(M aT bΛ StT2 ) = diag(bΛ). Hence we need
to multiply it by b−Λ and we get the first claim.

The second and third claims are clearly special cases of the first one with b = 1, a = 0,
respectively.

The second claim has been proven, in a different way, also in [CK01, thm 2.4].
Let us define the general binomial matrix as:

M(x0, x1, . . . , xN) :=











(

x0

0

) (

x1

0

)

. . .
(

xN

0

)

(

x0

1

) (

x1

1

)

. . .
(

xN

N

)

... . . .
...

(

x0

N

) (

x1

N

)

. . .
(

xN

N

)











.

Especially, M(0, 1, . . . , N) = M . It is related to the general Vandermonde matrix by

Proposition 4.5.

Vandermonde(x0, x1, x2, . . . , xN) = StT2 Λ! M(x0, x1, x2, . . . , xN). (22)

Proof. In the following, the first, third, and fourth equalities are due to definition 4.1,
theorem 1 and proposition 3.4, respectively.

Vandermonde(x0, x1, x2, . . . , xN)

=





| | |
V cN(x0) | V cN(x1) | . . . | V cN(xN)

| | |





= V





| | |
cN(x0) | cN(x1) | . . . | cN(xN)

| | |





= V M−1







(

x0

0

) (

x1

0

)

. . .
(

xN

0

)

... . . .
...

(

x0

N

) (

x1

N

)

. . .
(

xN

N

)







= StT2 Λ! M(x0, x1, x2, . . . , xN).

(23)

Note that if xj = j, this reduces to the LDU decomposition of V . A similar result is
proven in [EFP98].

12



4.4 A generalization of Tepper’s identity

Tepper conjectured in 1965 the following combinatorial identity

p
∑

l=0

(−1)p−l
(

p
l

)

(x + l)n = n!. (24)

This is proved and generalized in [BT00, rem.1] as in the following proposition. We will
give a new proof and a generalization.

Proposition 4.6. For any polynomial f with deg(f) =: n, for all x,

p
∑

l=0

(−1)p−l
(

p
l

)

f(x + l) = 0 (n < p) (25)

p
∑

l=0

(−1)p−l
(

p
l

)

f(x + l) = fnn! (n = p). (26)

Proof. Take our N > n. The result (25) is due to the following property of any upper
triangular matrix: if U is an upper triangular matrix and v a vector with vp = 0 for all
p > n, then (Uv)p = 0 for all p > n as well.

Here, we claim, we have U = Λ! St2 Mx which indeed is upper triangular and v =
ke(f). That is, we claim the left hand sides of (25), (26) to be

(Λ! St2 Mx ke(f))p . (27)

To show this, let us put the left hand side into our formalism: first, (−1)p−l
(

p
l

)

= (M−T )pl

by proposition 3.1. The translational property of M x (see proposition 3.1) gives f(x+l) =
(val(Mxf))l which by proposition 3.2 expands to

(

V T Mx ke(f)
)

l
. Hence the left hand

side of (25) is equal to
(

M−T V T Mx ke(f)
)

p
.

Now, the LDU decomposition of V (proposition 3.4) gives

M−T V T Mx = Λ! St2 Mx (28)

which gives (27) and proves (25) since (ke(f))p = 0 for all p > n = deg(f). For (26), note
that in (28), both St2 and Mx have unit diagonal hence do not effect (ke(f))n. But Λ!
multiplies (ke(f))n with n! hence (26) is proven.

We can immediately generalize this to:

Theorem 4. Assume f a given polynomial and n := deg(f). Denote

Ap :=

p
∑

l=0

(−1)p−l
(

p
l

)

f(x + l).

Then Ap = 0 for p > n, and is a polynomial in x of degree n − p for p ≤ n. In the latter
case the coefficients of Ap depend only on coefficients fn, fn−1, . . . , fp (and n).

Proof. The cases p ≥ n are proposition 4.6. Assume p ≤ n. Now Ap is still, as in the proof
of proposition 4.6, given by (27). Let v := M x ke(f). Since Λ! St2 is upper triangular, the
value of Ap depends only on vp, vp+1, . . . , vn. But vp+j is a linear combination of xj and
fp+j with j = 0, . . . , n − p. Multiplying by Λ! St2 brings in only constants.

13



For example,





An−2

An−1

An



 =





(n − 2)!
(n − 1)!

n!









1 S(n − 2, n − 1) S(n − 2, n)
1 S(n − 1, n)

1









1
(

n−1
n−2

)

x
(

n
n−2

)

x2

1
(

n
n−1

)

x
1









fn−2

fn−1

fn



 .

(29)

As corollaries we can get new combinatorial identities by multiplying (27) from left by
another upper triangular matrix. For example, multiplying (27) by M−1 gives:

N
∑

p=0

p
∑

l=0

(−1)i−l
(

p
i

)(

p
l

)

f(x + l) = 0 (n < i) ∀N ≥ n

N
∑

p=0

p
∑

l=0

(−1)i−l
(

p
i

)(

p
l

)

f(x + l) = fnn! (n = i) ∀N ≥ n.

The conclusions of theorem 4 hold for these as well.

4.5 Relations to results by Aceto and Trigiante

In a recent paper [AT01] Aceto and Trigiante deduce, using differential equation approach,
several interesting results related to our approach. Though, we must mention that they
were not the first ones to use this kind of approach, see also [KU87] and references therein.

We give new proofs of, using our point of view, and generalize, some of their results.
Let Bk denote the kth Bernoulli polynomial and define

B(t) :=











B0(t) B0(t + 1) · · · B0(t + N)
B1(t) B1(t + 1) · · · B1(t + N)

...
BN(t) BN(t + 1) · · · BN(t + N)











∀t ∈ R. (30)

We recall from [Arp03] the definition of Bernoulli matrix

B :=





| | |
ke B0 | ke B1 | . . . | ke BN

| | |



 .

Remark 4.3. B is constant and defined through the coefficients of Bk’s, while B is defined
through the values of Bk’s.

Proposition 4.7. Denote W (t) := V Ct. Then

W (t)−1MaT W (t) = Ca ∀a ∈ R, (31)

W (t)−1DjT W (t) = M−1(log(J))jT M ∀j ∈ N, (32)

W (t)B(t)−1 = B−T , (33)

in particular, the right hand sides are independent of t.

14



Proof. The left hand side of (31) becomes, by using proposition 4.1 and theorem 2 in
second, third and last equalities:

(V Ct)
−1M jT V Ct = (V Ct)

−1(V Cj)Ct = (C−tV
−1)V Ct+j = C−tCt+j = Cj

which proves (31) for all real numbers j.
The left hand side of (32) is, by proposition 4.1,

(V Ct)
−1DjT V Ct = (M tT V )−1DjT M tT V = V −1M−tT DjT M tT V.

Now DjT and M tT commute due to proposition 3.1 hence this becomes

W (t)−1DjT W (t) = V −1DjT V

and by the first item of proposition 3.8 the claim (32) follows.
To prove (33), using proposition 4.3 and val = V T ke (proposition 3.2) we evaluate a

row of B(t):

B(t)(j, :) =
(

DT
1 CT

t val(Bj)
)T

=
(

CT
t V T ke(Bj)

)T
= B(:, j)T V Ct = (BT W (t))(j, :),

hence B and B are related by
B(t) = BT W (t)

and W (t)B(t)−1 = B−T as claimed.

4.6 A Diophantine equation of Vandermonde type

We are interested in the following Diophantine problem: given n ∈ N and a, b, z ∈ R, do
there exist integers ξj, j = 0, . . . , n such that

n
∑

j=0

(a + jb)kξj = zk ∀k = 0, . . . , n ? (34)

which we call Vandermonde type due to its representability with a Vandermonde matrix.
Namely, (34) is equivalent with the matrix equation















1 1 1 . . . 1
a a + b a + 2b . . . a + nb
a2 (a + b)2 (a + 2b)2 . . . (a + nb)2

...
...

...
an (a + b)n (a + 2b)n . . . (a + nb)n





















ξ0
...
ξn






=















1
z
z2

...
zn















. (35)

We will solve this equation by applying results of the previous sections.

Theorem 5. Let n ∈ N and a, b, z ∈ R. The equation (34) is solvable over integers if and
only if z−a

b
∈ Z. When such a solution exists, it is unique.

Proof. Denote ξ :=
(

ξ0, . . . , ξn)T . The matrix of (35) is Vandermonde(a, a + b, a +
2b, . . . , a + nb) which is equal to V CaDb. Hence the claim is equivalent with the matrix
equation

V CaDbξ = V cn(z) (36)

which, by proposition 4.1, and theorems 1 and 2 above, simplifies to

ξ = D1/bC−ac
n(z) = cn(

z − a

b
). (37)

which is, again by theorem 1, integers if and only if z−a
b

∈ Z.
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5 Conclusions

We have continued the work initiated in [Arp03]. Main result is the structure of the form-
alism itself, this paper further expands its applicability. We have given several applications
to show the usefulness of this formalism: reproving and generalizing combinatorial iden-
tities from [AT01, BT00, EFP98], decompositions from [CK01, EFP98], a group structure
in the set of Vandermonde matrices, and a surprising Diophantine equation arising from
our tools.

We believe that the tool cN introduced in definition 4.1 will reveal interesting (number
theoretical) structure and is therefore a promising subject of research in itself, but that is
beyond the scope of the present paper and will be considered in future research.
Acknowledgement. This research was supported by the Academy of Finland.
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