
IMA Journal of Numerical Analysis (2005) Page 1 of 36
doi: 10.1093/imanum/dri017

On the numerical solution of involutive ordinary differential systems:
enhanced linear algebra

JUKKA TUOMELA, Department of Mathematics, University of Joensuu, PL 111, 80101
Joensuu, Finland. email: jukka.tuomela@joensuu.fi.

TEIJO ARPONEN, Mathematics Institute, University of Warwick, Coventry CV4 7AL, U.K.
email: arponen@maths.warwick.ac.uk.

VILLESAMULI NORMI, Department of Mathematics, University of Joensuu, PL 111, 80101
Joensuu, Finland. email: villesamuli.normi@joensuu.fi

We analyse some Runge-Kutta type methods for computing one-dimensional integral manifolds, i.e.
solutions to ODEs and DAEs. We show that we can reliably and reasonably fast compute the solutions
which respect all the constraints of the problem. Moreover, we show that so called impasse points are
regular points in our approach and hence require no special attention.

Keywords: differential algebraic equations, integral manifolds, Runge-Kutta methods, Symmetric LQ.
AMS subject classification: primary 34A26, 65L05, secondary 35N10, 58F40

1. Introduction

We continue the work started in Tuomela & Arponen (2000) and Tuomela & Arponen (2001) where we
showed that using jet spaces to analyse ordinary differential equations (ODEs) is useful and interesting
also from the numerical point of view. We recall that in this approach the term ODE covers also over-
determined systems, differential-algebraic equations (DAEs) and implicit differential equations (IDEs).
So the advantage of our point of view is that we are able to treat a very large class of systems in a
unified way. For example in a well-known collection of initial value problems “IVP test set” (2003)
the problems are classified as ODEs, DAEs or IDEs. However, in our framework this distinction is not
needed, and indeed one may argue that it is misleading conceptually.

In Tuomela & Arponen (2000) we discussed the theoretical background of our approach. Intuitively
we may say that our method uses explicitly all the constraints of the problem, and in this way we
avoid completely the drift off phenomenon which is usually a problem in DAE computations. We also
compared our approach to other possible ways to treat these types of problems, and extensive references
to relevant literature were given. So we do not repeat this discussion here, but simply recall that the
standard way to view DAEs can be found in well-known books Hairer & Wanner (1991), Brenan et al.
(1989).

In Tuomela & Arponen (2001) we analysed and implemented higher order methods and showed that
explicit Runge-Kutta methods can be adapted to our context. Sometimes DAE systems are character-
ized as “infinitely stiff”. Consequently in traditional approaches one is forced to use implicit methods.
However, as in our approach there is really no distinction between “ODEs” and “DAEs” it is obvious
that “DAEs” are not intrinsically stiff. Hence it is no surprise that our explicit schemes worked very
well in standard “DAE” test problems.

Our initial code was very slow, however, since it was implemented in Maple. In the present article
we introduce a new version of our method which has been implemented with C++. Although this new

IMA Journal of Numerical Analysis c
�

Institute of Mathematics and its Applications 2005; all rights reserved.

2 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

implementation speeds up the method, the main purpose of this paper is to study more carefully and
enhance the related algorithms. The results show remarkable speedup due to the enhancements, even
90%. We did not compare implementation issues, i.e. there is no comparison to our old Maple code.

Hence our code is now reasonably fast. However, in the present article we will only consider stand-
ard examples found in the literature to demonstrate the efficiency and reliability of our code. In future
articles we will take up cases found in actual simulations of “real life” problems.

The structure of the article is as follows. In section 2 we briefly recall some background material
(more details can be found in Tuomela & Arponen (2000) and Tuomela & Arponen (2001)). In section
3 we formulate our computational problem and in particular indicate how Runge–Kutta schemes can be
adapted to our context. In section 4 we discuss Newton type methods for solving nonlinear systems.
These methods are needed when we have to project some computed point to the relevant manifold
defined by the problem. It turns out that the Newton matrix has a particular block structure that we can
take advantage of.

In section 5 the computation of the distribution is considered; i.e. given a point on the solution
curve we need to compute the tangent direction of this curve. It is worth pointing out that complexity
of this task is independent of q, the order of our ODE. In general this leads to computation of a 1-
dimensional kernel of a matrix. However, in some important special cases the relevant direction can be
readily computed by solving a standard square system of linear equations. Then in section 6 we present
computational examples to demonstrate the efficiency and reliability of our code. Finally in section 7
we discuss some future perspectives and extensions of the present work.

2. Basic tools

For more information on standard differential geometry we refer to Spivak (1979) and on jets to Saun-
ders (1989). All maps and manifolds are assumed to be smooth, i.e. infinitely differentiable. All analysis
is local, hence various maps and manifolds need to be smooth or defined only in some appropriate sub-
sets. To simplify the notation these subsets are not indicated.

2.1 Multilinear maps

The � ’th differential of a map f : � m �� � k is denoted by d � f and its value at p by d � fp. Now d � fp is
a multilinear map d � fp : � m ���	�
��� � m �� � k where � m appears � times. Note that d � fp is symmetric
with respect to its arguments and its values can be represented by an m ���
�	��� m � k array. Contraction
of this array with respect to last dimension is denoted by d � fp ���
�
�	�	�	� � w. The subscript is sometimes
omitted for simplicity, if the point p is clear from the context.

For example the second differential of f is an array of dimensions m � m � k, and if u � v ��� m and
w ��� k , then d2 f u � v � w � d2 f v � u � w ��� . Also d2 f ���
��� w is a symmetric m � m matrix while d2 f u �
���
we choose to be the k � m matrix (rather than its transpose). This choice will be convenient in later
formulas. However, a word of caution is in order here: now d 2 f u �	� � w is not “the matrix d2 f u �
��� times
vector w” but instead “the matrix d 2 f u �	� � t times w”.

2.2 Riemannian geometry

Let M be a manifold. The tangent bundle of M is denoted by T M, and the tangent space at p � M by
TpM. The space of vector fields on M (i.e the space of sections of TM) is denoted by � M � and the
value of Y ��� M � at p is Yp. A distribution � is a map that associates to each point p � M a subspace� p of TpM.

Numerical solution of differential systems 3 of 36

Let M be a submanifold of � n . The objects defined on M can be taken to be defined on � n without
writing explicitly the inclusion map. The inner product in � n is denoted by � ���
��� and the same notation
will be used also for inner products in TpM and Tp � n as usual. We may regard TpM as a subspace of
Tp � n . The orthogonal complement of TpM, the normal space, is denoted by NpM. This induces the
orthogonal projections πt : Tp � n �� TpM and πn : Tp � n �� NpM.

Let X , Y ��� M � . We may (locally) extend these to vector fields in some neighbourhood of M.
Denoting these extensions by the same letter we may define the covariant derivative of Y with respect to
X as follows:

∇XY � πt dY X � (2.1)

where dY X is the usual directional derivative. The value of ∇ XY at p does not depend on the derivatives
of X , so we can define a linear map TpM � TpM by

Xp
���� ∇Xp

Y � p
� (2.2)

Let γ : � � M be a curve and let X � � M � be such that Xγ ! t " � γ # t � . The curve γ is a geodesic

if ∇X X � 0 along γ . Let Y � � M � ; vectors Yγ ! t " are said to be parallel along γ , if ∇XY � 0. Let

γ 0 � � p and v � TpM. Then there is a unique family of Y t � � Tγ ! t " M such that Y t � are parallel

along γ and Y 0 � � v. Hence we have a linear map, parallel translation τ t : TpM � Tγ ! t " M defined by

τt Y 0 �	� � Y t � .
2.3 Some facts about block matrices

Let us consider the 2 � 2 block matrix

C � $ A Bt

B 0 % (2.3)

where A ��� n & n, B ���'� & n, and we assume that �)(n. In the case which interests us A (and hence C)
is symmetric, and A and B have full ranks. Let us further denote the Schur complement of A by S �* BA + 1Bt and recall that the inertia of the (symmetric) matrix is a triple i A � � � n , A �-� n + A �-� n0 A � �
where by n , A � (resp. n + A � and n0 A �) is the number of positive (resp. negative and zero) eigenvalues
of A. Now in (Horn & Johnson, 1994, p. 95) we find the following result:

LEMMA 2.1 Let C be as in (2.3). Then i C � � i A �/. i S � where S is the Schur complement of A.

Suppose further that A depends continuously on the parameter h (the step size) and that A � I when
h � 0. It is easy to check that this, together with Lemma 2.1, implies

LEMMA 2.2 For sufficiently small h we have the following properties:

- A + 1 exists and A is positive definite

- S is negative definite

- n , C � � n and n + C � �0�
Hence A and S tend to have eigenvalues of the same sign while typically C has many eigenvalues of

both signs. We have also the following result.

LEMMA 2.3 n + S � (n , A � and n , S � (n + A � .

4 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

Proof. This is rather immediate consequence of the minimax principle for eigenvalues, see (Bhatia,
1997, p. 58). 1
2.4 Differential systems in jet spaces

Here we simply give the basic definitions and refer to Tuomela & Arponen (2000) for a discussion and
motivation of these concepts. Let π : 2 �43 be a bundle and let π q : Jq 2 �5�63 be the bundle of
q-jets of 2 . Let us also introduce the standard projections

πq , r
q : Jq , r 2 �7� Jq 2 �-�

In particular π q
0

: Jq 2 �7� 2 .

DEFINITION 1 A (partial) differential system (or equation) of order q on 2 is a submanifold 8 q of
Jq 2 � .

In the sequel we will only consider the case where 2 is the trivial bundle 29�9� � � n with the projec-
tion π : � � � n � � . The coordinates of Jq 2 � (called jet coordinates) are denoted by x � y1 �
�
�	�	� yn � y1

1
�
�	�
�	� yn

q
� .

The action of the projections in these coordinates is simply to “forget” the appropriate jets.
Above we defined what the differential equations are, but we have not yet introduced any equa-

tions. In jet coordinates the manifold 8 q can be represented as a zero set of some map f : Jq 2 �;:� ! q , 1 " n , 1 � � k : 8 q : f x � y � y1
�
�	�
�<� yq

� � 0 � (2.4)

To define the notion of solution in our context we still need to introduce the following one forms

α i
j � dyi

j + 1
* yi

jdx i � 1 �
�
�	�
� n j � 1 �	�
�
�<� q � (2.5)

Let p � Jq 2 � and vp � TpJq 2 � and let us further define distributions = and � by= p �?> vp � TpJq 2 �A@@ α i
j vp
� � 0 B �� p � Tp 8 q C Cp

� (2.6)= is called Cartan distribution. Now we can define the solutions as follows.

DEFINITION 2 Let 8 q D Jq 2 � be involutive and suppose that the distribution � defined in (2.6) is
one-dimensional. A solution of 8 q is an integral manifold of � .

The important concept of involutivity is discussed in Tuomela & Arponen (2000). Intuitively a
system is involutive if we cannot get new equations of order q or less by differentiating the equations
and eliminating the higher derivatives. Our notion of solution extends somewhat the classical notion
of solution. The connection can be explained as follows. Suppose that S is a solution in our sense
and suppose that y : � � � n is a solution in a classical sense. Then π q

0 S � coincides locally with the
graph of y. Note that our solution is always smooth, but the classical solution (and its graph) may have
singularities.

Let us assume that 8 q is involutive and the corresponding distribution � one-dimensional. Since
one-dimensional distributions always have integral manifolds, there always exists a solution to our prob-
lem in these circumstances.

In the following we will discuss how to compute efficiently these solutions.

Numerical solution of differential systems 5 of 36

3. Precise Formulation of the computational problem

We will use explicit Runge–Kutta type methods to compute the solution. Let us briefly outline how this
is done. We will consider three separate cases:

- The general case: we use directly the formulation given in (2.4).

- Systems with invariants.

- Holonomic systems.

It is worthwhile to consider in detail the latter two cases because they occur very often in applications
and it turns out that taking into account the special features of these systems yields a much more efficient
implementation of the computational problem. Probably most problems in applications belong to these
categories, so that the general case which is of course important for completeness, is perhaps not so
interesting in practice.

In all three cases the computational problem will be as follows:

- Given a manifold M, a one dimensional distribution � on M and a point p � M we want to
compute (a part of) the integral manifold that passes through p

The information about M and � is given in the following form:

- M is a submanifold of � m for some m, given as a zero set of some map f .

- The distribution � p can be computed at each p � M either by computing the nullspace of some
matrix or by solving a square linear system. In some cases we can even write down explicitly the
vector vp which spans � p.

Let us denote by V the vector field associated to � ; i.e. @@Vp
@@ � 1 and Vp ��� p.1 We will use Runge–Kutta

type methods as in Tuomela & Arponen (2000) and Tuomela & Arponen (2001). The general explicit
r–stage Runga–Kutta method can be formulated in our context as follows. Let π M be the orthogonal
projection map onto M. This map is well-defined in sufficiently small tubular neighbourhood of M
which is sufficient for our purposes. Let E�� M be the current point, h the current step size, F i the
intermediate points used by the method, and F the point produced by the scheme. The current point is
also interpreted as the first intermediate point: EG�HF 1. Then we can writeF 2 � πM I E . ha21VJ�KF 3 � πM I E . h � a31VJ . a32V L 2 �MK

...F r � πM I E . h
r + 1

∑
i N 1

ariV L i KF)� πM I E . h
r

∑
i N 1

biV L i K �
(3.1)

1The associated vector field exists locally, but not necessarily globally. However, in the present context we only need the local
existence.

6 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

The additions in the right hand side are defined by the fact that M is a submanifold of � m . The coeffi-
cients ai j and bi define the particular method. Note that in standard Runge–Kutta schemes there is also
a third set of coefficients (usually denoted by c i) which are needed if the relevant vector field depends
explicitly on time. However, although our formulation of course covers also the time dependent case,
we do not need this set of coefficients in our scheme.

So to implement the scheme we have to solve two basic subproblems:O given a point a �?� m , project it orthogonally to M, i.e. compute πM a � .O given p � M, compute � p.

We will consider these problems in each of the three cases discussed above.

3.1 General systems

Let us suppose that k P m � q . 1 � n . 1 and consider the map f : Jq 2 �Q: � m �� � k as in (2.4). We
assume that zero is a regular value of f and that f is involutive. Then we set

M �R8 q � f + 1 0 � D � m

This implies that M is a smooth m * k – dimensional manifold, and that the columns of d f p
� t span

NpM.
Now given some a ��� m and denoting p � πM a � , we can try to compute p by solving the following

problem: S
p . d fp

� t µ * a � 0

f p � � 0 � (3.2)

If a is sufficiently close to M this problem has a unique solution. In our application this can always be
achieved by taking the step-size h sufficiently small, because by (3.1) we always have a �TE . O h � .

Next we have to compute the distribution defined in (2.6), i.e. we have to find v �9� p such thatU
v
U � 1. Recall that the coordinates of � m are denoted x � y � y1

�
�
�	�	� yq
� . Given p � M the distribution � p

can in these coordinates be represented as a nullspace of the following matrix:V �XW * ỹ Inq 0nq & n
fx D1 D2 Y (3.3)

where fx � ∂ f Z ∂x, D2 � ∂ f Z ∂yq, D1 contains the partial derivatives of f with respect to y � y1
�	�
�	�	� yq + 1

and finally ỹ �[� nq contains the vectors y1
� y2
�\�
�
�<� yq. Note that the first row of

V
comes from Cartan

distribution (jet coordinates correspond to derivatives or in other words � p D = p) and the second row
contains the tangent conditions (� p D TpM).

The computation of the nullspace of
V

can further be reduced to the computation of the nullspace of
the following k � n . 1 � -matrix:

D � � fx
. D1ỹ D2 � � (3.4)

This can be seen as follows: let Dṽ � 0 where ṽ � v1
� v̂ � . Let us set v � v1

� v1ỹ � v̂ � . Then it is easy to
check that

V
v � 0. Note further that the dimensions of D are independent of q.

Numerical solution of differential systems 7 of 36

3.2 Systems with invariants

Consider the system (2.4). In the present context we mean by an invariant an equation of (2.4) which
does not depend on yq. For simplicity we now restrict our attention to quasilinear systems; i.e. we will
consider systems of the form 8 q :

S
Ayq
. f̃ x � y �
�	�
�]� yq + 1

� � 0

f x � y �
�]�
�	� yq + 1
� � 0

(3.5)

where A is some nonsingular matrix which does not depend on y q. In the examples below the systems
with invariants are of this form. In fact in all but one case A is the identity matrix.

Now if the system (3.5) is involutive, then the solutions are well defined as curves in 8 q D Jq 2 � .
However, we can simplify the computations considerably by projecting these solutions to J q + 1 2 � . So
here let us denote

πq
q + 1
� 8 q �^� M � f + 1 0 � D Jq + 1 2 �

and suppose that zero is a regular value of f . But now we see that the projection step is in this case
formally precisely the same as in the general case: we have to solve a system of the form (3.2). However,
the meaning of f and M is different in the two cases.

Of course here f by itself does not define solutions uniquely; we need also to project the distribution.
Geometrically this is given by d π q

q + 1
, but in practice it can be computed as follows:

- given p � M D Jq + 1 2 � , solve yq using the equation

Ayq
. f̃ x � y �
�	�
�]� yq + 1

� � 0 (3.6)

- set � p � span _ 1 � y1
�	�
�	�	� yq

�]` .
If A is in fact the identity matrix the distribution is defined by� p � span _ 1 � y1

�
�	�
�<� yq + 1
� * f̃ �-`a�

Note that in the standard literature the first row of (3.5) is usually called system or equations and the
second row is constraints. In our formulation we may say that “constraints” determine where the solu-
tions “really” are while the “equations” give “only” the distribution.

As a special case of this procedure we get the standard way of viewing ODEs; namely given a system

y1
. f x � y � � 0

we usually do not consider it in J1 2 � , but instead consider it as a vector field in � n (if f does not
depend on x) or as a distribution in 2 (: time dependent vector field in � n).

Of course it may be possible in some cases to reduce the problem which is initially given in J q 2 �
to a problem in Jq + ι 2 � for some ι b 1. We will not consider explicitly this case because we will not
need it in the examples and because it is quite analogous to the case where ι � 1.

3.3 Holonomic systems

The mechanical systems with holonomic constraints can be written in the following form:cdde ddf E y � y1
� y2
. K y � y1

�g. dg � tλ � 0

g y � � 0

dgy1 � 0 � (3.7)

8 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

Here E is a positive definite matrix (mass matrix) which is often constant and diagonal, K models the
forces acting on the system, g is some smooth map g : � n � � l , and λ : � � � l is the Lagrange
multiplier. Now it turns out that these problems can be formulated in such a way that only the last two
equations in (3.7) are needed to define the relevant manifold, and the first equation is only needed to
compute the distribution. This is explained in detail in Tuomela & Arponen (2000) so we do not repeat
the discussion here.

However, in many cases in addition to “constraints”, given by the map g there are additional in-
variants or constants of motions in the system which are not integrability conditions and consequently
cannot be found by passing to the involutive form. Note also that there is no Lagrange multiplier asso-
ciated to these invariants. A typical invariant of this type is the conservation of energy. These invariants
can be expressed by a map g̃ : � 2n � � r and hence in presence of invariants the map f in (3.2) is given
by

f y � y1
� �ihj dgy y1

g y �
g̃ y � y1

�lkm where f : � 2n � � 2l , r and M � f + 1 0 � D � 2n � (3.8)

We will suppose that zero is a regular value of g and f ; hence N � g + 1 0 � D � n is a smooth manifold
and we may say that the first two equations of the above system define the tangent bundle T N. In this
way M is a submanifold (but in general not a subbundle) of TN. Then taking into account the time
variable we have � � M D � � T N D J1 2 �
So as in the case of systems with invariants, the relevant manifold is defined by “constraints”, and now
we have to use the “equations”, i.e. the first row of (3.7) to compute the distribution. As explained in
Tuomela & Arponen (2000) this is done as follows:O given p � x � y � y1

� �n� � M, solve the linear systemW E dg � t
dg 0 Y W y2

λ Y � * W K
d2g y1

� y1
� Y (3.9)O set � p � span 1 � y1

� y2
� .

Note that the addition of invariants (the map g̃ in (3.8)) has no effect on the computation of the distri-
bution. Note also that in case of systems with invariants as well as in the holonomic case the overde-
termined nature of the problem has completely disappeared, because the computation of the distribution
leads to a square system.

So all in all there are following subproblems we have to treat:

Projection, i.e. solution of the equation (3.2).

- In the general case f is given by (2.4).

- In case of system with invariants f is given by (3.5).

- In the holonomic case f is given by (3.8).

Note that in first two cases f is more or less arbitrary, i.e. we do not assume any special property of
f . However, geometrically f represents two very different things. In the third case we can exploit the
special structure of f to speed up the computations.

Distribution.

Numerical solution of differential systems 9 of 36

- Compute the nullspace of (3.4) in the general case.

- Solve the system (3.6) in case of system with invariants.

- Solve the system (3.9) in the holonomic case.

We will consider all these cases in detail below.

4. Projection

4.1 Newton type methods

In the projection step we need to find a solution to some nonlinear system of equations. Let F : � ν � � ν

be some map and suppose that we want to solve F z � � 0. Let us further suppose that our system has a
solution which is denoted by z o and that dFo'� dF z o � has full rank. Then choosing the initial guess z0

sufficiently close to z o we can compute the solution by Newton’s method:

Algorithm 4.1O choose z0O for k � 0 � 1 �;�	�
� do until convergence

– solve dFksk � * Fk where dFk � dF
zk and Fk � F zk �

– set zk , 1 � zk . sk

Now in case of big systems the computation of the jacobian of F may not be easy to implement.
However, in the present paper we will suppose that various differentials which are needed are computed
symbolically. There are some alternative strategies which may be more efficient in some cases, but we
leave the consideration of these methodes to future papers. However, we will make some remarks in
conclusion.

The standard way to solve the linear system in Newton iteration is by LU–decomposition. This is
always a reasonable choice, if ν is not too big and dF is dense. However, typically in large systems
the jacobian is increasingly sparse and in that case iterative methods become competitive. Moreover
one may speculate that since sk’s are “only” search directions, perhaps there is no need to solve them
very accurately, provided that the overall iteration converges. This leads to the inexact Newton method
Dembo et al. (1982). This can be formulated as follows:

Algorithm 4.2O choose z0O for k � 0 � 1 �;�	�
� do until convergence

– choose εk � 0 � 1 �
– find sk such that dFksk � * Fk

. rk with
U
rk U P εk

U
Fk

U
– set zk , 1 � zk . sk

10 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

Here
U � U can be any convenient norm on � ν . Let us further define an associated norm

U
s
U o � U dFo s U .2

The following Theorem guarantees that the above algorithm indeed converges Dembo et al. (1982).

THEOREM 4.1 Let us assume that εk (ε P c P 1 for all k. If z0 is sufficiently close to z o , then zk � z o
as k � ∞ and we have the estimate U

zk , 1 * z o U op(c
U
zk * z o U o

Moreover if εk
� 0, then the convergence is superlinear.

Note that the conditions for the convergence are not very strict. To apply the above idea we must
now discuss how to choose an appropriate iterative method.

4.2 Iterative methods for linear systems

Consider the system (3.2). It will be convenient to set z � p � µ � and write our system as

F z � �qW p . d fp
� t µ * a

f p � Y � 0 � (4.1)

Recalling that a �TE . O h � it is straightforward to verify that for sufficiently small step size we have:

(i) there is a solution to our problem, which will be denoted by z o5� � F � µ o � .
(ii) dFo cannot be singular.

Properties (i) and (ii), and Theorem 4.1 imply that if z 0 is sufficiently close to z o , the iteration will
converge to z o . The successive iterates are denoted by zk � � pk � µk � .

In order to choose an iterative method let us analyse the structure of dF more closely. By simple
computation we obtain

dF � $ I . d2 f ���
��� µ d f � t
d f 0 % � (4.2)

Now obviously dF is symmetric, hence of the form (2.3). By Lemma 2.2 we conclude that dF has
typically many positive and negative eigenvalues. This means that conjugate gradient method cannot
be used and moreover this implies slow convergence even for such methods which are suitable for
indefinite problems like GMRES Trefethen & Bau (1997). To get a faster scheme we will exploit the
block structure of dF . Let us denote

dF � C � $ I . d2 f ���
��� µ d f � t
d f 0 % � $ A Bt

B 0 % �
We would like to solve

Cs � b r $
A Bt

B 0 % $ s1

s2 % � $ b1

b2 % � (4.3)

It is straightforward to verify the following formula

C + 1 � $ A + 1 0

0 0 % . $ A + 1Bt* I % S + 1 � BA + 1 * I �
2This defines a norm because by hypothesis dFs is of full rank.

Numerical solution of differential systems 11 of 36

where S � * BA + 1Bt is the Schur complement of A. In Miao (1991) more general formulas for (pseudo)inverses
of block matrices are given. We can now write an algorithm for the solution of Cs � b based on the above
formula.

Algorithm 4.3
INPUT: matrix C, vector b partitioned as in (4.3)
OUTPUT: vector s partitioned as in (4.3)O solve Au1 � b1O compute v1 � Bu1 * b2O solve Sv2 � v1.O compute u2 � Btv2O solve Au3 � u2O set s � � u1 . u3 � * v2 �

In the process we have to solve systems Au1 � b1, Sv2 � v1 and Au3 � u2 in some way. Note that A
(resp. S) is symmetric but not positive (resp. negative) definite in general. However, Lemmas 2.1 and
2.3 imply that A (resp. S) has only few negative (resp. positive) eigenvalues. Moreover eigenvalues of
A are very clustered, because A approaches the identity matrix when the step size goes to zero. This
situation is very favorable for iterative methods. Hence iterating A systems to convergence is cheap.
However, the convergence of S systems is not usually very fast. So we will allow a relatively large error
in the solution of S systems.

Using the notation rs � v1 * Sv2 and considering the residuals in A systems as negligible a simple
calculation shows that

r � b * Cs �XW 0* rs Y �
Thus in particular

U
r
U � U rs

U
. This leads to

Algorithm 4.4
INPUT: matrix C, vector b partitioned as in (4.3); tolerance ε � 0 � 1 �
OUTPUT: vector s partitioned as in (4.3)O solve Au1 � b1 iteratively until convergenceO compute v1 � Bu1 * b2O solve Sv2 � v1 iteratively until

U
rs
U P ε

U
b
UO compute u2 � Btv2O solve Au3 � u2 iteratively until convergenceO set s � � u1 . u3 � * v2 �

When solving the system Sv2 � v1 we have to evaluate products Sv. This is done with the following
algorithm.

12 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

Algorithm 4.5
INPUT: matrices A and B, vector v
OUTPUT: vector d � SvO compute w1 � BtvO solve Aw2 � w1 iteratively until convergenceO compute d � * Bw2

It remains to choose the iterative method. Some natural candidates are GMRES, as previously
mentioned, and BiCG (bi-conjugate gradient). In initial tests GMRES did not turn out to be very efficient
and the problem with BiCG is its irregular convergence. One method which combines efficiency with
regularity is symmetric LQ method Fischer (1996), SymmLQ. This method was used in test cases below.

Let us then analyse the choice of the initial point z0. As before let us denote by E the current point,
and let us set Ft� πM a � where a is as in the right hand side of (3.1). One possibility is simply to take
z0 � E � 0 � . With this choice the algorithm will converge, if the step size is sufficiently small. However,
the point z0 � a � 0 � is better for two reasons: first

U F * E U � O h � while
U F * a

U � O h2 � . Moreover,
computing the first step in the Newton iteration with z0 � E � 0 � shows that z1 u a � µ1 � . In other words
the first iteration is waste of time and we may as well start directly with z0 � a � 0 � . Moreover using this
initial point the first step of the (inexact) Newton iteration is much simpler than others, so it is reasonable

to initialize the computations in the following way. Here r µ � f a � * I d fa d fa
� t K µ1.

Algorithm 4.6 Initialization (first Newton step)
INPUT: vector a, tolerance ε � 0 � 1 �
OUTPUT: z1 � Fwv � µ1 �O solve I d fa d fa

� t K µ1 � f a � iteratively until
U
rµ
U P ε

U
f a � UO compute F 1 � a * d fa

� t µ1O set z1 � F\v � µ1 �
Note that here we are solving a positive definite system because we suppose that d f is of full rank, so

we can use the conjugate gradient method. Now the overall inexact Newton method can be formulated
as follows:

Algorithm 4.7O compute z1 with Algorithm 4.6O for k � 1 � 2 �5�
�	� do until convergence

– choose εk � 0 � 1 �
– solve dFksk � * Fk approximately with Algorithm 4.4

– set zk , 1 � zk . sk.

Numerical solution of differential systems 13 of 36

4.3 Holonomic case

In this case f in (4.1) is given by (3.8). It will be convenient to introduce the following notation. Recall
that the map g̃ in (3.8) depends on y and y 1. The differential of g̃ with respect to y (resp. y1) is denoted
by d0g̃ (resp. d1g̃). So we can write dg̃ � � d0g̃ � d1g̃ � . Similar notation is also used for higher order
differentials.

Let us now compute the jacobian of (4.1) when f is given by (3.8). It is useful first to compute d f ;
this gives

d f � hxxj d2g y1
�
��� dg

dg 0

d0g̃ d1g̃

kzyym �
Then putting a � a1 � a2 � and µ � α � β � γ � �n� 2l , r the map F in (4.1) can be written as3

F z � � hxxxxj y . d2gt y1
�
��� α . dgtβ . d0g̃tγ * a1

y1
. dgtα . d1g̃tγ * a2

dgy1
g y �

g̃ y � y1
� k yyyym � (4.4)

Computing further we get

dF � $ I .|{ d f � t
d f 0 % (4.5)

where { is a block matrix given by{ �ihj d3g y1
�
���
��� α . d2g ���
��� β . d2

0 g̃ ���
��� γ d2g �}�	� � α . d0d1g̃ ���
��� γ
d2g ���
��� α . d0d1g̃ ���
��� γ d2

1 g̃ �}�	� � γ km �
Now denoting { � $ A1 A2

A2 A3 %
we observe that A1, A2 and A3 are symmetric which implies that dF is symmetric and positive definite
for small enough h.

Note that in some cases of practical interest g (or a part of g) is a second order polynomial which
implies that d3g � 0 and d2g is constant. Also if the only invariant is the energy, then in many cases we
have

g̃ y � y1
� � 1

2 � y1
� By1

�g. U y �
where B is some symmetric positive definite matrix which does not depend on y and U is the potential
energy which does not depend on y1. Hence in this case we obtain{ � hj d3g y1

�
���
��� α . d2g ���
��� β . γd2U d2g ���
��� α
d2g ���
��� α γB km �

3Strictly speaking we do not include the equation for x because the system does not depend explicitly on x.

14 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

5. Distribution

5.1 General case

Here we have to compute the kernel of the matrix given in (3.4). Now in many cases of practical interest
it is known that D2 is nonsingular, and moreover it may well contain a (constant) square submatrix (or
even identity matrix) of full rank. In this case the computation of the distribution is easy:

Algorithm 5.1O compute b � fx
. D1ỹO choose the relevant square submatrix D̂2 of D2O choose the corresponding components b̂ of bO solve D̂2v̂ � * b̂O set v � 1 � ỹ � v̂ �O normalise v � v Z U v U

For example if the relevant D̂2 is constant then obviously this is very efficient.
To compute ṽ in the general case we can use the singular value decomposition. If D � UΣV t ,

then the last singular value should be very close to zero, and hence the last column of V gives a good
approximation of the required direction. This is a reliable way to compute the distribution, but since
we need only one vector of the whole decomposition, the computation is unnecessarily costly for large
systems.

One possible method to compute only the required vector is as follows. Let us be given a matrix
D ��� k &~! n , 1 " and let D � UΣV t be its singular value decomposition. Suppose that k � n and that all the
singular values are distinct (the generic case). To avoid some notational nuisance we make the following
convention: when k � n we call σn , 1 � 0 the smallest singular value although strictly speaking there are
only n singular values in that case. We order the singular values in the usual way: σ 1 � �	�
� � σn , 1 � 0
(and σn , 1 � 0 when k � n). The corresponding right singular vectors (columns of V) are denoted by v i.

Let Sn be the n – dimensional unit sphere and define � : S n � � by � x � � 1
2

U
Dx
U 2. The gradient of� induces a vector field on Sn by Y x � � * πt

� ∇ � x �
� . More explicitly we have

Y x � � UDx
U 2x * DtDx � (5.1)

The zeros of Y are clearly the right singular vectors v i of D. Let us then analyse the stability of these
zeros. Taking w � TxSn we compute

∇wY � πt
� dY w ��� UDx

U 2w * DtDw . � Dx � Dw � x �
The above formula then defines a linear map TxSn � TxSn as in (2.2). Let us call this map Lx. Then we
obtain

L
vi w � σ2

i w * DtDw �
Now T

vi S
n is spanned by other singular vectors vk, k �� i, which implies that the eigenvalues of L

vi are
σ2

i
* σ2

k , k �� i. Hence the zero of g corresponding to the largest (resp. smallest) singular value is a

Numerical solution of differential systems 15 of 36

source (resp. sink) and other zeros are saddles. This is because eigenvalues of L
v1 (resp. L

vn � 1) are all
positive (resp. negative) and in other cases L

vi has positive as well as negative eigenvalues.
In other words the global minimum (resp. maximum) of � is attained at v n , 1 (resp. v1). Now we

may use a minimization algorithm given in Smith (1994) to find v n , 1. Recall that when one uses various
optimization algorithms in � n , there are usually subproblems involving looking for an extremum along
given line, i.e. along a geodesic of � n . Hence one gets an optimization algorithm on a Riemannian
manifold by replacing lines by geodesics, and doing parallel translation along geodesics. Now in case
of Sn geodesics and parallel translations are easy to compute and we have then the following algorithm.

Algorithm 5.2
INPUT: matrix D, initial guess u0 (previously computed ṽ)
OUTPUT: vector ṽO set G0 � H0 � Y u0 � , h0 � H0 Z UH0 U , i � 0O while not converged do

– set a � 2 � Dui � Dhi � , b � UDui U 2 * UDhi U 2, r ��� a2 . b2

– if b � 0 then

set s ��� 1 . b Z r � Z 2, c � * a Z 2rs �
else

set c ��� 1 * b Z r � Z 2, s � * a Z 2rc �
endif

– ui , 1 � cui . shi 4

– τH i � UH i U chi * sui �
– τGi � Gi * � hi � Gi � sui . 1 * c � hi �
– Gi , 1 � Y ui , 1 �
– γ ��� Gi , 1 � Gi , 1 * τGi � Z~� H i � Gi �
– H i , 1 � Gi , 1 . γτH i, hi , 1 � H i , 1 Z UH i , 1 U
– if i � n mod n . 1 then

set H i , 1 � Gi , 1

endif

– set i � i . 1

endwhileO set ṽ � ui

4Note that � ui � 1 � is mathematically exactly one after computing ui � 1 � cui � shi. However, numerically it is best to normalize
by un � 1 : � un � 1 � � un � 1 � .

16 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

In practice the above algorithm converges linearly, though much faster than the method of steepest
descent which also converges linearly. We may expect slow convergence if the condition number of D
is large; recall that this is defined as κ D � � σ1 Z σn , 1. Now our problem evolves on Sn, and moreover
only the neighbourhood of vn , 1 is of practical interest. Hence we may expect that a reasonable measure
of the numerical difficulty of the problem would be

κ Lvn � 1
� � σ2

1
* σ2

n , 1

σ2
n
* σ2

n , 1

�
In the case which interests us there is a significant gap between σn and σn , 1, so we have in fact
κ Lvn � 1

�7u σ2
1 Z σ2

n .

5.2 Systems with invariants

Here we have to solve the system (3.6). The most natural choice is to use LU–decomposition. This was
used in example two phase plug flow below. In all other examples of this form the relevant matrix A
was in fact an identity matrix, so the whole computation is immediate. Of course in general there could
be situations where the use of some other method than LU–decomposition could be more efficient.
However, the computational problem is in any case conceptually straightforward, and the choice of the
method should not be difficult.

5.3 Holonomic case

To compute the distribution in this case we have to solve the system (3.9). This is of the same form
as (4.3). However, here the situation is even better because now E is always positive definite, and in
many cases it is even a diagonal matrix. Moreover we have now a good initial guess for the solution,
namely the solution computed in the previous step which we denote by v p. Hence we will compute the
distribution as follows:

Algorithm 5.3
INPUT: matrix C, vector b partitioned as in (3.9); previous solution ��� y2

� λ �
OUTPUT: vector vO set r � b * C�O solve Cs � r with Algorithm 4.3 using conjugate gradient method and iterating all systems

to convergenceO set ����� . sO set v � 1 � y1
� y2
�O normalize v � v Z U v U

Of course if E is a diagonal matrix, the computation simplifies in an obvious way.

Numerical solution of differential systems 17 of 36

6. numerical results

In this section, we first discuss implementation issues, then present the examples, and finally the actual
results. The main thing to test is the efficiency of our block-solver with inexact Newton (Algorithm 4.4)
compared to exact Newton, as well as the effect of initialization (Algorithm 4.6). We demonstrate these
with small and moderate size systems. In all of the runs we tried a few different initial conditions, the
tables represent typical results.

6.1 Implementation

We have seen above that we could use any (explicit) Runge–Kutta scheme in our computations. We
chose a well-known scheme by Dormand and Prince which is a 7 stage 5th order method which contains
also 4th order method which is used in the step size control Hairer et al. (1993). The scheme will be
abbreviated as dopri54. For comparison we have also used our variant of Euler’s method as in Tuomela
& Arponen (2000), denoted Euler in the tables.

In the step size control we used essentially the same strategy as explained in Hairer et al. (1993).
However, we needed to modify this a little because in our case it may happen that the step size is quite
big and so the projection step needs a lot of iterations. In inexact Newton method we used the following
rule for εk:

εk , 1 � 0 � 8 � εk
�

The code was written in C++ and the simulations were done with a 1GHz PC using Linux operating
system. All matrix/tensor operations were also implemented using the sparse data structure. In small
problems this is not essential, but in big problems various differentials tend to be quite sparse, so we can
save a substantial amount of computing time by exploiting sparsity.

The stopping criterion for the Newton methods was chosen as a hybrid absolute-relative:U
zk * zk + 1 U . UFk

U P��l��� �
��� . �l�~� � ��� Z UFk + 1

U �
where �l�~� �
���/� 10 + 6 and �l�~� � ���-� 10 + 10. The tolerance for solving A-systems in Algorithm 4.4 was 10 + 12

in all tests. In inexact case we chose ε0 � 0 � 5 if not mentioned separately. In the case of exact Newton,
ε0 for the conjugate gradient was chosen as 0 � 01.

6.2 Descriptions of the examples

Here only the systems are presented, the actual computational results are in the next subsection.

6.2.1 Rigid body with dissipation This is a spinning rigid body with dissipative term. The equations
for the angular velocity y � y1 � y2 � y3 � are

y1
* y � ∇H * αy � y � ∇H � � 0 (6.1)

where � is the usual cross-product of � 3 and

H � 3

∑
i N 1

 yi � 2
2Ii

with Ii the constant moments of inertia. If α � 0 this becomes the well-known Euler equations for rigid
body with H its hamiltonian function, see e.g. Olver (1986). Now

U
y
U
is a constant of motion. Indeed,

1
2

d
dx

U
y
U 2 ��� y � y1

� ��� y � y � ∇H �g. α � y � y � y � ∇H �
� � 0 � (6.2)

18 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

Hence we can write our system asS
y1
* y � ∇H * αy � y � ∇H � � 0U

y
U 2 * a � 0

(6.3)

where the constant a is determined by initial conditions. This is of the form (3.5), and the relevant
manifold M is simply the two dimensional sphere of radius � a. But this implies that the projection
step can be done just by scaling which yields very fast computations. Of course the standard (in)exact
Newton iteration will also converge very quickly so we did not modify the code to solve this problem
optimally.

6.2.2 Two phase plug flow problem This flow problem is taken from Hairer et al. (1989). The initial
system is given by:cdde ddf u1

1
. u2 � 2 � 0

u2 R * u3 � 2 I 2 � 5ln � c1u2u3 * 5 � . 10 � 5 K * c2
* c3

u1 � 0� 2 � 5Ru3 * 1 � 25 u3 � 2 � ln � c1u2u3 * 5 � . 3Ru3 * 2 � 125 u3 � 2 * 13 6R , c1c4
c1u2 � 0 � (6.4)

Here one is really interested in the variables u1 (pressure) and u3 (annular phase), u2 having no physical
significance. The constants ci are defined in terms of more physical parameters as follows:

c1 � 1
µ ¡ ρR

2 c2 � bQco
π ¡ 2ρ

R c3 � P0Qco ! 1 + b "
π ¡ 2ρ

R c4 � Qa
2π ¡ 2ρ

R

This example is interesting for us because for some parameter values the solution has a singularity.
Physically this means that the flow chokes and at that instant the pressure approaches zero while its
derivative goes to * ∞. This kind of singularity is called an impasse point, see for example Rabier &
Rheinboldt (1994) for some discussion. The traditional numerical methods encounter big difficulties
when they approach the singularity and the computed solution may not be very accurate near the singu-
larity. However, in our approach the impasse points are really regular points so our numerical method
passes the impasse point without any problems. The reason why this is possible is explained in Tuomela
(1997) so we just refer to it for more details.

For example the following parameter values yield a singular solution 5

R � 45 � 72 ρ � 0 � 814 µ � 0 � 098 b � 0 � 345

Qco � 1 � 7153 � 106 Qa � 3 � 027 � 105 P0 � 13 � 78

c1 � 44 � 017 c2 � 35545 c3 � 929940 c4 � 9090 � 9
Now when the solution approaches singularity u1 � 0, u3 � 0, u2 � ∞ while u2u3 seems to stay
bounded. Hence let us introduce new variables: y1 � u1, y2 � u2u3 and y3 � u3; then the constraint
equations can be written as

f y � � ce f y1y2 R * y3 � 2 I 2 � 5ln � c1y2 * 5 � . 10 � 5 K * c2y1y3 * c3y3 � 0

y2 � 2 � 5R * 1 � 25y3 � ln � c1y2 * 5 � . y2 � 3R * 2 � 125y3 � * 13 6R , c1c4
c1

� 0
(6.5)

5Note that compared to Hairer et al. (1989) we have scaled time variable and y1 by 10 ¢ 7 .

Numerical solution of differential systems 19 of 36

Our solution is thus a curve on M � f + 1 0 � . Then we have to find the distribution. To this end we
differentiate f :

d f � W f11 f12 f13
0 f22 f23 Y where

f11 � y2 R * y3 � 2 I 2 � 5ln � c1y2 * 5 � . 10 � 5 K * c2y3

f12 � y1 R * y3 � 2 I 2 � 5ln � c1y2 * 5 � . 10 � 5 K . 2 � 5c1y1y2 R * y3 � 2
c1y2 * 5

f13 � * 2y1y2 R * y3 � I 2 � 5ln � c1y2 * 5 � . 10 � 5 K * c2y1 * c3

f22 � 2 � 5R * 1 � 25y3 � ln � c1y2 * 5 � . c1y2 2 � 5R * 1 � 25y3 �
c1y2 * 5

. 3R * 2 � 125y3

f23 � * 1 � 25y2 ln � c1y2 * 5 � * 2 � 125y2

Note that d f is of full rank even at point y1 � y3 � 0. The initial differential equation gives y3 � 2y1
1
. y2 � 2 � 0

Combining this with d f we define

A � hj y3 � 2 0 0
f11 f12 f13
0 f22 f23

km � f̃ � hj y2 � 2
0
0 km

Ã � I f̃ � A K � �£� ker Ã � (6.6)

Now as explained in Tuomela (1997) the solutions to our problem are integral manifolds of the distri-
bution � . But now we easily see that

dimker Ã � � 1

even at y1 � y3 � 0. Hence the original impasse point is simply a regular point for this distribution, so
we can easily compute the solution through the “singularity”.

Note that y1 (i.e. pressure) will be negative after the singularity. Of course this is absurd from the
physical point of view. However, from the numerical point of view it is important that we can accurately
compute the solution up to singularity, and then simply stop the computation when the result has become
nonphysical.

6.2.3 Particle in a magnetic field This is a hamiltonian system with one or two invariants. The
equations are, with q, p : � � � 3 , S

q̇ � 1
m p

ṗ � * ∇U q �g. 1
m B � p

(6.7)

where m is the mass of the particle, U is the electrical potential and B is the magnetic field. Introducing
the notation ¤¦¥-§¦¨ B � : � hj 0 * B3 B2

B3 0 * B1* B2 B1 0 km � (6.8)

20 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

the above system can be cast into a Hamiltonian systemW q̇
ṗ Y � J∇H (6.9)

where H and the non-canonical structure matrix J are given by

H � U p U 2
2m
. U q �

J � W 0 I* I

¤z¥]§z¨ B � Y �
We note that by a straightforward computation one can see that J is a hamiltonian structure matrix

(see (Olver, 1986, p. 384)) if and only if ∇ � B � 0 which of course is the case for physically relevant
magnetic fields.

Now H is one invariant, but it is easy to check that if B is constant, we have in addition a second
invariant:

µ ��� q � p . 1
2 q � B �-� B � � constant � (6.10)

This invariant µ is called magnetic momentum of the particle.
We remind the reader of our preference using second order formulation instead of first order one,

see (Tuomela & Arponen, 2000, remark 3.3). Hence writing y for q we obtaincde df my2
. ∇U y � * B � y1 � 0� y � y1
. 1

2m y � B �-� B � * a1 � 0
m
2

U
y1

U 2 . U y � * a2 � 0

(6.11)

where the constants a1 and a2 are determined by initial conditions. This is again of the form (3.5). We
used the electrical potential U y � � * 1 Z U y U and the magnetic field B � 0 � 0 � 1 � in our computations. All
the results were qualitatively the same as in Leimkuhler & Reich (2005).

6.2.4 Ideal 3D magnetohydrodynamics This system comes from modelling an ideal, incompressible
magnetohydrodynamics in 3D, see (Goriely, 2001, p. 48) and references therein. The system has 3
second order equations and one invariant:cddde dddf y1

2
* 1

3 y1y3 . β
3 y1 � 0

y2
2
* 1

3 y2y3 * β
3 y2 . γ

3 y1 � 0

y3
2
* y3 � 2 * 8y2

1
. β2 � 0

4 y2 � 2 . 3y3y2
1
. 1

12 y3 � 3 * y2y3
1
* 1

8 y3
1
� 2 * 3βy2

1
* 1

4 β 2y3 . 3γy1
1 � 0 � (6.12)

One can easily check that the system is involutive. This is also of the form (3.5).

6.2.5 Mechanical system This is of the form (3.7) and a straightforward generalization of the final
example of Tuomela & Arponen (2000), a mechanical system with n particles. Now y ��� 2n, λ ��� n + 1,
E � I2n, K � ∇F , where F � c

2 � y � K̃ y � , where c is the parameter of rigidity and K̃ is the stiffness matrix.

Numerical solution of differential systems 21 of 36

For instance, in Tuomela & Arponen (2000) we had n � 6, whence

K̃ � hxxxxxxj
I2 0 * I2 0 0 0
0 I2 0 * I2 0 0* I2 0 2I2 0 * I2 0
0 * I2 0 2I2 0 * I2
0 0 * I2 0 I2 0
0 0 0 * I2 0 I2

kzyyyyyym �
g y � � 1

2

hxxxxj y
1 * y3 � 2 . y2 * y4 � 2 * 1 y3 * y5 � 2 . y4 * y6 � 2 * 1 y5 * y7 � 2 . y6 * y8 � 2 * 1 y7 * y9 � 2 . y8 * y10 � 2 * 1 y9 * y11 � 2 . y10 * y12 � 2 * 1

kzyyyym �

8 1 :

cdddddddde ddddddddf
g y � � 0

dgy1 � 0�©� span V �
V � � 1 � y1

� * dg � tλ * cK̃y �
dg dg � t λ . cdg K̃y * d2g y1

� y1
� � 0 �

The energy of the system is

E � 1
2
@@ y1
@@ 2 . c

2
� y � K̃y �-� (6.13)

We can use this example to test the behaviour of our method on as big systems as we please.

6.3 Test runs.

We show that it is advantageous to:O project the solutions from Jq 2 � to Jq + 1 2 � (system with invariants)O replace exact Newton by inexact NewtonO initialize the projection.

In the relevant tables we therefore denote

Gen. Case � General case

Sys. with Invar. � System with invariants

Holon. Case � Holonomic case �

22 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

The other symbols of the tables are

succ. (rej.) steps � number of successful (rejected) steps by the DE solver

Newt. steps: av(max) � Newton iteration average (maximum number of Newton

iterations within a single Newton loop)

CPU dist � time used to distributions

CPU proj � time used to orthogonal projections

CPU total � total DE solver time �
Units of the CPU are in seconds. We have several properties to compare, these are organized as follows:O within each table we compare the effect of initialization for both a constant and an adaptive step

size. We are mainly interested in dopri54 but compare it also to Euler.O to compare between exact/inexact Newton methods, and between Gen. Case/Sys. with Invar.,
four different tables are made. For instance, for the dissipated rigid body, Tables 1 and 2 compare
exact/inexact to each other (both are Gen. Case) as well as Tables 3 and 4 (both are Sys. with
Invar.).

To avoid excessive size for this publication, we do not present all four tables for every example. Finally
note that in publications on DAEs the initial point is given excessively accurately to delay the drift off.
Because drift off does not occur in our method there is no need to give the initial point any special
attention.

6.3.1 Rigid body with dissipation We solved the system (6.3) using parameters a � 1, α � 0 � 01,
I1 � I2 � 5 Z 8 and I3 � 1 Z 4. The results are in Tables 1-4. Other parameters used in the computations
are as follows:

Adaptive step size tolerance: 10 + 6 (h0 � 0 � 20)�«ª�¬M �¯® � 5 � 0
Constant step size: h � 0 � 20
Distribution method: explicit
Time frame for the solution: x ��° 0 � 3600 ±
Initial value (general case): x � y � y1

� � 0 � 0 � 1204 � 0 � 9631 � 0 � 2408 � 0 � 5568 � * 0 � 0682 � * 0 � 0054 �
Initial value (systems with invariants): x � y � � 0 � 0 � 1204 � 0 � 9631 � 0 � 2408 �-�
From any of the Tables 1 - 4 can be seen, by comparing a “no INIT” column with a “w/INIT” column,
the significant effect of initialization: it speeded up the computation 30% * 50%.

For the exact/inexact comparison, from Tables 1 and 2 (or, Tables 3 and 4) one can see, by comparing
corresponding columns, that in this small system inexact Newton is typically slightly slower than exact
Newton. In any case the adaptive dopri54 is clearly the fastest.

Numerical solution of differential systems 23 of 36

For the Gen. Case/Sys. with Invar. comparison, from the “CPU total” entries in Tables 1 and 3
(or, Tables 2 and 4) one can see the superiority of Sys. with Invar.: it is 65% * 80% faster. Figure 1
represents the solution.

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

0.05

0.1

0.15

0.2

0.25

y1

y2

y3

Figure 1. Solution curve of the rigid body and its projection.

6.3.2 Two phase plug flow problem The results are in Tables 5-6. Here more interesting than mere
efficiency of the code is the fact that with our approach we are able to pass through the impasse point
without any problems; i.e. impasse points are regular points for our code. In Figure 2 we show a typical
computation using the original model (6.4). When approaching the impasse point one is forced to take
smaller and smaller step sizes and it is not possible to pass through the singularity.

In Figure 3 there is a solution computed with formulation given in (6.5) and (6.6). Note that the
solutions are smooth curves, in the sense of being smooth one dimensional manifolds, but they are only
continuous at the impasse point when parametrised by x.

The following parameters were used in the computations:

Adaptive step size tolerance: 10 + 10 (h0 � 0 � 1)�«ª�¬ �¯® � 4 � 0
Constant step size: h � 0 � 1
Distribution method: SVD
Time frame for the solution: x ��° 0 � 3 � 2188 ±
Initial value: x � y � � 0 � 13 � 78 � 11 � 394 � 4 � 8147 �

24 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

14

16

x

u1

u2

u3

Figure 2. The singularity of the two phase plug flow.

0 0.5 1 1.5 2

−5

0

5

10

15

x

u1

u3

y2

u2

Figure 3. Solution of the two phase plug flow.

6.3.3 Particle in a magnetic field The results are in Tables 7-10. The following parameters were used
in the computations:

Adaptive step size tolerance: 10 + 5 (h0 � 0 � 01)�«ª�¬M �¯® � 5 � 0
Constant step size: h � 0 � 01
Distribution method (general case): explicit
Time frame for the solution: x ��° 0 � 20 ±
Initial value (general case): x � y � y1

� y2
� � 0 � 1 � 1 � 1 � 0 � 0 � 0 � * 1 Z~� 27 � * 1 Z²� 27 � * 1 Z/� 27 �-�

Initial value (systems with invariants): x � y � y1
� � 0 � 1 � 1 � 1 � 0 � 0 � 0 �-�

The comparison results were very similar to the rigidbody results. Here the effect of initialization is,
as in the rigidbody case, a significant speed-up, even 55%. Also for the exact/inexact comparison, the
results were similar to the rigidbody case: for this small system, inexact Newton is not faster than exact
Newton. But, again we have the superiority of Sys. with Invar.: it is 30% * 80% faster (compare Table
7 to Table 9, or, Table 8 to Table 10 as before). Figure 4 represents the solution.

6.3.4 Ideal 3D MHD We computed the solution of (6.12) with β � 1 � γ � 1. The results are in Tables
11 and 12. To save space, we present only two tables. The following parameters were used in the com-
putations:

Adaptive step size tolerance: 10 + 7 (h0 � 0 � 05)�«ª�¬M �¯® � 2 � 5
Constant step size: h � 0 � 05

Numerical solution of differential systems 25 of 36

−2

−1

0

1

2

−2
−1

0
1

2
−1

−0.5

0

0.5

1

y1

y2

y3

Figure 4. Solution curve of the particle in magnetic field and its projection.

Distribution method: explicit
Time frame for the solution: x ��° 0 � 1 � 75±
Initial value (general case): x � y � y1

� y2
� � 0 � 1 � 1 � 1 � 0 � 4 � 0 � 5 � 0 � 6 � 0 � 0 � 3333 � 4 �-�

Initial value (systems with invariants): x � y � y1
� � 0 � 1 � 1 � 1 � 0 � 4 � 0 � 5 � 0 � 6 �-�

For this system, the Gen. Case with constant step size dopri54 did not work very well. On the
other hand, adaptive dopri54 worked beautifully fast for any combination of Gen. Case/Sys. with
Invar./inexact/exact. And, Sys. with Invar. was remarkably 85% * 98% faster than Gen. Case. The
solution is represented in Figure 5.

6.3.5 Mechanical system Here the parameter of rigidity was chosen as c � 10. The following para-
meters were used in the computations:

Adaptive step size tolerance: 10 + 6

Initial step size h0 :

mech6 : h0 � 0 � 02

mech24 & mech50 : h0 � 5 � 0�«ª�¬ �¯® � 3 � 0
Constant step size: h � 0 � 02
Distribution method: conjugate gradient iteration with block solve

26 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

1

2

3

4

5

6

12345678
0

25

50

75

100

125

y1

y2

y3

Figure 5. Solution curve of 3D-MHD and its projection.

E-system tolerance: (no need to iterate)
S-system tolerance: 10 + 12

Time frame for the solution:

mech6 & mech24 : x ��° 0 � 1 ±
mech50 : x ��° 0 � 0 � 73 ±

We used only dopri54, tested with and without the energy conservation equation. Determining a con-
sistent initial value was based on a similar strategy in all “mechanical” systems. The Figure 7 shows the
initial state of 24 particle system after the first orthogonal projection.

6 particle system. Constant energy of the system is E � 59 � 653. Solutions with and without conserva-
tion of energy are shown in the Table 13. The energy of the 6 particle system in the latter case starts to
grow apparently linearly (Figure 6).

24 particle system. Constant energy of the system is E � 3008 � 6. Figure 8 shows that energy equation
(6.13) was satisfied up to the order ³ 10 + 5 � . The step sizes of dopri54 are shown in Figure 9. The
results are in Table 14. The final states with and without conservation of energy are shown in Figures
10-11. Here we needed a longer test run to see the effect of conservation of energy.

Using inexact Newton speeds up the computation, as does the use of initialization. Interestingly, the
effect of initialization is much more pronounced in exact Newton case (33%) than in inexact case (6%).
In fact, although initialization speeds up both exact and inexact Newton, the former is at the end of the
day 15% faster. Also slight slowing down occurs with the constant energy equation. That meets our
expectations since we are then handling one extra equation.

50 particle system. Constant energy of the system is E � 26914. In this case we restricted time frame

Numerical solution of differential systems 27 of 36

0 0.2 0.4 0.6 0.8 1
59.6481

59.6482

59.6483

x

E

Figure 6. Energy of mech6.

−4 −2 0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

4
x = 0

Figure 7. Initial state of mech24.

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10
x 10

−6

x

E
−E

0

Figure 8. Energy balance of mech24.

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x

h

Figure 9. mech24: The step sizes of dopri54.

to x �´° 0 � 0 � 73 ± . The results are in Table 15. With this huge system inexact becomes remarkably faster
than exact; comparing the appropriate columns we see that the speed-up is 16% * 51%.

7. Conclusion and perspectives

We have enhanced our method proposed in Tuomela & Arponen (2000, 2001) by exploiting the structure
of the needed algorithms. First, we introduce an initialization step for the Newton algorithm which
typically reduced the computation time by 50%. Second, the matrix needed in the Newton iteration
has a particular block structure which makes it possible to use certain reduced size iterative solvers.
Third, we showed that sometimes one can reduce the size and computation time of the system in case
of invariants. All of these have been demonstrated by several examples. Finally we showed that our
method can easily deal with impasse points.

There are several directions where this work can be continued. One problem is that in the Newton
iteration we need second (and in the holonomic case even third) order differentials. One possibility to

28 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

−4 −2 0 2 4 6 8 10 12 14
−71

−69

−67

−65

−63

−61
x = 4.984

Figure 10. mech24: The configuration at x � 4 µ 984, without
conservation of energy.

−4 −2 0 2 4 6 8 10 12 14
−71

−69

−67

−65

−63

−61
x = 4.983

Figure 11. mech24: The configuration at x � 4 µ 983, with con-
servation of energy.

avoid forming these symbolically is to use automatic differentiation Griewank (2000). We did some
preliminary tests, but these did not result in faster code. However, it is quite possible that a more careful
implementation could be a competitive alternative. This will be explored in future papers.

We have not discussed stiff problems. Recall that the standard way is to consider DAEs as “infin-
itely” stiff, which implies that implicit methods should be used. However, as our approach shows DAEs
are not intrinsically stiff: indeed in all our examples (standard examples from DAE literature) explicit
methods worked very well. Of course some overdetermined problems are stiff, and then we should adapt
implicit schemes to our case. This will be reported elsewhere.

Finally in the present paper the examples are really quite “academic”. However, we have shown
that our method is reasonably fast even for quite large problems. The next step will be to handle some
“real life” problems. The work in this direction has already started: we are now collaborating with the
Laboratory of Mechatronics, Lappeenranta University of Technology, Finland in this direction. The
results of this research will appear elsewhere.

REFERENCES

Test set for IVP solvers, http://pitagora.dm.uniba.it/ ¶ testset//.
BHATIA, R. (1997) Matrix Analysis, Graduate texts in mathematics, vol. 169, Springer-Verlag.
BRENAN, K., CAMPBELL, S., & PETZOLD, L. (1989) Numerical solution of initial-value problems in differential-

algebraic equations, North-Holland.
DEMBO, R., EISENSTAT, S., & STEINHAUG, T. (1982) Inexact Newton methods, SIAM J. Numer. Anal., 19 (2),

400–408.
FISCHER, B. (1996) Polynomial based iteration methods for symmetric linear systems, Wiley-Teubner Series Ad-

vances in Numerical Mathematics, John Wiley & Sons Ltd.
GORIELY, A. (2001) Integrability and nonintegrability of dynamical systems, Advanced Series in Nonlinear Dy-

namics, vol. 19, World Scientific Publishing Co. Inc.
GRIEWANK, A. (2000) Evaluating derivatives, SIAM.
HAIRER, E., LUBICH, C., & ROCHE, M. (1989) The numerical solution of differential-algebraic systems by

Runge-Kutta methods, Lecture notes in mathematics, vol. 1409, Springer-Verlag.
HAIRER, E., NØRSETT, S., & WANNER, G. (1993) Solving ordinary differential equations I, Nonstiff problems,

2nd ed., Springer series in comp. math., vol. 8, Springer-Verlag.

Numerical solution of differential systems 29 of 36

HAIRER, E. & WANNER, G. (1991) Solving ordinary differential equations II, Stiff and differential-algebraic
problems, Springer series in comp. math., vol. 14, Springer-Verlag.

HORN, R. A. & JOHNSON, C. R. (1994) Topics in Matrix Analysis, Cambridge University press.
LEIMKUHLER, B. & REICH, S. (2005) Simulating Hamiltonian Dynamics, Cambridge University press.
MIAO, J. (1991) General expressions for the Moore-Penrose inverse of a 2 · 2 block matrix, Lin. Alg. Appl., 151,

1–15.
OLVER, P. J. (1986) Applications of Lie groups to differential equations, Graduate texts in mathematics, vol. 107,

Springer-Verlag.
RABIER, P. & RHEINBOLDT, W. (1994) On impasse points of quasilinear differential algebraic equations, J. Math.

Anal. Appl., 181, 429–454.
SAUNDERS, D. (1989) The geometry of jet bundles, London Math. Soc. Lecture note series, vol. 142, Cambridge

university press.
SMITH, S. T. (1994) Optimization techniques on Riemannian manifolds. In: A. BLOCH, ed. Hamiltonian and

gradient flows, algorithms and control., Amer. Math. Soc., Providence, RI, 113–136.
SPIVAK, M. (1979) A comprehensive introduction to differential geometry, vol 1–5, 2nd ed. Publish or Perish.
TREFETHEN, N. & BAU, D. (1997) Numerical linear algebra, SIAM.
TUOMELA, J. (1997) On singular points of quasilinear differential and differential-algebraic equations, BIT, 37,

966–975.
TUOMELA, J. & ARPONEN, T. (2000) On the numerical solution of involutive ordinary differential systems, IMA

J. Num. Anal., 20, 561–599.
, (2001) On the numerical solution of involutive ordinary differential systems: Higher order methods, BIT,

41, 599–628.

30 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

TABLE 1 rigidbody, Gen. Case: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 18049 4835(491) 18019 115(6)

Newt. steps: av(max) 0.135(3) 1.65(3) 0.0302(2) 0.819(3)
CPU dist 1.03 0.60 7.03 0.05
CPU proj 1.32 7.02 3.12 0.42
CPU total 2.52 7.78 12.34 0.48
w/INIT:

succ. (rej.) steps 18049 4835(491) 18019 115(6)
Newt. steps: av(max) 0.135(3) 1.65(3) 0.0302(2) 0.819(3)

CPU dist 0.95 0.51 6.77 0.04
CPU proj 0.95 4.05 1.95 0.27
CPU total 2.00 4.73 10.83 0.32

TABLE 2 rigidbody, Gen. Case: Run characteristics with inexact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 18049 4835(491) 18019 115(6)

Newt. steps: av(max) 0.135(3) 1.65(3) 0.0302(2) 0.819(3)
CPU dist 1.04 0.63 6.70 0.02
CPU proj 1.64 8.39 2.99 0.62
CPU total 2.86 9.29 11.80 0.64
w/INIT:

succ. (rej.) steps 18049 4835(491) 18019 115(6)
Newt. steps: av(max) 0.135(3) 1.65(3) 0.0302(2) 0.819(3)

CPU dist 1.06 0.61 6.75 0.02
CPU proj 1.34 5.89 2.25 0.45
CPU total 2.53 6.67 10.99 0.50

Numerical solution of differential systems 31 of 36

TABLE 3 rigidbody, Sys. with Invar.: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 18010 4902(800) 18016 134(11)

Newt. steps: av(max) 0.0805(3) 1.5(3) 0.0239(2) 0.793(2)
CPU dist 0.16 0.11 0.95 0.02
CPU proj 0.33 1.29 1.61 0.06
CPU total 0.56 1.56 4.08 0.12
w/INIT:

succ. (rej.) steps 18010 4902(800) 18016 134(11)
Newt. steps: av(max) 0.0805(3) 1.5(3) 0.0239(2) 0.793(2)

CPU dist 0.15 0.17 1.03 0.03
CPU proj 0.15 0.74 0.86 0.05
CPU total 0.44 1.09 3.37 0.09

TABLE 4 rigidbody, Sys. with Invar.: Run characteristics with inexact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 18010 4902(800) 18016 134(11)

Newt. steps: av(max) 0.0805(3) 1.5(3) 0.0239(2) 0.793(2)
CPU dist 0.13 0.20 1.07 0.01
CPU proj 0.33 1.69 1.27 0.13
CPU total 0.58 2.06 3.87 0.16
w/INIT:

succ. (rej.) steps 18010 4902(800) 18016 134(11)
Newt. steps: av(max) 0.0805(3) 1.5(3) 0.0239(2) 0.793(2)

CPU dist 0.19 0.16 1.16 0.01
CPU proj 0.21 1.07 0.66 0.08
CPU total 0.47 1.32 3.34 0.11

32 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

TABLE 5 plugflow, Sys. with Invar.: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 289 101537(4) 288 37(0)

Newt. steps: av(max) 2(2) 1(2) 1(2) 0.868(2)
CPU dist 0.03 11.15 0.09 0.01
CPU proj 0.05 37.88 0.25 0.05
CPU total 0.08 51.01 0.34 0.06
w/INIT:

succ. (rej.) steps 289 101558(4) 288 37(0)
Newt. steps: av(max) 2.99(3) 1.01(3) 1.3(3) 1.13(3)

CPU dist 0.01 10.42 0.12 0.01
CPU proj 0.08 17.90 0.17 0.03
CPU total 0.09 30.40 0.29 0.06

TABLE 6 plugflow, Sys. with Invar.: Run characteristics with inexact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 289 102705(4) 288 37(0)

Newt. steps: av(max) 23.8(26) 1.03(21) 2.45(11) 5.71(30)
CPU dist 0.01 12.10 0.13 0.01
CPU proj 0.51 45.56 0.50 0.18
CPU total 0.52 59.82 0.66 0.19
w/INIT:

succ. (rej.) steps 289 102705(4) 288 37(0)
Newt. steps: av(max) 23.8(26) 1.03(21) 2.45(11) 5.71(30)

CPU dist 0.01 10.72 0.10 0.02
CPU proj 0.51 16.54 0.41 0.15
CPU total 0.52 29.41 0.54 0.18

TABLE 7 partmagnfield, Gen. Case: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 3875 2106(0) 3825 55(11)

Newt. steps: av(max) 1.81(2) 2(2) 0(0) 1.75(4)
CPU dist 0.30 0.29 1.96 0.02
CPU proj 6.42 11.15 0.78 1.08
CPU total 6.76 11.56 3.26 1.13
w/INIT:

succ. (rej.) steps 3875 2106(0) 3825 55(11)
Newt. steps: av(max) 1.81(2) 2(2) 0(0) 1.75(4)

CPU dist 0.24 0.30 2.05 0.03
CPU proj 3.90 6.75 0.34 0.74
CPU total 4.20 7.10 2.86 0.79

Numerical solution of differential systems 33 of 36

TABLE 8 partmagnfield, Gen. Case: Run characteristics with inexact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 3875 2106(0) 3825 55(11)

Newt. steps: av(max) 1.81(2) 2(2) 0(0) 1.75(4)
CPU dist 0.32 0.22 1.91 0.04
CPU proj 7.44 12.87 0.50 1.72
CPU total 7.77 13.25 3.01 1.77
w/INIT:

succ. (rej.) steps 3875 2106(0) 3825 55(11)
Newt. steps: av(max) 1.81(2) 2(2) 0(0) 1.75(4)

CPU dist 0.28 0.30 1.90 0.02
CPU proj 5.48 9.57 0.37 1.46
CPU total 5.84 9.97 2.87 1.50

TABLE 9 partmagnfield, Sys. with Invar.: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 2860 1596(10) 2860 44(11)

Newt. steps: av(max) 1.43(2) 1.93(2) 0(0) 1.47(3)
CPU dist 0.03 0.05 0.25 0.01
CPU proj 1.11 2.04 0.33 0.22
CPU total 1.15 2.13 0.88 0.25
w/INIT:

succ. (rej.) steps 2860 1596(10) 2860 44(11)
Newt. steps: av(max) 1.43(2) 1.93(2) 0(0) 1.47(3)

CPU dist 0.01 0.04 0.10 0.01
CPU proj 0.70 1.29 0.22 0.16
CPU total 0.73 1.35 0.71 0.18

TABLE 10 partmagnfield, Sys. with Invar.: Run characteristics with inexact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 2860 1596(10) 2860 44(11)

Newt. steps: av(max) 1.43(2) 1.93(2) 0(0) 1.47(3)
CPU dist 0.01 0.03 0.27 0.02
CPU proj 1.44 2.72 0.27 0.39
CPU total 1.50 2.80 0.78 0.43
w/INIT:

succ. (rej.) steps 2860 1596(10) 2860 44(11)
Newt. steps: av(max) 1.43(2) 1.93(2) 0(0) 1.47(3)

CPU dist 0.03 0.03 0.24 0.00
CPU proj 1.11 2.02 0.21 0.36
CPU total 1.15 2.13 0.70 0.38

34 of 36 J. TUOMELA, T. ARPONEN, V. NORMI

TABLE 11 3Dmhd, Gen. Case: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 362730 9958(278) 390587 53(0)

Newt. steps: av(max) 0.732(2) 1.76(2) 0.000197(2) 0.981(3)
CPU dist 22.34 1.22 167.30 0.02
CPU proj 206.99 35.08 68.91 0.49
CPU total 232.87 36.69 295.97 0.53
w/INIT:

succ. (rej.) steps 362730 9958(278) 390587 53(0)
Newt. steps: av(max) 0.732(2) 1.86(3) 0.000197(2) 1.57(4)

CPU dist 22.67 1.25 166.80 0.03
CPU proj 43.08 18.89 28.71 0.38
CPU total 69.40 20.51 256.31 0.43

TABLE 12 3Dmhd, Sys. with Invar.: Run characteristics with exact Newton.

Euler Euler dopri54 dopri54
(constant) (adaptive) (constant) (adaptive)

no INIT:
succ. (rej.) steps 24546 5545(1) 27094 35(0)

Newt. steps: av(max) 1.05(2) 1.73(2) 1(2) 0.944(3)
CPU dist 0.16 0.13 1.77 0.01
CPU proj 4.90 4.31 7.27 0.07
CPU total 5.21 4.63 12.22 0.09
w/INIT:

succ. (rej.) steps 24546 5545(1) 27094 35(0)
Newt. steps: av(max) 1.05(2) 1.73(2) 1(2) 1.06(4)

CPU dist 0.26 0.10 1.74 0.01
CPU proj 1.38 2.26 2.45 0.04
CPU total 1.78 2.46 7.10 0.05

TABLE 13 mech6, Holon. Case: Run characteristics (dopri54, adaptive).

energy ¸ Newton method yes ¸ exact yes ¸ inexact no ¸ exact no ¸ inexact

no INIT:
succ. (rej.) steps 22(1) 22(1) 23(1) 23(1)

Newt. steps: av(max) 0.913(3) 0.913(3) 0.958(3) 0.958(3)
CPU dist 0.01 0.04 0.05 0.06
CPU proj 1.91 1.55 1.52 0.99
CPU total 2.01 1.69 1.65 1.10
w/INIT:

succ. (rej.) steps 22(1) 22(1) 23(1) 23(1)
Newt. steps: av(max) 0.913(3) 0.913(3) 0.958(3) 0.958(3)

CPU dist 0.03 0.04 0.05 0.05
CPU proj 1.20 1.42 0.89 0.88
CPU total 1.30 1.53 0.99 0.97

Numerical solution of differential systems 35 of 36

TABLE 14 mech24, Holon. Case: Run characteristics (dopri54, adaptive).

energy ¸ Newton method yes ¸ exact yes ¸ inexact no ¸ exact no ¸ inexact

no INIT:
succ. (rej.) steps 49(10) 49(10) 49(11) 49(11)

Newt. steps: av(max) 1.7(3) 2.14(5) 1.44(3) 1.64(4)
CPU dist 1.98 1.80 1.96 1.99
CPU proj 353.08 292.66 308.35 234.99
CPU total 364.70 303.78 315.23 240.98
w/INIT:

succ. (rej.) steps 49(10) 49(10) 49(11) 49(11)
Newt. steps: av(max) 1.8(4) 2.02(5) 1.44(3) 1.58(4)

CPU dist 1.92 1.90 1.98 1.91
CPU proj 234.36 274.33 191.06 217.25
CPU total 242.96 285.22 196.19 222.62

TABLE 15 mech50, Holon. Case: Run characteristics (dopri54, adaptive).

energy ¸ Newton method yes ¸ exact yes ¸ inexact no ¸ exact no ¸ inexact

no INIT:
succ. (rej.) steps 14(4) 14(4) 14(4) 14(4)

Newt. steps: av(max) 1.53(3) 2.33(5) 1.47(3) 1.6(4)
CPU dist 2.31 2.37 2.36 2.40
CPU proj 1003.40 483.38 821.63 352.23
CPU total 1071.50 586.61 889.01 432.84
w/INIT:

succ. (rej.) steps 14(4) 14(4) 14(4) 14(4)
Newt. steps: av(max) 1.53(4) 2.33(5) 1.47(3) 1.53(4)

CPU dist 2.31 2.34 2.39 2.36
CPU proj 621.41 455.66 485.03 324.82
CPU total 665.83 557.81 529.45 399.21

36 of 36 LIST OF FIGURES

List of Figures

1 Solution curve of the rigid body and its projection. 23
2 The singularity of the two phase plug flow. 24
3 Solution of the two phase plug flow. 24
4 Solution curve of the particle in magnetic field and its projection. 25
5 Solution curve of 3D-MHD and its projection. 26
6 Energy of mech6. 27
7 Initial state of mech24. 27
8 Energy balance of mech24. 27
9 mech24: The step sizes of dopri54. 27
10 mech24: The configuration at x � 4 � 984, without conservation of energy. 28
11 mech24: The configuration at x � 4 � 983, with conservation of energy. 28

