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Abstract. Concepts of angular and approximate limit are introduced. We give
a brief introduction to these and related concepts in the context of quasiregular
mappings of Rn. The main goal in the study of this topic is to establish criteria for a
quasiregular mapping to have angular and approximate limits at a given boundary
point. We prove a version of the Schwarz lemma for quasiregular mappings by
using results of P. Järvi, S. Rickman and M. Vuorinen. In the main result, we give
a criterion for a quasiregular mapping to have a limit through a set of large upper
measure density. In the last section, we study the angular limits of quasiregular
mappings by applying Vuorinen’s results involving the Harnack inequality.

1. Introduction

A classical result by E. Lindelöf states that a conformal mapping of B2 having
an asymptotic value α at a boundary point b also has an angular limit α at b. A
similar result for quasiconformal mappings in R3 was proved by F. Gehring in [2].
Another classical result, by P. Koebe, shows that if a bounded analytic function f
tends to zero along a sequence of arcs in the unit disk which approach a subarc in
the boundary, then f must be identically zero. Refinements of Koebe’s results were
given by D. Rung in [7].

The theory of quasiregular mappings gives a natural generalization for the geomet-
ric aspects of the theory of analytic functions in the complex plane. On the other
hand, it can also be understood as a generalization of the theory of quasiconformal
mappings. In light of these results, it is natural to ask what results of this type hold
for quasiregular mappings. These topics were studied by M. Vuorinen in [8], [10] and
[11, Chapter 15]. Besides angular limits, other concepts of limit which are useful in
this setting are known. In [9] Vuorinen studied relations between these concepts in
the more general setting of Harnack functions.

The results stated above lead us to the following three questions:

(1) Under which conditions do the limit concepts studied in [9] imply each other?
(2) Can the results concerning angular limits proved in [8] and [10] be improved

with more careful analysis of the mapping involved? In particular, what kind
of role does the local topological index of the mapping play in the boundary
behavior?

(3) What results do we have for quasiregular mappings in the case of the other
limit concepts, such as approximate limits?

In this article we present the notions of angular and approximate limits. Then
we give a brief introduction to the methods used to study questions (2) and (3).
In the main result, Theorem 3.5, we give a condition for a quasiregular mapping
to have a limit through a set of large upper measure density, in terms of the local
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topological index. More results of this type are given in [5, pp. 48–53]. In Section 4
we give an example of how the techniques from [9] can be applied in the context of
quasiregular mappings. A thorough investigation of the question (1) can be found in
[5, pp. 36–45].

2. Notation and preliminaries

We shall follow standard notation and terminology adopted from [6] and [11]. For
x ∈ Rn, n ≥ 2, and r > 0 let Bn(x, r) = {z ∈ Rn : |z − x| < r}, Sn−1(x, r) =
∂Bn(x, r), Bn(r) = Bn(0, r), Sn−1(r) = ∂Bn(r), Bn = Bn(1), Hn = {x ∈ Rn : xn >
0}, Bn

+ = Bn ∩ Hn, and Sn−1 = ∂Bn. The standard coordinate unit vectors are
denoted by e1, . . . , en. Lebesgue measure on Rn is denoted by m.

The hyperbolic metrics in the upper half space Hn or the unit ball Bn (see [11,
pp. 21, 23.]) are denoted by ρ(x, y). For the half space Hn we have the following
formula for the hyperbolic metric:

(2.1) cosh ρ(x, y) = 1 +
|x− y|2

2xnyn
, x, y ∈ Hn.

For a in Hn or in Bn and M > 0 the hyperbolic ball {x : ρ(a, x) < M} is denoted by
D(a,M). It is well known that D(a,M) = Bn(z, r) for some z and r.

2.2. Quasiregular mappings. A mapping f : G → Rn, n ≥ 2, of a domain G in
Rn is called quasiregular if f is in ACLn, and there exists a constant K, 1 ≤ K <∞
such that

|f ′(x)|n ≤ KJf (x), |f ′(x)| = max
|h|=1
|f ′(x)h|,

a.e. in G, where f ′(x) is the formal derivative. The smallest K ≥ 1 for which this
inequality is true is called the outer dilatation of f and denoted by KO(f). If f is
quasiregular, then the smallest K ≥ 1 for which the inequality

Jf (x) ≤ Kl(f ′(x))n, l(f ′(x)) = min
|h|=1
|f ′(x)h|,

holds a.e. in G is called the inner dilatation of f and denoted by KI(f). The maximal
dilatation of f is the number K(f) = max{KI(f), KO(f)}. If K(f) ≤ K, f is said
to be K-quasiregular.

Let f : G→ Rn be a quasiregular mapping. We denote by i(x, f) the infimum of
supy cardf−1(y) ∩ U where U runs through the neighborhoods of x. The number
i(x, f) is called the local (topological) index of f at x.

Definition 2.3. Let f : Hn → Rn be continuous and let b ∈ ∂Hn. The mapping f is
said to have

(1) A sequential limit α ∈ Rn
at 0 if there exists a sequence (bk) in Hn with

bk → 0 and f(bk)→ α.
(2) A limit α ∈ Rn

at 0 through a set E, if 0 ∈ E ⊂ Hn ∪ {0} and f(x) → α as
x→ 0 and x ∈ E.

(3) An approximate limit α at 0 if limr→0m
(
(Hn \Eε)∩Bn(r)

)
r−n = 0 for every

ε > 0, where Eε = {x ∈ Hn : |f(x)− α| < ε}.
(4) An angular limit α at 0 if for each ϕ ∈ (0, π/2), f(x) → α when x → 0 and

x ∈ C(ϕ) = {z = (z1, . . . , zn) ∈ Hn : zn > |z| cosϕ}.
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Remarks 2.4. (1) Let f : Bn → Rn be continuous, bk ∈ Bn, bk → b ∈ ∂Bn,
f(bk) → β and β ∈ Rn

. It is easy to see by continuity that there is an open
set E, such that bk ∈ E, b ∈ E and f(bk)→ β, and if x→ b for x ∈ E, then
f(x)→ β.

(2) If f : (X, d1)→ (Y, d2) is uniformly continuous, f has a sequential limit along
(bk) and if rk > rk+1 > 0, limk→∞ rk = 0, then f has a limit along the set
E =

⋃∞
k=1Bk, Bk = {z ∈ X : d1(z, bk) < rk}.

(3) In (2) it is essential that limk→∞ rk = 0. To see this consider the map f : B2 →
B2 \ {0} defined by formula f(z) = exp(g(z)), where g(z) = −(1 + z)/(1− z),
z ∈ B2, fix β ∈ B2 \ {0} and let bk ∈ B2, bk → 1 with f(bk) = β. Then
f : (B2, ρ) → (B2, ρ) is uniformly continuous and there is m > 0 such that
fD(bk,m) is a set independent of k.

Let f : G → Rn be continuous. The set C(f, b) of all sequential limits of f at a
boundary point b ∈ ∂G is called the cluster set of f at b. If E ⊂ ∂G is nonempty, we
denote C(f, E) =

⋃
b∈E C(f, b). It is clear that C(f, b) is always a compact, nonempty

subset of fG. The mapping f is called boundary-preserving if C(f, ∂G) ⊂ ∂fG. Note
that the closures here are taken with respect to Rn

.

Theorem 2.5. If f : Bn → Rn is K-quasiregular and bk → b ∈ ∂Bn, f(bk) → β,
C(f, b) ⊂ ∂fBn and E =

⋃∞
k=1D(bk, 1), then limx→b, x∈E f(x) = β.

Proof. For C(f, b) 6= {β}, the claim follows from [11], Lemma 13.21 and Example
13.7.(1). If C(f, b) = {β}, then the claim is clearly true as limx→b, x∈Bn f(x) = β. �

Corollary 2.6. If f : Bn → Rn is a boundary preserving quasiregular mapping, bk →
b ∈ ∂Bn, f(bk)→ β, then limx→b, x∈E f(x) = β, where E =

⋃∞
k=1D(bk, 1).

Definition 2.7. Let x ∈ Rn. If the set Ax = {r > 0 : Sn−1(x, r) ∩ E 6= ∅} is
measurable we define the upper radial density of E at x by

rad dens(E, x) = lim sup
r→0

m1

(
Ax ∩ (0, r)

)
r−1.

Corollary 2.8. If f is a boundary preserving quasiregular map, f : Bn → fBn and
bk → e1, f(bk)→ β, bk ∈ [0, e1), then there is a set E ⊂ [0, e1) with rad dens(E, e1) >
0 such that limx→e1, x∈E f(x) = β.

Proof. By Corollary 2.6 we may apply Theorem 2.5, to find the set E =
⋃∞
k=1D(bk, 1)

such that limx→e1, x∈E f(x) = β. From (2.1) it follows immediately that

rad dens(E, e1) > 0. �

3. Measure densities and quasiregular mappings

In this section we define the upper and lower measure densities and study their
relation to the boundary behavior of quasiregular mappings.

Definition 3.1. Let E ⊂ Rn be a measurable set and x ∈ Rn. The upper measure
density of E at x is defined to be

θn∗(E, x) = lim sup
r→0

m
(
E ∩B

n
(x, r)

)
Ωnrn

,

where Ωn = m(Bn), and the lower measure density θn∗ (E, x) is the corresponding
lim inf. If θn∗(E, x) = θn∗ (E, x), this common value is the measure density θn(E, x)
of E at x.
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In order to prove the main result of this section, we need the following lemmas,
first of which is a simple geometric observation.

Lemma 3.2. Let DM = D(en,M) and VM = Bn
+ \DM . Then

m(VM)

m(Bn
+)
≤ 2Ωn−1

Ωn

1

coshM
.

In particular, m(VM)/m(Bn
+)→ 0 as M →∞.

Proof. Let sM = dist(∂DM ∩ Sn−1, ∂Hn). By [11, 2.11.]

D(en,M) = Bn
(
(coshM)en, sinhM

)
.

By similar triangles we obtain the equality

sM = 1/ coshM.

Because m(VM) ≤ sMΩn−1 and m(Bn
+) = Ωn/2, we have

0 ≤ m(VM)

m(Bn
+)
≤ sM

2Ωn−1

Ωn

=
2Ωn−1

Ωn

1

coshM
.

�
The next lemma is a version of the Schwarz lemma for quasiregular mappings in-

volving the local topological index i(0, f). The applications of this result are based
on the fact that the estimate improves when i(0, f) grows. The basic geometric intu-
ition behind this phenomenon can be seen by observing the behavior of the mapping
z 7→ zp in the complex plane when the exponent p grows to infinity.

Lemma 3.3. Let r ∈ (0, 1/2], and let f : Bn → Bn be a K-quasiregular mapping
with f(0) = 0. Then

|f(y)| ≤
(
4r/3

)µA
; A = β1+2dρ(y,0) ∈ (0, 1)

for y ∈ Bn, where µ = c2i(0, f)1/(n−1), c2 > 0, d > 1 are constants depending only on
n, K and β ∈ (0, 1) depends only on n, K and r.

Proof. By [4, Corollary 3.9.], |f(x)| ≤ (4|x|/3)µ for x ∈ Bn(r) and by [8, Lemma
2.22.] we have |f(y)| ≤ (4r/3)µA for y ∈ Bn. �

Lemma 3.4. Let f : Hn → Bn be K-quasiregular with f(zk) = 0, zk = |zk|en, zk → 0,
c2, d, β be as in Lemma 3.3 and let µk ≡ c2i(zk, f)1/(n−1) →∞. If

Mk =
log µk

4d log 1
β

,

and E =
⋃∞
k=1D(zk,Mk), then f(x)→ 0 as x→ 0, x ∈ E.

Proof. Let gk be a Möbius transformation with gk(B
n) = Hn and gk(0) = zk. Let

r = 1/2. Then by Lemma 3.3

|f ◦ gk(y)| ≤
(
2/3
)µkA,

for y ∈ Bn, where A is as in Lemma 3.3.
We need to find Mk such that for ρ(y, zk) ≤Mk,

µkβ
1+2dMk →∞.
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This holds for

β2dMk =
1
√
µk
,

which is equivalent to

Mk =
log µk

4d log 1
β

.

�

Theorem 3.5. Let f : Hn → Bn be a K-quasiregular mapping with f(zk) = 0,
zk ∈ (0, en) for |zk| > |zk+1| → 0 and µk ≡ c2i(zk, f)1/(n−1) →∞. Then there is a set
E such that {zk} ⊂ E, limx→0, x∈E f(x) = 0 and θn∗(E, 0) = θn(Hn, 0). Furthermore,

rad dens(E, 0) = 1.

Proof. By Lemma 3.4, we may find Mk such that limx→0, x∈E f(x) = 0 for E =⋃∞
k=1D(zk,Mk), and by Lemma 3.2

lim sup
k→∞

m(E ∩Bn
+(|zk|))

m(Bn
+(|zk|))

= 1.

It follows from (2.1) that rad dens(E, 0) = 1. �

4. Harnack condition and uniform Harnack condition

In this section we show that a quasiregular mapping has an angular limit at the
origin, if it has a limit at the origin through a set with the complement of measure
density zero in the upper half space Hn. The proof is based on the Harnack inequality
and related results from [9].

4.1. Harnack’s inequality. Let G be a proper domain in Rn, n ≥ 2, and let
u : G → R be a continuous, nonnegative function. Then u is said to be a Harnack
function if there are constants λ ∈ (0, 1) and Cλ ≥ 1 such that the inequality

(4.2) max
B

n
(x,λr)

u(z) ≤ Cλ min
B

n
(x,λr)

u(z)

holds whenever Bn(x, r) ⊂ G. A continuous, nonnegative function u : G→ R is said
to satisfy a uniform Harnack inequality if it satisfies the Harnack inequality (4.2) for
all λ ∈ (0, 1) and if Cλ → 1 when λ→ 0.

4.3. Modulus metric µG. Let Γ be a path family in Rn
. We denote by M(Γ) the

conformal modulus of Γ. Let G be a proper subdomain of Rn. For x, y ∈ G
µG(x, y) = inf

Cxy

M
(
∆(Cxy, ∂G;G)

)
,

where the infimum is taken over all continua Cxy such that Cxy = γ[0, 1] and γ is
a path with γ(0) = x and γ(1) = y. Here ∆(Cxy, ∂G;G) is the family of all closed
non-constant curvers joining Cxy and ∂G in G. The conformal invariant µG is called
the modulus metric or the conformal metric of the domain G.

4.4. Quasihyperbolic metric and metric jG. Let G a proper subdomain of Rn.
For x ∈ G let d(x) = dist(x, ∂G) ∈ (0,∞). We define

kG(a, b) = inf
γ

∫
γ

ds

d(x)
,
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where γ runs through all rectifiable curves with a, b ∈ γ. It is well-known that kG is
a metric in G. The metric kG is called the quasihyperbolic metric in G. From the
definition it is clear that if G and G′ are are domains with G′ ⊂ G, then

(4.5) kG(x, y) ≤ kG′(x, y); x, y ∈ G′.
Let

jG(x, y) = log
(

1 +
|x− y|

min{d(x), d(y)}

)
for x, y ∈ G. It is well-known (see [11, 2.34.]) that jG(x, y) is also a metric in G.

A useful inequality ([3, Lemma 2.1]) is

(4.6) jG(x, y) ≤ kG(x, y); x, y ∈ G.
A proper subdomain G of Rn is called uniform, if there exist a constant A = A(G) ≥ 1
such that

(4.7) kG(x, y) ≤ AjG(x, y); x, y ∈ G.
The unit ball Bn and the half space Hn are uniform domains with the constant A = 2
(see [1, 7.56] and [11, p.35]).

Lemma 4.8. Let f : Hn → Bn be K-quasiregular and α ∈ Sn−1. Then u(x) =
|f(x)− α| satisfies the uniform Harnack inequality.

Proof. By [11, Lemma 8.31.] and [11, 10.18.]

(4.9) cnjBn

(
f(x), f(y)

)
≤ µBn

(
f(x), f(y)

)
≤ KµHn(x, y),

where cn is a constant depending only on n. Now by uniformity of Bn, (4.7), we have

(4.10) kBn

(
f(x), f(y)

)
≤ 2jBn

(
f(x), f(y)

)
.

Furthermore, Bn ⊂ Rn \ {α} and hence by (4.5),

(4.11) kRn\{α}
(
f(x), f(y)

)
≤ kBn

(
f(x), f(y)

)
.

By [11, 3.5], the following inequality holds:

(4.12)

∣∣∣∣ log
|f(x)− α|
|f(y)− α|

∣∣∣∣ ≤ kRn\{α}
(
f(x), f(y)

)
.

By combining (4.10), (4.11) and (4.12), we obtain∣∣∣∣ log
|f(x)− α|
|f(y)− α|

∣∣∣∣ ≤ 2jBn

(
f(x), f(y)

)
,

and hence by (4.9)

u(x) ≤ exp
(2K

cn
µHn(x, y)

)
u(y)

for all x, y ∈ Hn. It follows that u satisfies the uniform Harnack inequality. �

Theorem 4.13. [9, Theorem 6.13.] Let u : Hn → R+ be a continuous function,
E ⊂ Hn with θn(Hn \ E, 0) = 0, and suppose that u(x) → a as x → 0 in the set E.
Then u has an angular limit a at 0 if u : Hn → R+ satisfies the uniform Harnack
inequality.

Theorem 4.13 together with Lemma 4.8 immediately gives us the following result:

Theorem 4.14. Let f : Hn → Bn be a quasiregular mapping, α ∈ Sn−1 and E ⊂ Hn

with θn(Hn \ E, 0) = 0. Suppose that f(x) → α as x → 0 in the set E. Then f has
an angular limit α at 0.
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[2] F. W. Gehring: The Carathéodory convergence theorem for quasiconformal mappings in the
space, Ann. Acad. Sci. Fenn. Ser. A I 336/11, 1–21, 1963.

[3] F. W. Gehring and B. P. Palka: Quasiconformally homogenous domains, J. Analyse Math.
30, 172–199, 1976.

[4] P. Järvi: On the zeros and growth of quasiregular mappings, J. Analyse Math. 82, 347–362,
2000.

[5] A. Rasila: Conformal invariants and boundary behavior of quasiregular mappings, Licentiate
Thesis, University of Helsinki, 2003.

[6] S. Rickman: Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), Vol. 26, Springer-Verlag,
Berlin, 1993.

[7] D. C. Rung: Behavior of holomorphic functions in the unit disk on arcs of positive diameter,
J. Math. Kyoto Univ. 8, 417–464, 1968.

[8] M. Vuorinen: Capacity densities and angular limits of quasiregular mappings, Trans. Amer.
Math. Soc. 263, 343–354, 1981.

[9] M. Vuorinen: On the Harnack constant and the boundary behavior of Harnack functions,
Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 259–277, 1982.

[10] M. Vuorinen: Koebe Arcs and Quasiregular Mappings, Math. Z. 190, 95–106, 1985.
[11] M. Vuorinen: Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., Vol.

1319, Springer-Verlag, Berlin, 1988.

Department of Mathematics, University of Helsinki, Helsinki, Finland
E-mail address: arasila@csc.fi


