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Abstract. The numerical performance of the AFEM method of K. Samuelsson is studied in
the computation of moduli of quadrilaterals.

1. Introduction

The moduli of quadrilaterals and rings are some of the fundamental tools in geometric
function theory, see [Ahl], [AVV], [Küh], [LV]. The purpose of this paper is to report on our
experimental work on the numerical computation of the moduli of quadrilaterals, based on the
algorithms and software of [BSV] and motivated by the geometric considerations in [HVV] and
[DV]. The methods considered here may be classified into two classes:

(1) methods based on the definition of the modulus and on conformal mapping of the quadri-
lateral onto a canonical rectangle,

(2) methods based on the solution of the Dirichlet-Neumann problem for the Laplace equa-
tion.

With the exception of a few special cases both methods lead to extensive numerical com-
putation. For both classes of methods there are several options, see [Gai],[Hen], [Pap]. Among
other things, historical remarks are given in [Por].

We study the case of a polygonal quadrilateral and the way its modulus depends on the
shape of the quadrilateral. Following the approach of [BSV] our main method is the adaptive
finite element method AFEM of Klas Samuelsson and it belongs to class (2). We compare this
method to a method of class (1), the Schwarz-Christoffel method of L.N. Trefethen [DrTr] and
its MATLAB implementation, the SC Toolbox written by T. Driscoll [Dri]. In the two test
cases we have used, the performance of the SC Toolbox was superior to AFEM. On the other
hand, the AFEM software applies also to computation of moduli of polygonal ring domains as
shown in [BSV]. AFEM also has advantage in the problems where the quadrilateral has large
number of vertices. This situation arises when approximating nonpolygonal quadrilaterals (e.g.
Example 3.7). We will report our results also in [RV2].
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2. Preliminaries

A Jordan domain D in C with marked (positively ordered) points z1, z2, z3, z4 ∈ ∂D is a
quadrilateral and denoted by (D; z1, z2, z3, z4) . We use the canonical map of quadrilateral onto
a rectangle (D′; 1 + ih, ih, 0, 1), with the vertices corresponding, to define the modulus h of a
quadrilateral (D; z1, z2, z3, z4) . The modulus of (D; z2, z3, z4, z1) is 1/h .

We mainly study the situation where the boundary of D consists of the polygonal line
segments through z1, z2, z3, z4 (always positively oriented). In this case, the modulus is denoted
by QM(D; z1, z2, z3, z4). If the boundary of D consists of straight lines connecting the given
boundary points, we omit the domain D and denote the corresponding modulus simply by
QM(z1, z2, z3, z4).

The following problem is known as the Dirichlet-Neumann problem. Let D be a region in
the complex plane whose boundary ∂D consists of a finite number of regular Jordan curves,
so that at every point, except possibly at finitely many points, of the boundary a normal is
defined. Let ψ to be a real-valued continuous function defined on ∂D. Let ∂D = A∪B where
A,B both are unions of Jordan arcs. Find a function u satisfying the following conditions:

1. u is continuous and differentiable in D.
2. u(t) = ψ(t), t ∈ A.
3. If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψ(t), t ∈ B.

One can express the modulus of a quadrilateral (D; z1, z2, z3, z4) in terms of the solution
of the Dirichlet-Neumann problem as follows. Let γj, j = 1, 2, 3, 4 be the arcs of ∂D between
(z1, z2) , (z2, z3) , (z3, z4) , (z4, z1), respectively. If u is the (unique) harmonic solution of the
Dirichlet-Neumann problem with boundary values of u equal to 0 on γ2, equal to 1 on γ4 and
with ∂u/∂n = 0 on γ1 ∪ γ3 , then by [Ahl, p. 65/Thm 4.5]:

(2.1) QM(D; z1, z2, z3, z4) =

∫

D

|▽u|2 dm.

We also have the following connection to the modulus curve family (see e.g. [AVV, pp. 158–
165]): QM(D; z1, z2, z3, z4) = M(Γ), where Γ is the family of all curves joining γ2 and γ4 in
D.

Another approach is to use the Schwarz-Christoffel formula approximate the conformal
mapping f onto the canonical rectangle. This formula gives an expression for a conformal map
from the upper half-plane onto the interior of a n-gon. Its vertices are denoted w1, . . . , wn, and
α1π, . . . , αnπ are the corresponding interior angles. The preimages of the vertices (prevertices)
are denoted by z1 < z2 < . . . < zn. The Schwarz-Christoffel formula for the map f is

(2.2) f(z) = f(z0) + c

∫ z

z0

n−1
∏

j=1

(ζ − zj)
αj−1dζ,

where c is a (complex) constant. The main difficulty in applying this formula is that the
prevertices zj cannot, in general, be solved analytically. By using a Möbius transformation,
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one may choose three of the prevertices arbitarily. The remaining n − 3 prevertices are then
obtained by solving a system of nonlinear equations. Several methods for solving this problem
are discussed in [DrTr], [DrVa], [Bis]. A MATLAB toolbox by T. Driscoll [Dri] contains a
collection of algorithms for constructing Schwarz-Christoffel maps and computing the modulus
of polygonal quadrilaterals. The toolbox also gives an accuracy estimate for the numerical
approximation of the modulus.

3. Experiments

The solutions of the Dirichlet and the Dirichlet-Neumann problems can be approximated
by the method of finite elements, see [Hen, pp. 305–314], [Pap]. Hence, this method can also be
used to approximate the modulus of quadrilaterals and rings. The Dirichlet-Neumann problem
can be numerically solved with AFEM (Adaptive FEM) numerical PDE analysis package by
Klas Samuelsson. This software applies, e.g., to compute the modulus (capacity) of a bounded
ring whose boundary components are broken lines. Examples and applications for this software
are given in [BSV]. In [HVV] a theoretical formula for computing QM(A,B, 0, 1) was given with
its implementation with Mathematica. This lead to a study of the modulus of quadrilateral in
[DV]. In the course of the work on [DV], the variation of the modulus was studied when one
of the vertices varies and others are kept fixed, and several conjectures were formulated. For
these purposes, neither the theoretical algorithm in [HVV] nor the implemented Mathematica
program based on it were no longer adequate and we started to look for a robust program to
compute QM(A,B, 0, 1) . It seems that the AFEM software of Samuelsson is very efficient for
this purpose. As in [RV1] we use the AFEM software of Samuelsson for computations involving
moduli of polygonal quadrilaterals.

3.1. Example. Let f(x, y) = QM(x+ iy, i, 0, 1)−1/QM(y+ ix, i, 0, 1). Then by [Hen, p. 433]
we see that f(x, y) ≡ 0. Therefore we may use this function as a measure of the accuracy of
AFEM software and SC Toolbox.
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Figure 1: Function log10(|f(x, y)| + 10−10) for x ∈ (0, 3], y ∈ (0, 3] with AFEM (left) and
SC Toolbox (right).
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3.2. Example. We study the function

g(t, h) = QM(1 + heit, heit, 0, 1).

An analytic expression for this function has been given in [AQVV, 2.3]:

(3.3) g(t, h) = K
′(rt/π)/K(rt/π),

where

(3.4) ra = µ−1
a

(

πh

2 sin(πa)

)

, for 0 < a ≤ 1/2,

and the decreasing homeomorphism µa : (0, 1) → (0,∞) is defined by

(3.5) µa(r) ≡
π

2 sin(πa)

F (a, 1 − a; 1; 1 − r2)

F (a, 1 − a; 1; r2)
.

Here

F (a, b; c; z) = 2F1(a, b; c; z) ≡
∞

∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1,

is the Gaussian hypergeometric function,

(a, n) ≡ a(a+ 1)(a+ 2) . . . (a + n− 1), (a, 0) = 1 for a 6= 0,

is the shifted factorial function, and the elliptic integrals K(r),K′(r) are defined by

K(r) =
π

2
F (1/2, 1/2; 1; r2), K

′(r) = K(r′), and r′ =
√

1 − r2.
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Figure 2: Function µa(r).
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The function g(t, h) is the modulus of the parallelogram with opposite sides 1 and h,
respectively, and we see that there are three cases h ∈ (0, 1), h = 1 and h > 1. In the first
case the function is monotone increasing with respect to t ∈ (0, π/2), in the second case the
function g(t, 1) ≡ 1 is constant and in the third case decreasing.
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Figure 3: Function g(t, h) for t ∈ (0, π/2) and h ∈ [1/2, 2] (left), and error estimate
log10(|gexact(t, h) − gnumer(t, h)| + 10−10) for the function g(t, h) (right).
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Figure 4: Function g(t, 1.5) for t ∈ (0, π/2).
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3.6. Example. The modulus QM(1 + i|a− 1|, i|b|, 0, 1) has an analytic expression if |a− 1| =
h = |b| + 1 . Bowman [Bow, pp. 103-104] gives a formula for the conformal modulus of the
quadrilateral with vertices 1 + hi, (h− 1)i, 0, and 1 when h > 1 as M(h) ≡ K(r)/K(r′) where

r =

(

t1 − t2
t1 + t2

)2

, t1 = µ−1
1/2

( π

2c

)

, t2 = µ−1
1/2

(πc

2

)

, c = 2h− 1 .

Therefore, the quadrilateral can be conformally mapped onto the rectangle 1+ iM(h), iM(h),
0, 1, with the vertices corresponding to each other. It is clear that h − 1 ≤ M(h) ≤ h . The
formula

M(h) = h+ c+O(e−πh), c = −1/2 − log 2/π ≈ −0.720636 ,

is given in [PS]. As fas as we know there is neither an explicit nor asymptotic formula for the
case when the angle π/4 of the trapezoid is equal to α ∈ (0, π/2) . We compute the modulus
QM(ih, i(h− 1), 0, 1) by using Bowman’s formula, AFEM and Schwarz-Christoffel Toolbox.

h AFEM SC Accuracy/SC Bowman Error/AFEM Error/SC
1.1 0.3403159 0.3403135 1.787e− 08 0.3403135 2.41655e− 06 1.57002e− 09
1.2 0.4614938 0.4614926 1.734e− 08 0.4614926 1.20727e− 06 2.98441e− 09
1.3 0.5704380 0.5704374 5.310e− 08 0.5704374 5.83493e− 07 4.59896e− 09
1.4 0.6747519 0.6747518 1.046e− 07 0.6747518 8.83554e− 08 6.24458e− 09
1.5 0.7769433 0.7769434 2.408e− 08 0.7769434 1.10607e− 07 3.39673e− 09
1.6 0.8780836 0.8780838 1.920e− 09 0.8780838 1.53305e− 07 8.10543e− 10
1.7 0.9786840 0.9786842 5.439e− 10 0.9786842 2.41392e− 07 2.02109e− 10
1.8 1.0790020 1.0790024 2.102e− 10 1.0790024 4.03325e− 07 4.94438e− 11
1.9 1.1791710 1.1791715 6.225e− 11 1.1791715 5.22481e− 07 1.20739e− 11
2.0 1.2792610 1.2792616 1.536e− 11 1.2792616 5.71171e− 07 2.97451e− 12

Table 1: Error estimate for AFEM and SC Toolbox with Bowman’s formula. The accuracy
estimate given by SC Toolbox is also consistent with the experiment.

3.7. Example. Let Q be the quadrilateral whose sides are defined by two circular arcs in the
upper and lower half plane, perpendicular to the unit circle at the points eiθ, e(π−θ)i, e(θ−π)i,
e−θi as well as by the two circular arcs through r, i, −i and −r, i, −i, see Figure 6. If
a, b, c, d are the points of intersection of these four circular arcs in the IInd, IIIrd IVth and
Ist quadrant respectively, then Q = (Q; a, b, c, d) defines a quadrilateral in the unit disk with
QM(Q; a, b, c, d) = (π − 2β)/ρ, where

ρ = 2 log
1 + u

1 − u
, β = acot

2r

1 − r2
, and u = tan(θ/2).

.
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Figure 5: The hyperbolic rectangle Q.

θ AFEM Exact Error
0.10 7.592357e+ 00 7.597433e+ 00 5.076e− 03
0.15 5.056044e+ 00 5.054357e+ 00 1.687e− 03
0.20 3.784480e+ 00 3.779611e+ 00 4.869e− 03
0.25 3.010221e+ 00 3.012175e+ 00 1.954e− 03
0.30 2.497983e+ 00 2.498368e+ 00 3.849e− 04
0.35 2.130426e+ 00 2.129465e+ 00 9.616e− 04
. . . . . . . . . . . .
1.00 6.207845e− 01 6.206314e− 01 1.531e− 04
1.05 5.753353e− 01 5.754017e− 01 6.645e− 05
1.10 5.335288e− 01 5.330104e− 01 5.185e− 04
1.15 4.931144e− 01 4.929339e− 01 1.805e− 04
1.20 4.546779e− 01 4.546891e− 01 1.114e− 05

Table 2: The modulus of the quadrilateral Q for r = 0.4.
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