
Maple 7
Learning Guide

Based in part on the work of B. W. Char

c© 2001 by Waterloo Maple Inc.



ii •

Waterloo Maple Inc.
57 Erb Street West
Waterloo, ON N2L 6C2
Canada

Maple and Maple V are registered trademarks of Waterloo Maple Inc.

c© 2001, 2000, 1998, 1996 by Waterloo Maple Inc.

All rights reserved. This work may not be translated or copied in whole
or in part without the written permission of the copyright holder, except
for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc.,
in this publication, even if the former are not especially identified, is not
to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.



Contents

1 Introduction to Maple 1
1.1 Manual Set . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematics with Maple: the Basics 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Numerical Computations . . . . . . . . . . . . . . . . . . 7

Integer Computations . . . . . . . . . . . . . . . . . . . . 7
Exact Arithmetic—Rationals, Irrationals, and Constants . 9
Floating-Point Approximations . . . . . . . . . . . . . . . 11
Arithmetic with Special Numbers . . . . . . . . . . . . . . 13
Mathematical Functions . . . . . . . . . . . . . . . . . . . 15

2.3 Basic Symbolic Computations . . . . . . . . . . . . . . . . 15
2.4 Assigning Expressions to Names . . . . . . . . . . . . . . 18
2.5 Basic Types of Maple Objects . . . . . . . . . . . . . . . . 20

Expression Sequences . . . . . . . . . . . . . . . . . . . . 20
Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Operations on Sets and Lists . . . . . . . . . . . . . . . . 24
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Expression Manipulation . . . . . . . . . . . . . . . . . . . 32
The simplify Command . . . . . . . . . . . . . . . . . . 32
The factor Command . . . . . . . . . . . . . . . . . . . . 33
The expand Command . . . . . . . . . . . . . . . . . . . . 34
The convert Command . . . . . . . . . . . . . . . . . . . 35
The normal Command . . . . . . . . . . . . . . . . . . . . 35
The combine Command . . . . . . . . . . . . . . . . . . . 36
The map Command . . . . . . . . . . . . . . . . . . . . . . 37
The lhs and rhs Commands . . . . . . . . . . . . . . . . 38

iii



iv • Contents

The numer and denom Commands . . . . . . . . . . . . . . 38
The nops and op Commands . . . . . . . . . . . . . . . . 39
Common Questions about Expression Manipulation . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Finding Solutions 43
3.1 Simple solve . . . . . . . . . . . . . . . . . . . . . . . . . 43

Verifying Solutions . . . . . . . . . . . . . . . . . . . . . . 45
Restricting Solutions . . . . . . . . . . . . . . . . . . . . . 47
Exploring Solutions . . . . . . . . . . . . . . . . . . . . . . 48
The unapply Command . . . . . . . . . . . . . . . . . . . 49
The assign Command . . . . . . . . . . . . . . . . . . . . 51
The RootOf Command . . . . . . . . . . . . . . . . . . . . 52

3.2 Solving Numerically: fsolve . . . . . . . . . . . . . . . . 53
Limitations on solve . . . . . . . . . . . . . . . . . . . . . 55

3.3 Other Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 57
Finding Integer Solutions . . . . . . . . . . . . . . . . . . 57
Finding Solutions Modulo m . . . . . . . . . . . . . . . . 58
Solving Recurrence Relations . . . . . . . . . . . . . . . . 58

3.4 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Sorting and Collecting . . . . . . . . . . . . . . . . . . . . 59
Mathematical Operations . . . . . . . . . . . . . . . . . . 61
Coefficients and Degrees . . . . . . . . . . . . . . . . . . . 62
Root Finding and Factorization . . . . . . . . . . . . . . . 62

3.5 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Differential Equations: dsolve . . . . . . . . . . . . . . . 70
3.7 The Organization of Maple . . . . . . . . . . . . . . . . . 76
3.8 The Maple Packages . . . . . . . . . . . . . . . . . . . . . 77

List of Packages . . . . . . . . . . . . . . . . . . . . . . . . 78
The Student Calculus Package . . . . . . . . . . . . . . . 81
The LinearAlgebra Package . . . . . . . . . . . . . . . . . 84
The Matlab Package . . . . . . . . . . . . . . . . . . . . . 86
The Statistics Package . . . . . . . . . . . . . . . . . . . . 87
The Linear Optimization Package . . . . . . . . . . . . . . 90

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Graphics 93
4.1 Graphing in Two Dimensions . . . . . . . . . . . . . . . . 93

Parametric Plots . . . . . . . . . . . . . . . . . . . . . . . 95
Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . 97
Functions with Discontinuities . . . . . . . . . . . . . . . . 100



Contents • v

Multiple Functions . . . . . . . . . . . . . . . . . . . . . . 103
Plotting Data Points . . . . . . . . . . . . . . . . . . . . . 105
Refining Plots . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Graphing in Three Dimensions . . . . . . . . . . . . . . . 108
Parametric Plots . . . . . . . . . . . . . . . . . . . . . . . 110
Spherical Coordinates . . . . . . . . . . . . . . . . . . . . 110
Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . 113
Refining Plots . . . . . . . . . . . . . . . . . . . . . . . . . 114
Shading and Lighting Schemes . . . . . . . . . . . . . . . 115

4.3 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Animation in Two Dimensions . . . . . . . . . . . . . . . 117
Animation in Three Dimensions . . . . . . . . . . . . . . . 119

4.4 Annotating Plots . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Composite Plots . . . . . . . . . . . . . . . . . . . . . . . 123

Placing Text in Plots . . . . . . . . . . . . . . . . . . . . . 125
4.6 Special Types of Plots . . . . . . . . . . . . . . . . . . . . 126
4.7 Manipulating Graphical Objects . . . . . . . . . . . . . . 131
4.8 Code for Color Plates . . . . . . . . . . . . . . . . . . . . 136
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Evaluation and Simplification 139
5.1 Mathematical Manipulations . . . . . . . . . . . . . . . . 139

Expanding Polynomials as Sums . . . . . . . . . . . . . . 140
Collecting the Coefficients of Like Powers . . . . . . . . . 142
Factoring Polynomials and Rational Functions . . . . . . 144
Removing Rational Exponents . . . . . . . . . . . . . . . 147
Combining Terms . . . . . . . . . . . . . . . . . . . . . . . 148
Factored Normal Form . . . . . . . . . . . . . . . . . . . . 149
Simplifying Expressions . . . . . . . . . . . . . . . . . . . 151
Simplification with Assumptions . . . . . . . . . . . . . . 152
Simplification with Side Relations . . . . . . . . . . . . . . 153
Sorting Algebraic Expressions . . . . . . . . . . . . . . . . 154
Converting Between Equivalent Forms . . . . . . . . . . . 156

5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 157
The assume Facility . . . . . . . . . . . . . . . . . . . . . 157
The assuming Command . . . . . . . . . . . . . . . . . . 162

5.3 Structural Manipulations . . . . . . . . . . . . . . . . . . 163
Mapping a Function onto a List or Set . . . . . . . . . . . 163
Choosing Elements from a List or Set . . . . . . . . . . . 166
Merging Two Lists . . . . . . . . . . . . . . . . . . . . . . 167
Sorting Lists . . . . . . . . . . . . . . . . . . . . . . . . . 168



vi • Contents

The Parts of an Expression . . . . . . . . . . . . . . . . . 171
Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Changing the Type of an Expression . . . . . . . . . . . . 183

5.4 Evaluation Rules . . . . . . . . . . . . . . . . . . . . . . . 185
Levels of Evaluation . . . . . . . . . . . . . . . . . . . . . 185
Last-Name Evaluation . . . . . . . . . . . . . . . . . . . . 186
One-Level Evaluation . . . . . . . . . . . . . . . . . . . . 189
Commands with Special Evaluation Rules . . . . . . . . . 190
Quotation and Unevaluation . . . . . . . . . . . . . . . . . 191
Using Quoted Variables as Function Arguments . . . . . . 194
Concatenation of Names . . . . . . . . . . . . . . . . . . . 195

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6 Examples from Calculus 199
6.1 Introductory Calculus . . . . . . . . . . . . . . . . . . . . 199

The Derivative . . . . . . . . . . . . . . . . . . . . . . . . 199
A Taylor Approximation . . . . . . . . . . . . . . . . . . . 205
The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Mixed Partial Derivatives . . . . . . . . . . . . . . . . . . 220

6.2 Ordinary Differential Equations . . . . . . . . . . . . . . . 225
The dsolve Command . . . . . . . . . . . . . . . . . . . . 225
Example: Taylor Series . . . . . . . . . . . . . . . . . . . . 239
When You Cannot Find a Closed Form Solution . . . . . 243
Plotting Ordinary Differential Equations . . . . . . . . . . 244
Discontinuous Forcing Functions . . . . . . . . . . . . . . 249

6.3 Partial Differential Equations . . . . . . . . . . . . . . . . 254
The pdsolve Command . . . . . . . . . . . . . . . . . . . 254
Changing the Dependent Variable in a PDE . . . . . . . . 256
Plotting Partial Differential Equations . . . . . . . . . . . 257

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 259

7 Input and Output 261
7.1 Reading Files . . . . . . . . . . . . . . . . . . . . . . . . . 261

Reading Columns of Numbers from a File . . . . . . . . . 262
Reading Commands from a File . . . . . . . . . . . . . . . 264

7.2 Writing Data to a File . . . . . . . . . . . . . . . . . . . . 265
Writing Columns of Numerical Data to a File . . . . . . . 265
Saving Expressions in Maple’s Internal Format . . . . . . 267
Converting to LATEX Format . . . . . . . . . . . . . . . . . 268

7.3 Exporting Whole Worksheets . . . . . . . . . . . . . . . . 269
Plain Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



Contents • vii

Maple Text . . . . . . . . . . . . . . . . . . . . . . . . . . 270
LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
HTML and HTML with MathML . . . . . . . . . . . . . . 272
RTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7.4 Printing Graphics . . . . . . . . . . . . . . . . . . . . . . . 275
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Index 277



viii • Contents



1 Introduction to Maple

Maple is a Symbolic Computation System or Computer Algebra
System. These phrases refer to Maple’s ability to manipulate informa-
tion in a symbolic or algebraic manner. Other conventional mathematical
programs require numerical values for all variables. In contrast, Maple
maintains and manipulates the underlying symbols and expressions, and
evaluates numerical expressions.

You can use these symbolic capabilities to obtain exact analytical so-
lutions to many mathematical problems, including integrals, systems of
equations, differential equations, and problems in linear algebra. Comple-
menting the symbolic operations are a large set of graphics routines for
visualizing complicated mathematical information, numerical algorithms
for providing estimates and solving problems where exact solutions do
not exist, and a complete and comprehensive programming language for
developing custom functions and applications.

Maple’s extensive mathematical functionality is most easily accessed
through its advanced worksheet-based graphical interface. A worksheet
is a flexible document for exploring mathematical ideas and for creating
sophisticated technical reports. Users of Maple have found myriad ways
to utilize the Maple language and worksheets.

Engineers and professionals in industries as diverse as agriculture and
aerospace use Maple as a productivity tool, replacing many traditional
resources such as reference books, calculators, spreadsheets, and program-
ming languages such as FORTRAN. These users easily produce answers to
a wide range of day-to-day mathematical problems, creating projections
and consolidating their computations into professional technical reports.

Researchers in many fields find Maple to be an essential tool for their
work. Maple is ideal for formulating, solving, and exploring mathematical
models. Its symbolic manipulation facilities greatly extend the range of
problems you can solve.

1



2 • Chapter 1: Introduction to Maple

Instructors use it to present lectures. Educators in high schools, col-
leges, and universities have revitalized traditional curricula by introducing
problems and exercises that use Maple’s interactive mathematics. Stu-
dents can concentrate on important concepts, rather than tedious alge-
braic manipulations.

The way in which you use Maple is in some aspects personal and
dependent on your needs, but two modes are particularly prevalent.

The first mode is as an interactive problem-solving environment.
When you work on a problem in a traditional manner, attempting a
particular method of solution can take hours and many pages of paper.
Maple allows you to undertake much larger problems and eliminates your
mechanical errors. The interface provides documentation of the steps in-
volved in finding your result. It allows you to easily modify a step or insert
a new one in your solution method. With minimal effort you can compute
the new result. Whether you are developing a new mathematical model
or analyzing a financial strategy, you can learn a great deal about the
problem easily and efficiently.

The second mode in which you can use Maple is as a system for
generating technical documents. You can create interactive structured
documents that contain mathematics in which you can change an equa-
tion and update the solution automatically. Maple’s natural mathematical
language allows easy entry of equations. You also can compute and dis-
play plots. In addition, you can structure your documents using modern
tools such as styles, outlining, and hyperlinks, creating documents that
are not only clear and easy to use, but easy to maintain. Since components
of worksheets are directly associated with the structure of the document,
you can easily translate your work to other formats, such as HTML, RTF,
and LATEX.

Many types of documents can benefit from the features of Maple’s
worksheets. These facilities save you a great deal of effort if you are writing
a report or a mathematical book. They are also appropriate for creating
and displaying presentations and lectures. For example, outlining allows
you to collapse sections to hide regions that contain distracting detail.
Styles identify keywords and headings. Hyperlinks allow you to create
live references that take the reader directly to pages containing related
information. Above all, the interactive nature of Maple allows you to com-
pute results and answer questions during presentations. You can clearly
and effectively demonstrate why a seemingly acceptable solution method
is inappropriate, or why a particular modification to a manufacturing
process would lead to loss or profit.

This book is your introduction to Maple. It systematically discusses



1.1 Manual Set • 3

important concepts and builds a framework of knowledge that guides you
in your use of the interface and the Maple language. This manual provides
an overview of the functionality of Maple. It describes both the symbolic
and numeric capabilities, introducing the available Maple objects, com-
mands, and methods. Particular emphasis is placed on not only finding
solutions, but also plotting or animating results and exporting worksheets
to other formats. More importantly, it presents the philosophy and meth-
ods of use intended by the designers of the system. These simple concepts
allow you to use Maple fully and efficiently.

Whereas this book is a guide that highlights features of Maple, the
online help system is a complete reference manual. The Maple help system
is more convenient than a traditional text because it allows you to search
in many ways and is always available. There are also examples that you
can copy, paste, and execute immediately.

1.1 Manual Set

There are two other manuals available for Maple, the Maple 7 Getting
Started Guide and the Maple 7 Programming Guide.

TheGetting Started Guide contains an introduction to the graphical
user interface and a tutorial that outlines using Maple to solve mathemat-
ical problems and create technical documents. In it, there is additional
information for new users about the online help system, New User’s Tour,
example worksheets, and Waterloo Maple Web site.

The Programming Guide introduces you to the basic Maple pro-
gramming concepts, such as looping mechanisms, procedure definitions,
and data structures. As well, it covers more advanced topics, such as
graphics programming, debugging, creating packages and modules, and
connecting to external programs.



4 • Chapter 1: Introduction to Maple



2 Mathematics with Maple:
the Basics

This chapter begins with a discussion of exact numeric calculations in
Maple, which differ slightly from most other mathematical applications.
Basic symbolic computations and assignment statements follow. The fi-
nal two sections teach the basic types of objects in Maple, and provide
an introduction to the manipulation of objects and the commands most
useful for this purpose.

You will learn the most from this book by using your computer to try
the examples as you read. This chapter sketches out the Maple commands
necessary to get you started. Subsequent chapters give these and other
commands a more in-depth treatment.

To develop a deeper understanding of Maple, use the online help fa-
cility. To use the help command, at the Maple prompt type a question
mark (?) followed by the name of the command or topic for which you
want more information.

?command

2.1 Introduction

The most basic computations in Maple are numeric. Maple can function
as a conventional calculator with integers or floating-point numbers. Type
the expression using natural syntax. A semicolon marks the end of each
calculation. Press enter to perform the calculation.

> 1 + 2;

5



6 • Chapter 2: Mathematics with Maple: the Basics

3

> 1 + 3/2;

5

2

> 2*(3+1/3)/(5/3-4/5);

100

13

> 2.8754/2;

1.437700000

Of course, Maple can do much more, as you will see shortly.
For the moment, however, consider a simple example.

> 1 + 1/2;

3

2

Note that Maple performs exact calculations with rational numbers.
The result of 1 + 1/2 is 3/2 not 1.5. To Maple, the rational number
3/2 and the floating-point approximation 1.5 are distinct objects. The
ability to represent exact expressions allows Maple to preserve much more
information about their origins and structure. The origin and structure
of a number such as

.5235987758

are much less clear than for an exact quantity such as

1

6
π

When you begin to deal with more complex expressions the advantage
is greater still.

Maple can work not only with rational numbers, but also with ar-
bitrary expressions. It can manipulate integers, floating-point numbers,



2.2 Numerical Computations • 7

variables, sets, sequences, polynomials over a ring, and many more math-
ematical constructs. In addition, Maple is also a complete programming
language that contains procedures, tables, and other programming con-
structs.

2.2 Numerical Computations

Integer Computations
Integer calculations are straightforward. Remember to terminate each
command with a semicolon.

> 1 + 2;

3

> 75 - 3;

72

> 5*3;

15

> 120/2;

60

Maple can also work with arbitrarily large integers. The practical
limit on integers is approximately 228 digits, depending mainly on the
speed and resources of your computer. Maple has no trouble calculating
large integers, counting the number of digits in a number, or factoring
integers. For numbers, or other types of continuous output, that span
more than one line on the screen, Maple uses the continuation character
(\) to indicate that the output is continuous. That is, the backslash and
following line ending should be ignored.

> 100!;



8 • Chapter 2: Mathematics with Maple: the Basics

933262154439441526816992388562667004907\
15968264381621468592963895217599993229\
91560894146397615651828625369792082722\
37582511852109168640000000000000000000\
00000

> length(%);

158

This answer indicates the number of digits in the last example. The
ditto operator, (%), is simply a shorthand reference to the result of the
previous computation. To recall the second- or third-most previous com-
putation result, use %% and %%%, respectively.

> ifactor(60);

(2)2 (3) (5)

In addition to ifactor, Maple has many commands for working with
integers, some of which allow for calculations of a greatest common divisor
(gcd) of two integers, integer quotients and remainders, and primality
tests. See the examples below, as well as table 2.1.

> igcd(123, 45);

3

> iquo(25,3);

8

> isprime(18002676583);

true



2.2 Numerical Computations • 9

Table 2.1 Commands for Working with Integers

Function Description

abs absolute value of an expression
factorial factorial of an integer
iquo quotient of an integer division
irem remainder of an integer division
iroot approximate integer root of an integer
isqrt approximate integer square root of an integer
max, min maximum and minimum of a set of inputs
mod modular arithmetic
surd real root of an integer

Exact Arithmetic—Rationals, Irrationals, and Constants
An important Maple property is the ability to perform exact rational
arithmetic, that is, to work with rational numbers (fractions) without
reducing them to floating-point approximations.

> 1/2 + 1/3;

5

6

Maple handles the rational numbers and produces an exact result.
The distinction between exact and approximate results is an important
one. The ability to perform exact computations with computers enables
you to solve a whole new range of problems, and sets products like Maple
apart from their purely numerical cousins.

Maple can produce floating-point estimates if required. In fact, Maple
can work with floating-point numbers with many thousands of digits, so
producing accurate estimates of exact expressions introduces no difficulty.

> Pi;

π

> evalf(Pi, 100);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
208998628034825342117068



10 • Chapter 2: Mathematics with Maple: the Basics

Learning how Maple distinguishes between exact and floating-point
representations of values is important.

Here is an example of a rational (exact) number.

> 1/3;

1

3

The following is its floating-point approximation (shown to ten digits,
by default).

> evalf(%);

.3333333333

These results are not the same mathematically, nor are they at all the
same in Maple.

Whenever you enter a number in decimal form, Maple treats
it as a floating-point approximation. In fact, the presence of a deci-
mal number in an expression causes Maple to produce an approximate
floating-point result, since it cannot produce an exact solution from ap-
proximate data.

> 3/2*5;

15

2

> 1.5*5;

7.5

Thus, you should use floating-point numbers only when you want
to restrict Maple to working with non-exact expressions.

Maple makes entering exact quantities easy by using symbolic rep-
resentation, like π, in contrast to 3.14. Maple treats irrational numbers
as exact quantities. Here is how you represent the square root of two in
Maple.

> sqrt(2);

√
2



2.2 Numerical Computations • 11

Here is another square root example.

> sqrt(3)^2;

3

Maple knows the standard mathematical constants, such as π and the
base of the natural logarithms, e. It works with them as exact quantities.

> Pi;

π

> sin(Pi);

0

The exponential function is represented by the Maple function exp.

> exp(1);

e

> ln(exp(5));

5

Actually, the example with π may look confusing. Remember that
when Maple is producing “typeset” real-math notation, it attempts to
represent mathematical expressions as you might write them yourself.
Thus, you enter π as Pi and Maple displays it as π.

Maple is case sensitive, so ensure that you use proper capitalization
when stating these constants. The names Pi, pi, and PI are distinct. The
names pi and PI are used to display the lower case and upper case Greek
letters π and Π, respectively. For more information on Maple constants,
type ?constants at the prompt.

Floating-Point Approximations
Although Maple prefers to work with exact values, it can return a floating-
point approximation up to about 228 digits in length whenever you require
it, depending upon your computer’s resources.



12 • Chapter 2: Mathematics with Maple: the Basics

Ten or twenty accurate digits in floating-point numbers may seem
adequate for almost any purpose, but two problems, in particular, severely
limit the usefulness of such a system.

First, when subtracting two floating-point numbers of almost equal
magnitude, the difference’s relative error may be very large. This is known
as catastrophic cancellation. For example, if two numbers are identical in
their first seventeen (of twenty) digits, their difference is a three-digit
number accurate to only three digits! In this case, you would need to use
almost forty digits to produce twenty accurate digits in the answer.

Second, a result’s mathematical form is more concise, compact, and
convenient than its numerical value. For instance, an exponential function
provides more information about the nature of a phenomenon than a large
set of numbers with twenty accurate digits. An exact analytical descrip-
tion can also determine the behavior of a function when extrapolating to
regions for which no data exists.

The evalf command converts an exact numerical expression to a
floating-point number.

> evalf(Pi);

3.141592654

By default, Maple calculates the result using ten digits of accuracy,
but you may specify any number of digits. Simply indicate the number
after the numerical expression, using the following notation.

> evalf(Pi, 200);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
20899862803482534211706798214808651328\
23066470938446095505822317253594081284\
81117450284102701938521105559644622948\
9549303820

You can also force Maple to do all its computations with floating-
point approximations by including at least one floating-point number in
each expression. Floats are “contagious”: if an expression contains even
one floating-point number, Maple evaluates the entire expression using
floating-point arithmetic.



2.2 Numerical Computations • 13

> 1/3 + 1/4 + 1/5.3;

.7720125786

> sin(0.2);

.1986693308

While the optional second argument to evalf controls the number
of floating-point digits for that particular calculation, the special vari-
able Digits sets the number of floating-point digits for all subsequent
calculations.

> Digits := 20;

Digits := 20

> sin(0.2);

.19866933079506121546

Digits is now set to twenty, which Maple then uses at each step in a
calculation. Maple works like a calculator or an ordinary computer appli-
cation in this respect. Remember that when you evaluate a complicated
numerical expression, errors can accumulate to reduce the accuracy of the
result to less than twenty digits. In general, setting Digits to produce a
given accuracy is not easy, as the final result depends on your particular
question. Using larger values, however, usually gives you some indica-
tion. Maple is very accommodating if extreme floating-point accuracy is
important in your work.

Arithmetic with Special Numbers
Maple can work with complex numbers. I is Maple’s default symbol for
the square root of minus one, that is, I =

√
−1.

> (2 + 5*I) + (1 - I);

3 + 4 I

> (1 + I)/(3 - 2*I);



14 • Chapter 2: Mathematics with Maple: the Basics

1

13
+

5

13
I

You can also work with other bases and number systems.

> convert(247, binary);

11110111

> convert(1023, hex);

3FF

> convert(17, base, 3);

[2, 2, 1]

Maple returns an integer base conversion as a list of digits; otherwise,
a line of numbers, like 221, may be ambiguous, especially when dealing
with large bases. Note that Maple lists the digits in order from least
significant to most significant.

Maple also supports arithmetic in finite rings and fields.

> 27 mod 4;

3

Symmetric and positive representations are both available.

> mods(27,4);

−1

> modp(27,4);

3

The default for the mod command is positive representation, but you
can change this option (see the help page ?mod for details).

Maple can also work with Gaussian Integers. The GaussInt package
has about thirty commands for working with these special numbers. Type
?GaussInt for more information about these commands.



2.3 Basic Symbolic Computations • 15

Mathematical Functions
Maple knows all the standard mathematical functions (see table 2.2 for a
partial list).

> sin(Pi/4);

1

2

√
2

> ln(1);

0

When Maple cannot find a simpler form, it leaves the expression as it
is rather than convert it to an inexact form.

> ln(Pi);

ln(π)

2.3 Basic Symbolic Computations

Maple knows how to work with mathematical unknowns, and expressions
which contain them.

> (1 + x)^2;

(1 + x)2

> (1 + x) + (3 - 2*x);

4− x

Note that Maple automatically simplifies the second expression.
Maple has hundreds of commands for working with symbolic expres-

sions.

> expand((1 + x)^2);



16 • Chapter 2: Mathematics with Maple: the Basics

Table 2.2 Select Mathematical Functions in Maple

Function Description

sin, cos, tan, etc. trigonometric functions
sinh, cosh, tanh, etc. hyperbolic trigonometric functions
arcsin, arccos, arctan, etc. inverse trigonometric functions
exp exponential function
ln natural logarithmic function
log[10] logarithmic function base 10
sqrt algebraic square root function
round round to the nearest integer
trunc truncate to the integer part
frac fractional part
BesselI, BesselJ, Bessel functions
BesselK, BesselY
binomial binomial function
erf, erfc error & complementary error functions
Heaviside Heaviside step function
Dirac Dirac delta function
MeijerG Meijer G function
Zeta Riemann Zeta function
LegendreKc, LegendreKc1, Legendre’s elliptic integrals
LegendreEc, LegendreEc1,
LegendrePic, LegendrePic1
hypergeom hypergeometric function



2.3 Basic Symbolic Computations • 17

1 + 2x+ x2

> factor(%);

(1 + x)2

As mentioned in section 2.2, the ditto operator, %, is a shorthand
notation for the previous result.

> Diff(sin(x), x);

∂

∂x
sin(x)

> value(%);

cos(x)

> Sum(n^2, n);

∑

n

n2

> value(%);

1

3
n3 − 1

2
n2 +

1

6
n

Divide one polynomial in x by another.

> rem(x^3+x+1, x^2+x+1, x);

2 + x

Create a series.

> series(sin(x), x=0, 10);

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 +O(x10)



18 • Chapter 2: Mathematics with Maple: the Basics

All the mathematical functions mentioned in the previous section also
accept unknowns as arguments.

2.4 Assigning Expressions to Names

Using the ditto operator, or retyping a Maple expression every time you
want to use it, is not always convenient, so Maple enables you to name
an object. Use the following syntax for naming.

name := expression;

You can assign any Maple expression to a name.

> var := x;

var := x

> term := x*y;

term := x y

You can assign equations to names.

> eqn := x = y + 2;

eqn := x = y + 2

Maple names can include any alphanumeric characters and under-
scores, but they cannot start with a number. Also, avoid starting
names with an underscore because Maple uses these names for inter-
nal classification. Valid Maple names include: polynomial, test_data,
RoOt_lOcUs_pLoT, and value2. Examples of invalid Maple names are
2ndphase (because it begins with a number), and x&y (because & is not
an alphanumeric character).

You can define functions using Maple’s arrow notation (->). This also
lets Maple know how to evaluate the function when it appears in Maple
expressions. At this point, you can do simple graphing of the function
using the plot command.

> f := x -> 2*x^2 -3*x +4;



2.4 Assigning Expressions to Names • 19

f := x → 2x2 − 3x+ 4

> plot (f(x), x= -5...5);

10

20

30

40

50

60

70

–4 –2 0 2 4
x

For more information on the plot command, see chapter 4 or type
?plot.

The assignment (:=) operator can then associate a function name
with the function definition. The name of the function is on the left-hand
side of the :=. The function definition (using the arrow notation) is on
the right-hand side. The following statement defines f as the “squaring
function.”

> f := x -> x^2;

f := x → x2

Then, evaluating f at an argument produces the square of f’s argu-
ment.

> f(5);

25

> f(y+1);

(y + 1)2

Not all names are available for variables. Maple has predefined and
reserved a few. If you try to assign to a name that is predefined or reserved,
Maple tells you that the name you have chosen is protected.



20 • Chapter 2: Mathematics with Maple: the Basics

> Pi := 3.14;

Error, attempting to assign to ‘Pi‘ which is protected

> set := {1, 2, 3};

Error, attempting to assign to ‘set‘ which is protected

2.5 Basic Types of Maple Objects

Maple can be difficult to use without a brief introduction to other, more
complex, types of objects it can represent. This section examines these
basic types of Maple objects, including expression sequences, lists, sets,
arrays, tables, and strings. These simple ideas are essential to the dis-
cussion in the rest of this book.

Expression Sequences
The basic Maple data structure is the expression sequence . This is sim-
ply a group of Maple expressions separated by commas.

> 1, 2, 3, 4;

1, 2, 3, 4

> x, y, z, w;

x, y, z, w

Expression sequences are neither lists nor sets. They are a distinct
data structure within Maple and have their own properties. For example,
they preserve the order and repetition of their elements. Items stay in
the order in which you enter them. If you enter an element twice, both
copies remain. Other properties of sequences will become apparent as you
progress through this manual. Sequences are often used to build more
sophisticated objects through such operations as concatenation.



2.5 Basic Types of Maple Objects • 21

Sequences extend the capabilities of many basic Maple operations.
For example, concatenation is a basic name-forming operation. The con-
catenation operator in Maple is “||”. You can use it in the following
manner.

> a||b;

ab

When applying concatenation to a sequence, the operation affects each
element. For example, if S is a sequence, then you can prepend the name
a to each element in S by concatenating a and S.

> S := 1, 2, 3, 4;

S := 1, 2, 3, 4

> a||S;

a1 , a2 , a3 , a4

You can also perform multiple assignments using expression se-
quences. For example

> f,g,h := 3, 6, 1;

f, g, h := 3, 6, 1

> f;

3

> h;

1

Lists
You create a list by enclosing any number of Maple objects (separated
by commas) in square brackets.

> data_list := [1, 2, 3, 4, 5];



22 • Chapter 2: Mathematics with Maple: the Basics

data_list := [1, 2, 3, 4, 5]

> polynomials := [x^2+3, x^2+3*x-1, 2*x];

polynomials := [x2 + 3, x2 + 3x− 1, 2x]

> participants := [Kathy, Frank, Rene, Niklaus, Liz];

participants := [Kathy , Frank , Rene , Niklaus , Liz ]

Thus, a list is an expression sequence enclosed in square brackets.
Maple preserves the order and repetition of elements in a list. Thus,

[a,b,c], [b,c,a], and [a,a,b,c,a] are all different.

> [a,b,c], [b,c,a], [a,a,b,c,a];

[a, b, c], [b, c, a], [a, a, b, c, a]

The fact that order is preserved allows you to extract a particular
element from a list without searching for it.

> letters := [a,b,c];

letters := [a, b, c]

> letters[2];

b

Use the nops command to determine the number of elements in a list.

> nops(letters);

3

Section 2.6 discusses this command, including its other uses, in more
detail.



2.5 Basic Types of Maple Objects • 23

Sets

Maple supports sets in the mathematical sense. Commas separate the
objects, as they do in a sequence or list, but the enclosing curly brackets
identify the object as a set.

> data_set := {1, -1, 0, 10, 2};

data_set := {−1, 0, 1, 2, 10}

> unknowns := {x, y, z};

unknowns := {x, y, z}

Thus, a set is an expression sequence enclosed in curly brackets.
Maple does not preserve order or repetition in a set. That is, Maple

sets have the same properties as sets do in mathematics. Thus, the fol-
lowing three sets are identical.

> {a,b,c}, {c,b,a}, {a,a,b,c,a};

{a, b, c}, {a, b, c}, {a, b, c}

Remember that to Maple the integer 2 is distinct from the floating-
point approximation 2.0. Thus, the following set has three elements, not
two.

> {1, 2, 2.0};

{1, 2, 2.0}

The properties of sets make them a particularly useful concept in
Maple, just as they are in mathematics. Maple provides many operations
on sets, including the basic operations of intersection and union using
the notation intersect and union.

> {a,b,c} union {c,d,e};

{a, b, c, d, e}

> {1,2,3,a,b,c} intersect {0,1,y,a};



24 • Chapter 2: Mathematics with Maple: the Basics

{1, a}

The nops command counts the number of elements in a set or list.

> nops(%);

2

For more details, see section 2.6.
A common and very useful command, often used on sets, is map. Map-

ping applies a function simultaneously to all the elements of any struc-
ture.

> numbers := {0, Pi/3, Pi/2, Pi};

numbers := {0, π, 1
3
π,

1

2
π}

> map(g, numbers);

{g(0), g(π), g(1
3
π), g(

1

2
π)}

> map(sin, numbers);

{0, 1, 1
2

√
3}

Further examples demonstrating the use of map appear in sections 2.6
and 5.3.

Operations on Sets and Lists
The member command verifies membership in sets and lists.

> participants := [Kate, Tom, Steve];

participants := [Kate , Tom, Steve ]

> member(Tom, participants);

true



2.5 Basic Types of Maple Objects • 25

> data_set := {5, 6, 3, 7};

data_set := {3, 5, 6, 7}

> member(2, data_set);

false

To choose items from lists, use the subscript notation, [n], where n
identifies the position of the desired element in the list.

> participants[2];

Tom

Maple understands empty sets and lists, that is, lists or sets that have
no elements.

> empty_set := {};

empty_set := {}

> empty_list := [];

empty_list := []

You can create a new set from other sets by using, for example, the
union command. Delete items from sets by using the minus command.

> old_set := {2, 3, 4} union {};

old_set := {2, 3, 4}

> new_set := old_set union {2, 5};

new_set := {2, 3, 4, 5}

> third_set := old_set minus {2, 5};

third_set := {3, 4}



26 • Chapter 2: Mathematics with Maple: the Basics

Arrays
Arrays are an extension of the concept of the list data structure. Think
of a list as a group of items in which you associate each item with a pos-
itive integer, its index, that represents its position in the list. The Maple
array data structure is a generalization of this idea. Each element is still
associated with an index, but an array is not restricted to one dimen-
sion. In addition, indices can also be zero or negative. Furthermore, you
can define or change the array’s individual elements without redefining it
entirely.

Declare the array so Maple knows the dimensions you want to use.

> squares := array(1..3);

squares := array(1..3, [])

Assign the array elements. Multiple commands can be entered at one
command prompt provided each ends with a colon or semicolon.

> squares[1] := 1; squares[2] := 2^2; squares[3] := 3^2;

squares1 := 1

squares2 := 4

squares3 := 9

Or, if you prefer, do both simultaneously.

> cubes := array( 1..3, [1,8,27] );

cubes := [1, 8, 27]

You can select a single element using the same notation applied to
lists.

> squares[2];

4

You must declare arrays in advance. To see the array’s contents, you
must use a command such as print.

> squares;



2.5 Basic Types of Maple Objects • 27

squares

> print(squares);

[1, 4, 9]

The above array has only one dimension, but arrays can have more
than one dimension. Define a 3× 3 array.

> pwrs := array(1..3,1..3);

pwrs := array(1..3, 1..3, [])

This array has dimension two (two sets of indices). To begin, assign
the array elements of the first row.

> pwrs[1,1] := 1; pwrs[1,2] := 1; pwrs[1,3] := 1;

pwrs1, 1 := 1

pwrs1, 2 := 1

pwrs1, 3 := 1

Now continue for the rest of the array. If you prefer, you can end each
command with a colon (:), instead of the usual semicolon (;), to suppress
the output. Both the colon and semicolon are statement separators.

> pwrs[2,1] := 2: pwrs[2,2] := 4: pwrs[2,3] := 8:
> pwrs[3,1] := 3: pwrs[3,2] := 9: pwrs[3,3] := 27:
> print(pwrs);





1 1 1
2 4 8
3 9 27





You can select an element by specifying both the row and column.

> pwrs[2,3];

8



28 • Chapter 2: Mathematics with Maple: the Basics

You can define a two-dimensional array and its elements simultane-
ously by using a similar method employed for the one-dimensional ex-
ample shown earlier. To do so, use lists within lists. That is, make a list
where each element is a list that contains the elements of one row of the
array. Thus, you could define the pwrs array as follows.

> pwrs2 := array( 1..3, 1..3, [[1,1,1], [2,4,8], [3,9,27]] );

pwrs2 :=





1 1 1
2 4 8
3 9 27





Arrays are by no means limited to two dimensions, but those of higher
order are more difficult to display. You can declare all the elements of the
array as you define its dimension.

> array3 := array( 1..2, 1..2, 1..2,
> [[[1,2],[3,4]], [[5,6],[7,8]]] );

array3 := array(1..2, 1..2, 1..2, [

(1, 1, 1) = 1

(1, 1, 2) = 2

(1, 2, 1) = 3

(1, 2, 2) = 4

(2, 1, 1) = 5

(2, 1, 2) = 6

(2, 2, 1) = 7

(2, 2, 2) = 8

])

Maple does not automatically expand the name of an array to the
representation of all the elements. Thus, in some commands, you must
specify explicitly that you want to perform an operation on the elements.

Suppose that you want to replace each occurrence of the number 2 in
pwrs with the number 9. To do substitutions such as this, you can use
the subs command. The basic syntax is

subs( x=expr1, y=expr2, ... , main_expr )

For example, to substitute x+ y for z in an equation, do the following.



2.5 Basic Types of Maple Objects • 29

> expr := z^2 + 3;

expr := z2 + 3

> subs( {z=x+y}, expr);

(x+ y)2 + 3

You might, however, be disappointed when the following call to subs

does not work.

> subs( {2=9}, pwrs );

pwrs

You must instead force Maple to fully evaluate the name of the ar-
ray to the component level and not just to its name, using the com-
mand evalm.

> subs( {2=9}, evalm(pwrs) );





1 1 1
9 4 8
3 9 27





Not only does this cause the substitution to occur in the components
as expected, but full evaluation also displays the array’s elements, just as
when you use the print command.

> evalm(pwrs);





1 1 1
2 4 8
3 9 27





Tables
A table is an extension of the concept of the array data structure. The
difference between an array and a table is that a table can have anything
for indices, not just integers.

> translate := table([one=un,two=deux,three=trois]);



30 • Chapter 2: Mathematics with Maple: the Basics

translate := table([three = trois , one = un, two = deux ])

> translate[two];

deux

Although at first they may seem to have little advantage over arrays,
table structures are very powerful. Tables enable you to work with natural
notation for data structures. For example, you can display the physical
properties of materials using a Maple table.

> earth_data := table( [ mass=[5.976*10^24,kg],
> radius=[6.378164*10^6,m],
> circumference=[4.00752*10^7,m] ] );

earth_data := table([mass = [.5976000000 1025, kg ],

radius = [.6378164000 107, m],

circumference = [.4007520000 108, m]

])

> earth_data[mass];

[.5976000000 1025, kg ]

In this example, each index is a name and each entry is a list. In fact,
this is a rather simple case. Often, much more general indices are useful.
For example, you could construct a table which has algebraic formulæ for
indices and the derivatives of these formulæ as values.

Strings
A string is also an object in Maple and is created by enclosing any number
of characters in double quotes.

> "This is a string.";

“This is a string.”

They are nearly indivisible constructs that stand only for themselves;
they cannot be assigned a value.



2.5 Basic Types of Maple Objects • 31

> "my age" := 32;

Error, invalid left hand side of assignment

Like elements of lists or arrays, the individual characters of a string
can be indexed with square bracket notation.

> mystr := "I ate the whole thing.";

mystr := “I ate the whole thing.”

> mystr[3..5];

“ate”

> mystr[11..-2];

“whole thing”

A negative index represents a character position counted from the
right end of the string. In the example above, −2 represents the second
last character.

The concatenation operator, “||”, or the cat command is used to
join two strings together, and the length command is used to determine
the number of characters in a string.

> newstr := cat("I can’t believe ", mystr);

newstr := “I can’t believe I ate the whole thing.”

> length(newstr);

38

There are other commands that operate on strings and many more
that take strings as input. For example, see the help page ?StringTools.



32 • Chapter 2: Mathematics with Maple: the Basics

2.6 Expression Manipulation

Many of Maple’s commands concentrate on manipulating expressions.
This includes manipulating results of Maple commands into a familiar
form, or a form with which you want to work. This can also involve
manipulating your own expressions into a form with which Maple can
work. In this section we introduce the most commonly used commands in
this area.

The simplify Command
You can use this command to apply simplification rules to an expres-
sion. Maple has simplification rules for various types of expressions and
forms, including trigonometric functions, radicals, logarithmic functions,
exponential functions, powers, and various special functions.

> expr := cos(x)^5 + sin(x)^4 + 2*cos(x)^2
> - 2*sin(x)^2 - cos(2*x);

expr :=

cos(x)5 + sin(x)4 + 2 cos(x)2 − 2 sin(x)2 − cos(2x)

> simplify(expr);

cos(x)5 + cos(x)4

To perform only a certain type of simplification, specify the type you
desire.

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2);

1 + ln(2) + ln(y)

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’trig’);

1 + ln(2 y)

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’ln’);

sin(x)2 + ln(2) + ln(y) + cos(x)2

With the side relations feature, you can also apply your own simpli-
fication rules. Indeed, you can program your own simplification rules by



2.6 Expression Manipulation • 33

programming your own procedures, but that is beyond the scope of this
book.

> siderel := {sin(x)^2 + cos(x)^2 = 1};

siderel := {sin(x)2 + cos(x)2 = 1}

> trig_expr := sin(x)^3 - sin(x)*cos(x)^2 + 3*cos(x)^3;

trig_expr := sin(x)3 − sin(x) cos(x)2 + 3 cos(x)3

> simplify(trig_expr, siderel);

2 sin(x)3 − 3 cos(x) sin(x)2 + 3 cos(x)− sin(x)

The factor Command
This command factors polynomial expressions.

> big_poly := x^5 - x^4 - 7*x^3 + x^2 + 6*x;

big_poly := x5 − x4 − 7x3 + x2 + 6x

> factor(big_poly);

x (x− 1) (x− 3) (x+ 2) (x+ 1)

> rat_expr := (x^3 - y^3)/(x^4 - y^4);

rat_expr :=
x3 − y3

x4 − y4

Both the numerator and denominator contain the common factor x−y.
Thus, factoring cancels these terms.

> factor(rat_expr);

x2 + x y + y2

(y + x) (x2 + y2)



34 • Chapter 2: Mathematics with Maple: the Basics

Maple can factor both univariate and multivariate polynomials over
the domain the coefficients specify. You can also factor polynomials over
algebraic extensions. See ?factor for details.

The expand Command
The expand command is essentially the reverse of factor. It causes the
expansion of multiplied terms as well as a number of other expansions.
This is among the most useful of the manipulation commands. Although
you might imagine that with a name like expand the result would be larger
and more complex than the original expression; this is not always the case.
In fact, expanding some expressions results in substantial simplification.

> expand((x+1)*(x+2));

x2 + 3x+ 2

> expand(sin(x+y));

sin(y) cos(x) + cos(y) sin(x)

> expand(exp(a+ln(b)));

ea b

The expand command is quite flexible. Not only can you specify that
certain subexpressions be unchanged by the expansion, but you can also
program custom expansion rules.

Although the simplify command may seem to be the most useful
command, this is misleading. Unfortunately, the word simplify is rather
vague. When you request to simplify an expression, Maple examines
your expression, tests out many techniques, and then tries applying the
appropriate simplification rules. However, this might take a little time.
As well, Maple may not be able to guess what you want to accomplish
since universal mathematical rules do not define what is simpler.

When you do know which manipulations will make your expression
simpler for you, specify them directly. In particular, the expand command
is among the most useful. It frequently results in substantial simplifica-
tion, and also leaves expressions in a convenient form for many other
commands.



2.6 Expression Manipulation • 35

The convert Command
This command converts expressions between different forms.

> convert(cos(x),exp);

1

2
e(I x) +

1

2

1

e(I x)

> convert(1/2*exp(x) + 1/2*exp(-x),trig);

cosh(x)

> A := Matrix([[a,b],[c,d]]);

A :=

[

a b
c d

]

> convert(A, ’listlist’);

[[a, b], [c, d]]

> convert(A, ’set’);

{a, b, d, c}

> convert(%, ’list’);

[a, b, d, c]

The normal Command
This command transforms rational expressions into factored normal
form,

numerator

denominator
,

where the numerator and denominator are relatively prime polynomials
with integer coefficients.

> rat_expr_2 := (x^2 - y^2)/(x - y)^3 ;



36 • Chapter 2: Mathematics with Maple: the Basics

Table 2.3 Common Conversions

Argument Description

polynom series to polynomials
exp, expln, expsincos trigonometric expressions to exponential form
parfrac rational expressions to partial fraction form
rational floating-point numbers to rational form
radians, degrees between degrees and radians
set, list, listlist between data structures
temperature between temperature scales
units between units

rat_expr_2 :=
x2 − y2

(−y + x)3

> normal(rat_expr_2);

y + x

(−y + x)2

> normal(rat_expr_2, ’expanded’);

y + x

y2 − 2x y + x2

The expanded option transforms rational expressions into expanded
normal form.

The combine Command
This command combines terms in sums, products, and powers into a sin-
gle term. These transformations are, in some cases, the reverse of the
transformations that expand applies.

> combine(exp(x)^2*exp(y),exp);

e(2x+y)

> combine((x^a)^2, power);

x(2 a)



2.6 Expression Manipulation • 37

The map Command
This command is most useful when working with lists, sets, or arrays. It
provides an especially convenient means for working with multiple solu-
tions or for applying an operation to each element of an array.

The map command applies a command to each element of a data
structure or expression. While it is possible to write program structures
such as loops to accomplish these tasks, you should not underestimate the
convenience and power of the map command. map is one of the most useful
commands in Maple. Take an extra minute to make sure you understand
how to use this command.

> map( f, [a,b,c] );

[f(a), f(b), f(c)]

> data_list := [0, Pi/2, 3*Pi/2, 2*Pi];

data_list := [0,
1

2
π,

3

2
π, 2π]

> map(sin, data_list);

[0, 1, −1, 0]

If you give the map command more than two arguments, Maple passes
the last argument(s) to the initial command.

> map( f, [a,b,c], x, y );

[f(a, x, y), f(b, x, y), f(c, x, y)]

For example, to differentiate each item in a list with respect to x, you
can use the following commands.

> fcn_list := [sin(x),ln(x),x^2];

fcn_list := [sin(x), ln(x), x2]

> map(Diff, fcn_list, x);

[
∂

∂x
sin(x),

∂

∂x
ln(x),

∂

∂x
x2]



38 • Chapter 2: Mathematics with Maple: the Basics

> map(value, %);

[cos(x),
1

x
, 2x]

Not only can the procedure be an existing command, but you can
also create an operation to map onto a list. For example, suppose that
you wish to square each element of a list. Ask Maple to replace each
element (represented by x) with its square (x2).

> map(x->x^2, [-1,0,1,2,3]);

[1, 0, 1, 4, 9]

The lhs and rhs Commands
These two commands take the left-hand side and right-hand side of an
expression, respectively.

> eqn1 := x+y=z+3;

eqn1 := y + x = z + 3

> lhs(eqn1);

y + x

> rhs(eqn1);

z + 3

The numer and denom Commands
These two commands take the numerator and denominator of a rational
expression, respectively.

> numer(3/4);

3

> denom(1/(1 + x));



2.6 Expression Manipulation • 39

x+ 1

The nops and op Commands
These two commands are useful for breaking expressions into parts and
extracting subexpressions.

The nops command returns the number of parts in an expression.

> nops(x^2);

2

> nops(x + y + z);

3

The op command allows you to access the parts of an expression. It
returns the parts as a sequence.

> op(x^2);

x, 2

You can also ask for specific items by number or range.

> op(1, x^2);

x

> op(2, x^2);

2

> op(2..-2, x+y+z+w);

y, z



40 • Chapter 2: Mathematics with Maple: the Basics

Common Questions about Expression Manipulation

How do I Substitute for a Product of Two Unknowns? Use side rela-
tions to specify an “identity.” Substituting directly does not usually work,
since Maple looks for an exact match before substituting.

> expr := a^3*b^2;

expr := a3 b2

> subs(a*b=5, expr);

a3 b2

The subs command was unsuccessful in its attempt to substitute. Try
the simplify command this time to get the desired answer.

> simplify(expr, {a*b=5});

25 a

You can also try the algsubs command, which performs an algebraic
substitution.

> algsubs(a*b=5, expr);

25 a

Why is the Result of simplify Not the Simplest Form? For example:

> expr2 := cos(x)*(sec(x)-cos(x));

expr2 := cos(x) (sec(x)− cos(x))

> simplify(expr2);

1− cos(x)2

The expected form was sin(x)2.
Again, use side relations to specify the identity.

> simplify(%, {1-cos(x)^2=sin(x)^2});



2.6 Expression Manipulation • 41

sin(x)2

The issue of simplification is a complicated one because it is difficult
to define the “simplest” form of an expression. One user’s idea of a simple
form may be vastly different from another user’s; indeed, the idea of the
simplest form can vary from situation to situation.

How do I Factor out the Constant from 2x + 2y? Currently, this op-
eration is not possible in Maple because its simplifier automatically dis-
tributes the number over the product, believing that a sum is simpler
than a product. In most cases, this is true.

If you enter the expression

> 2*(x + y);

2x+ 2 y

you see that Maple automatically multiplies the constant into the
expression.

How can you then deal with such expressions, when you need to factor
out constants, or negative signs? Should you need to factor such expres-
sions, try this “clever” substitution.

> expr3 := 2*(x + y);

expr3 := 2x+ 2 y

> subs( 2=two, expr3 );

x two + y two

> factor(%);

two (x+ y)



42 • Chapter 2: Mathematics with Maple: the Basics

2.7 Conclusion

In this chapter you have seen many of the types of objects which Maple
is capable of manipulating, including sequences, sets, and lists. You have
seen a number of commands, including expand, factor, and simplify,
that are useful for manipulating and simplifying algebraic expressions.
Others, such as map, are useful for sets, lists, and arrays. Meanwhile,
subs is useful almost any time.

In the next chapter, you will learn to apply these concepts to solve
systems of equations, one of the most fundamental problems in mathe-
matics. As you learn about new commands, observe how the concepts of
this chapter are used in setting up problems and manipulating solutions.



3 Finding Solutions

This chapter introduces the key concepts needed for quick, concise
problem solving in Maple. By learning how to use such tools as solve, map,
subs, and unapply, you can save yourself a substantial amount of work.
In addition, this chapter examines how these commands inter-operate.

3.1 Simple solve

Maple’s solve command is a general-purpose equation solver. It takes a
set of one or more equations and attempts to solve them exactly for the
specified set of unknowns. (Recall from section 2.5 that you use braces to
denote a set.) In the following examples, you are solving one equation for
one unknown, so each set contains only one element.

> solve({x^2=4}, {x});

{x = 2}, {x = −2}

> solve({a*x^2+b*x+c=0}, {x});

{x =
1

2

−b+
√
b2 − 4 a c

a
}, {x =

1

2

−b−
√
b2 − 4 a c

a
}

Maple returns each possible solution as a set. Since both of these
equations have two solutions, Maple returns a sequence of solution sets.
If you do not specify any unknowns in the equation, Maple solves for all
of them.

43



44 • Chapter 3: Finding Solutions

> solve({x+y=0});

{x = −y, y = y}

Here you get only one solution set containing two equations. This
result means that y can take any value, while x is the negative of y. This
solution is parameterized with respect to y.

If you give an expression rather than an equation, Maple automatically
assumes that the expression is equal to zero.

> solve({x^3-13*x+12}, {x});

{x = 1}, {x = 3}, {x = −4}

The solve command can also handle systems of equations.

> solve({x+2*y=3, y+1/x=1}, {x,y});

{x = −1, y = 2}, {x = 2, y =
1

2
}

Although you do not always need the braces (denoting a set) around
either the equation or variable, using them forces Maple to return the so-
lution as a set, which is usually the most convenient form. For example, it
is a common practice to check your solutions by substituting them into the
original equations. The following example demonstrates this procedure.

As a set of equations, the solution is in an ideal form for the subs

command. You might first give the set of equations a name, like eqns, for
instance.

> eqns := {x+2*y=3, y+1/x=1};

eqns := {x+ 2 y = 3, y +
1

x
= 1}

Then solve.

> soln := solve( eqns, {x,y} );

soln := {x = −1, y = 2}, {x = 2, y =
1

2
}

This produces two solutions:



3.1 Simple solve • 45

> soln[1];

{x = −1, y = 2}

and

> soln[2];

{x = 2, y =
1

2
}

Verifying Solutions
To check the solutions, substitute them into the original set of equations
using the two-parameter eval command.

> eval( eqns, soln[1] );

{1 = 1, 3 = 3}

> eval( eqns, soln[2] );

{1 = 1, 3 = 3}

For verifying solutions, you will find that this method is generally the
most convenient.

Observe that this application of the eval command has other uses.
Suppose you wish to extract the value of x from the first solution. Again,
the best tool is the eval command.

> x1 := eval( x, soln[1] );

x1 := −1

Alternatively, you could extract the first solution for y.

> y1 := eval(y, soln[1]);

y1 := 2

You can use this evaluation trick to convert solutions sets to other
forms. For example, you can construct a list from the first solution



46 • Chapter 3: Finding Solutions

where x is the first element and y is the second. First construct a list

with the variables in the same order as you want the corresponding
solutions.

> [x,y];

[x, y]

Then simply evaluate this list at the first solution.

> eval([x,y], soln[1]);

[−1, 2]

The first solution is now a list.
Instead, if you prefer that the solution for y comes first, evaluate [y,x]

at the solution.

> eval([y,x], soln[1]);

[2, −1]

Since Maple typically returns solutions in the form of sets (in which
the order of objects is uncertain), remembering this method for extracting
solutions is useful.

The map command is another useful command that allows you to
apply one operation to all solutions. For example, try substituting both
solutions.

The map command applies the operation specified as its first argument
to its second argument.

> map(f, [a,b,c], y, z);

[f(a, y, z), f(b, y, z), f(c, y, z)]

Due to the syntactical design of map, it cannot perform multiple func-
tion applications to sequences. Consider the previous solution sequence,
for example.

> soln;



3.1 Simple solve • 47

{x = −1, y = 2}, {x = 2, y =
1

2
}

Enclose soln in square brackets to convert it to a list.

> [soln];

[{x = −1, y = 2}, {x = 2, y =
1

2
}]

Now use the following command to substitute each of the solutions
simultaneously into the original equations, eqns.

> map(subs, [soln], eqns);

[{1 = 1, 3 = 3}, {1 = 1, 3 = 3}]

This method can be valuable if your equation has many solutions, or
if you are unsure of the number of solutions that a certain command will
produce.

Restricting Solutions
You can limit solutions by specifying inequalities with the solve com-
mand.

> solve({x^2=y^2},{x,y});

{x = −y, y = y}, {x = y, y = y}

> solve({x^2=y^2, x<>y},{x,y});

{x = −y, y = y}

Consider this system of five equations in five unknowns.

> eqn1 := x+2*y+3*z+4*t+5*u=41:
> eqn2 := 5*x+5*y+4*z+3*t+2*u=20:
> eqn3 := 3*y+4*z-8*t+2*u=125:
> eqn4 := x+y+z+t+u=9:
> eqn5 := 8*x+4*z+3*t+2*u=11:

Now solve the system for all variables.

> s1 := solve({eqn1,eqn2,eqn3,eqn4,eqn5}, {x,y,z,t,u});



48 • Chapter 3: Finding Solutions

s1 := {x = 2, u = 16, z = −1, y = 3, t = −11}

You can also choose to solve for a subset of the unknowns. Then Maple
returns the solutions in terms of the other unknowns.

> s2 := solve({eqn1,eqn2,eqn3}, { x, y, z});

s2 := {x = −527

13
− 7 t− 28

13
u, z = −70

13
− 7 t− 59

13
u,

y =
635

13
+ 12 t+

70

13
u}

Exploring Solutions
You can explore the parametric solutions found at the end of the previous
section. For example, evaluate the solution at u = 1 and t = 1.

> eval( s2, {u=1,t=1} );

{x =
−646

13
, z =

−220

13
, y =

861

13
}

As in section 3.1, suppose that you require the solutions from solve

in a particular order. Since you cannot fix the order of elements in a
set, solve will not necessarily return your solutions in the order x, y, z.
However, lists do preserve order. Try the following.

> eval( [x,y,z], s2 );

[−527

13
− 7 t− 28

13
u,

635

13
+ 12 t+

70

13
u, −70

13
− 7 t− 59

13
u]

This command not only fixed the order, but it also extracted the
right-hand side of the equations. Because the order is fixed, you know
the solution for each variable. This capability is particularly useful if you
want to plot the solution surface.

> plot3d(%, u=0..2, t=0..2, axes=BOXED);



3.1 Simple solve • 49

–58–56–54–52–50–48–46–44–42

50 55 60 65 70 75 80

–25
–20
–15
–10

–5

The unapply Command
For convenience, define x = x(u, t), y = y(u, t), and z = z(u, t), that
is, convert the solutions to functions. Recall that you can easily select a
solution expression for a particular variable using eval.

> eval( x, s2 );

−527

13
− 7 t− 28

13
u

However, this is an expression for x and not a function.

> x(1,1);

x(1, 1)

To convert the expression to a function you need another important
command, unapply. To use it, provide unapply with the expression and
the independent variables. For example,

> f := unapply(x^2 + y^2 + 4, x, y);

f := (x, y) → x2 + y2 + 4

produces the function, f , of x and y that maps (x, y) to x2 + y2 + 4.
This new function is easy to use.

> f(a,b);

a2 + b2 + 4



50 • Chapter 3: Finding Solutions

Thus, to make your solution for x a function of both u and t, the first
step is to obtain the expression for x, as above.

> eval(x, s2);

−527

13
− 7 t− 28

13
u

Then use unapply to turn it into a function of u and t.

> x := unapply(%, u, t);

x := (u, t) → −527

13
− 7 t− 28

13
u

> x(1,1);

−646

13

You can create the functions y and z in the same manner.

> eval(y,s2);

635

13
+ 12 t+

70

13
u

> y := unapply(%,u,t);

y := (u, t) → 635

13
+ 12 t+

70

13
u

> eval(z,s2);

−70

13
− 7 t− 59

13
u

> z := unapply(%, u, t);

z := (u, t) → −70

13
− 7 t− 59

13
u

> y(1,1), z(1,1);



3.1 Simple solve • 51

861

13
,
−220

13

The assign Command
The assign command also allocates values to unknowns. For example,
instead of defining x, y, and z as functions, assign each to the expression
on the right-hand side of the corresponding equation.

> assign( s2 );
> x, y, z;

−527

13
− 7 t− 28

13
u,

635

13
+ 12 t+

70

13
u, −70

13
− 7 t− 59

13
u

Think of the assign command as turning the “=” signs in the solution
set into “:=” signs.

The assign command is convenient if you want to assign expressions
to names. Remember, though, that while this command is useful for
quickly assigning solutions, it cannot create functions.

This next example incorporates solving differential equations, which
section 3.6 discusses in further detail. To begin, assign the solution.

> s3 := dsolve( {diff(f(x),x)=6*x^2+1, f(0)=0}, {f(x)} );

s3 := f(x) = 2x3 + x

> assign( s3 );

However, you have yet to create a function.

> f(x);

2x3 + x

produces the expected answer, but despite appearances, f(x) is simply
a name for the expression 2x3+x and not a function. Call the function
f using an argument other than x.

> f(1);



52 • Chapter 3: Finding Solutions

f(1)

The reason for this apparently odd behavior is that assign asks Maple
to do the assignment

> f(x) := 2*x^3 + x;

f(x) := 2x3 + x

which is not at all the same as the assignment

> f := x -> 2*x^3 + x;

f := x → 2x3 + x

The former defines the value of the function f for only the special
argument x. The latter defines the function f :x 7→ 2x3 + x so that it
works whether you say f(x), f(y), or f(1).

To define the solution f as a function of x use unapply.

> eval(f(x),s3);

2x3 + x

> f := unapply(%, x);

f := x → 2x3 + x

> f(1);

3

The RootOf Command

Maple occasionally returns solutions in terms of the RootOf command.
The following example demonstrates this point.

> solve({x^5 - 2*x + 3 = 0},{x});



3.2 Solving Numerically: fsolve • 53

{x = RootOf(_Z 5 − 2_Z + 3, index = 1)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 2)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 3)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 4)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 5)}

RootOf(expr) is a placeholder for all the roots of expr. This indicates
that x is a root of the polynomial z5 − 2z + 3, while the index parameter
numbers and orders the solutions. This can be useful if your algebra is over
a field different from the complex numbers. By using the evalf command,
we obtain an explicit form of the complex roots.

> evalf(%);

{x = .9585321812 + .4984277790 I},
{x = −.2467292569 + 1.320816347 I}, {x = −1.423605849},
{x = −.2467292569− 1.320816347 I},
{x = .9585321812− .4984277790 I}

A general expression for the roots of degree five polynomials in terms
of radicals does not exist.

3.2 Solving Numerically: fsolve

The fsolve command is the numeric equivalent of solve. The fsolve

command finds the roots of the equation(s) using a variation of Newton’s
method, producing approximate (floating-point) solutions.

> fsolve({cos(x)-x = 0}, {x});

{x = .7390851332}

For a general equation, fsolve searches for a single real root. For a
polynomial, however, it looks for all real roots.

> poly :=3*x^4 - 16*x^3 - 3*x^2 + 13*x + 16;

poly := 3x4 − 16x3 − 3x2 + 13x+ 16



54 • Chapter 3: Finding Solutions

> fsolve({poly},{x});

{x = 1.324717957}, {x = 5.333333333}

To look for more than one root of a general equation, use the avoid

option.

> fsolve({sin(x)=0}, {x});

{x = 0.}

> fsolve({sin(x)=0}, {x}, avoid={x=0});

{x = −3.141592654}

To find a specified number of roots in a polynomial, use the maxsols

option.

> fsolve({poly}, {x}, maxsols=1);

{x = 1.324717957}

The option complex forces Maple to search for complex roots in ad-
dition to real roots.

> fsolve({poly}, {x}, complex);

{x = −.6623589786− .5622795121 I},
{x = −.6623589786 + .5622795121 I}, {x = 1.324717957},
{x = 5.333333333}

You can also specify a range in which to look for a root.

> fsolve({cos(x)=0}, {x}, Pi..2*Pi);

{x = 4.712388980}

In some cases, fsolve may fail to find a root even if one exists. In
these cases, specifying a range should help. To increase the accuracy of the
solutions, you can increase the value of the special variable, Digits. Note
that in the following example the solution is not guaranteed to be accurate



3.2 Solving Numerically: fsolve • 55

to thirty digits, but rather, Maple performs all steps in the solution to at
least thirty significant digits rather than the default of ten.

> Digits := 30;

Digits := 30

> fsolve({cos(x)=0}, {x});

{x = 1.57079632679489661923132169164}

Limitations on solve

The solve command cannot solve all problems. Remember that Maple’s
approach is algorithmic, and it does not necessarily have the ability to
use the “tricks” that you might use when solving the problem by hand.

Mathematically, polynomials of degree five or higher do not have a
solution in terms of radicals. Maple tries to solve them, but you may have
to resort to a numerical solution.

Solving trigonometric equations can also be difficult. In fact, working
with all transcendental equations is quite difficult.

> solve({sin(x)=0}, {x});

{x = 0}

Note that Maple returns only one of an infinite number of solutions.
However, if you set the environment variable _EnvAllSolutions to true,
Maple returns the entire set of solutions.

> _EnvAllSolutions := true;

_EnvAllSolutions := true

> solve({sin(x)=0}, {x});

{x = π_Z1 ~}

The prefix _Z on the variable indicates that it has integer values. The
tilde (~) indicates that there is an assumption on the variable, namely that
it is an integer. In addition, with the fsolve command you can specify



56 • Chapter 3: Finding Solutions

the range in which to look for a solution. Thereby you may gain more
control over the solution.

> fsolve({sin(x)=0}, {x}, 3..4);

{x = 3.14159265358979323846264338328}

These types of problems are common to all symbolic computation
systems, and are symptoms of the natural limitations of an algorithmic
approach to equation solving.

When using solve, remember to check your results. The next exam-
ple highlights a misunderstanding that can arise as a result of Maple’s
treatment of removable singularities.

> expr := (x-1)^2/(x^2-1);

expr :=
(x− 1)2

x2 − 1

Maple finds a solution

> soln := solve({expr=0},{x});

soln := {x = 1}

but when you evaluate the expression at 1, you get 0/0.

> eval(expr, soln);

Error, numeric exception: division by zero

The limit shows that x = 1 is nearly a solution.

> Limit(expr, x=1);

lim
x→1

(x− 1)2

x2 − 1

> value (%);

0



3.3 Other Solvers • 57

Maple displays a vertical line at the asymptote, unless you specify
discont=true.

> plot(expr, x=-5..5, y=-10..10);

–10
–8
–6
–4
–2

0

2
4
6
8

10

y

–4 –2 2 4
x

Maple removed the singularity x = 1 from the expression before solv-
ing it. Independent of the method or tools you use to solve equations,
always check your results. Fortunately these checks are easy to do in
Maple.

3.3 Other Solvers

Maple contains a number of specialized solve commands. Since you are
not as likely to find these as useful as the more general commands, solve
and fsolve, this section only briefly mentions some of them. If you require
more details on any of these commands, take advantage of the online help
by entering ? and the command name at the Maple prompt.

Finding Integer Solutions
The isolve command finds integer solutions to equations, solving for all
unknowns in the expression(s).

> isolve({3*x-4*y=7});

{x = 5 + 4_Z1 , y = 2 + 3_Z1 }

Maple uses the global names _Z1, . . . , _Zn to denote the integer pa-
rameters of the solution.



58 • Chapter 3: Finding Solutions

Finding Solutions Modulo m
The msolve command solves equations in the integers modulo m (the
positive representation for integers), solving for all unknowns in the ex-
pression(s).

> msolve({3*x-4*y=1,7*x+y=2},17);

{y = 6, x = 14}

> msolve({2^n=3},19);

{n = 13 + 18_Z1 ~}

The tilde (~) on _Z1 indicates that msolve has placed an assumption
on _Z1, in this case that _Z1 is an integer.

> about( _Z1 );

Originally _Z1, renamed _Z1~:
is assumed to be: integer

Section 5.2 describes how you can place assumptions on unknowns.

Solving Recurrence Relations
The rsolve command solves recurrence equations, returning an expres-
sion for the general term of the function.

> rsolve({f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=1},{f(n)});















f(n) = −2

5

√
5 (− 2

1−
√
5
)n

1−
√
5

+
2

5

√
5 (− 2

1 +
√
5
)n

1 +
√
5















See also ?LREtools.

3.4 Polynomials

A polynomial in Maple is an expression containing unknowns. Each term
in the polynomial contains a product of the unknowns. For example,



3.4 Polynomials • 59

should the polynomial contain only one unknown, x, then the terms
might contain x3, x1 = x, and x0 = 1 as in the case of the polyno-
mial x3 − 2x+1. If more than one unknown exists, then a term may also
contain a product of the unknowns, as in the polynomial x3 + 3x2y + y2.
Coefficients can be integers (as in the examples above), rational numbers,
irrational numbers, floating-point numbers, complex numbers, or other
variables.

> x^2 - 1;

x2 − 1

> x + y + z;

x+ y + z

> 1/2*x^2 - sqrt(3)*x - 1/3;

1

2
x2 −

√
3x− 1

3

> (1 - I)*x + 3 + 4*I;

(1− I)x+ 3 + 4 I

> a*x^4 + b*x^3 + c*x^2 + d*x + f;

a x4 + b x3 + c x2 + d x+ f

Maple possesses commands for many kinds of manipulations and
mathematical calculations with polynomials. The following sections in-
vestigate some of them.

Sorting and Collecting
The sort command arranges a polynomial into descending order of powers
of the unknowns. Rather than making another copy of the polynomial
with the terms in order, sort modifies the way Maple stores the original
polynomial in memory. In other words, if you display your polynomial
after sorting it, you will find that it retains the new order.

> sort_poly := x + x^2 - x^3 + 1 - x^4;



60 • Chapter 3: Finding Solutions

sort_poly := x+ x2 − x3 + 1− x4

> sort(sort_poly);

−x4 − x3 + x2 + x+ 1

> sort_poly;

−x4 − x3 + x2 + x+ 1

Maple sorts multivariate polynomials in two ways. The default method
sorts them by total degree of the terms. Thus, x2y2 will come before both
x3 and y3. The other option sorts by pure lexicographic order (plex).
When you choose this option, the sort deals first with the powers of the
first variable in the variable list (second argument) and then with the
powers of the second variable. The difference between these sorts is best
shown by an example.

> mul_var_poly := y^3 + x^2*y^2 + x^3;

mul_var_poly := y3 + x2 y2 + x3

> sort(mul_var_poly, [x,y]);

x2 y2 + x3 + y3

> sort(mul_var_poly, [x,y], ’plex’);

x3 + x2 y2 + y3

The collect command groups coefficients of like powers in a poly-
nomial. For example, if the terms ax and bx are in a polynomial, Maple
collects them as (a+ b)x.

> big_poly:=x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;

big_poly := x y + z x y + y x2 − z y x2 + x+ z x

> collect(big_poly, x);



3.4 Polynomials • 61

(y − z y)x2 + (y + z y + 1 + z)x

> collect(big_poly, z);

(x y − y x2 + x) z + x y + y x2 + x

Mathematical Operations
You can perform many mathematical operations on polynomials. Among
the most fundamental is division, that is, to divide one polynomial into
another and determine the quotient and remainder. Maple provides the
commands rem and quo to find the remainder and quotient of a polynomial
division.

> r := rem(x^3+x+1, x^2+x+1, x);

r := 2 + x

> q := quo(x^3+x+1, x^2+x+1, x);

q := x− 1

> collect( (x^2+x+1) * q + r, x );

x3 + x+ 1

On the other hand, sometimes it is sufficient to know whether one
polynomial divides into another polynomial exactly. The divide com-
mand tests for exact polynomial division.

> divide(x^3 - y^3, x - y);

true

> rem(x^3 - y^3, x - y, x);

0

You evaluate polynomials at values as you would with any expression,
by using eval.



62 • Chapter 3: Finding Solutions

> poly := x^2 + 3*x - 4;

poly := x2 + 3x− 4

> eval(poly, x=2);

6

> mul_var_poly := y^2*x - 2*y + x^2*y + 1;

mul_var_poly := y2 x− 2 y + y x2 + 1

> eval(mul_var_poly, {y=1,x=-1});

−1

Coefficients and Degrees
The commands degree and coeff determine the degree of a polynomial
and provide a mechanism for extracting coefficients.

> poly := 3*z^3 - z^2 + 2*z - 3*z + 1;

poly := 3 z3 − z2 − z + 1

> coeff(poly, z^2);

−1

> degree(poly,z);

3

Root Finding and Factorization
The solve command determines the roots of a polynomial whereas the
factor command expresses the polynomial in fully factored form.

> poly1 := x^6 - x^5 - 9*x^4 + x^3 + 20*x^2 + 12*x;

poly1 := x6 − x5 − 9x4 + x3 + 20x2 + 12x



3.4 Polynomials • 63

Table 3.1 Commands for Finding Polynomial Coefficients

Command Description

coeff extract coefficient
lcoeff find the leading coefficient
tcoeff find the trailing coefficient
coeffs return a sequence of all the coefficients
degree determine the (highest) degree of the polynomial
ldegree determine the lowest degree of the polynomial

> factor(poly1);

x (x− 2) (x− 3) (x+ 2) (x+ 1)2

> poly2 := (x + 3);

poly2 := x+ 3

> poly3 := expand(poly2^6);

poly3 :=

x6 + 18x5 + 135x4 + 540x3 + 1215x2 + 1458x+ 729

> factor(poly3);

(x+ 3)6

> solve({poly3=0}, {x});

{x = −3}, {x = −3}, {x = −3}, {x = −3}, {x = −3}, {x = −3}

> factor(x^3 + y^3);

(x+ y) (x2 − x y + y2)

Maple factors the polynomial over the ring implied by the coefficients
(integers, rationals, etc.). The factor command also allows you to specify
an algebraic number field over which to factor the polynomial. See the help
page ?factor for more information.



64 • Chapter 3: Finding Solutions

Table 3.2 Functions that Act on Polynomials

Function Description

content content of a multivariate polynomial
compoly polynomial decomposition
discrim discriminant of a polynomial
gcd greatest common divisor
gcdex extended Euclidean algorithm
interp polynomial interpolation
lcm least common multiple
norm norm of a polynomial
prem pseudo-remainder
primpart primitive part of a multivariate polynomial
randpoly random polynomial
recipoly reciprocal polynomial
resultant resultant of two polynomials
roots roots over an algebraic number field
sqrfree square-free factorization

3.5 Calculus

Maple provides many powerful tools for solving problems in calculus.
For example, Maple is useful for computing limits of functions. Com-

pute the limit of a rational function as x approaches 1.

> f := x -> (x^2-2*x+1)/(x^4 + 3*x^3 - 7*x^2 + x+2);

f := x → x2 − 2x+ 1

x4 + 3x3 − 7x2 + x+ 2

> Limit(f(x), x=1);

lim
x→1

x2 − 2x+ 1

x4 + 3x3 − 7x2 + x+ 2

> value(%);

1

8



3.5 Calculus • 65

Taking the limit of an expression from either the positive or the neg-
ative direction is also possible. For example, consider the limit of tan(x)
as x approaches π/2.

Calculate the left-hand limit using the option left.

> Limit(tan(x), x=Pi/2, left);

lim
x → (1/2π)−

tan(x)

> value(%);

∞

Do the same for the right-hand limit.

> Limit(tan(x), x=Pi/2, right);

lim
x → (1/2π)+

tan(x)

> value(%);

−∞

Another operation easily performed in Maple is the creation of series
approximations of a function. For example, use the function

> f := x -> sin(4*x)*cos(x);

f := x → sin(4x) cos(x)

> fs1 := series(f(x), x=0);

fs1 := 4x− 38

3
x3 +

421

30
x5 +O(x6)

Note that, by default, the series command generates an order 6
polynomial. By changing the value of the special variable, Order, you can
increase or decrease the order of a polynomial series.

Using convert(fs1, polynom) removes the order term from the se-
ries so that Maple can plot it.



66 • Chapter 3: Finding Solutions

> p := convert(fs1,polynom);

p := 4x− 38

3
x3 +

421

30
x5

> plot({f(x), p},x=-1..1, -2..2);

–2

–1

0

1

2

–1–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1
x

If you increase the order of truncation of the series to 12 and try again,
you see the expected improvement in the accuracy of the approximation.

> Order := 12;

Order := 12

> fs1 := series(f(x), x=0);

fs1 := 4x− 38

3
x3 +

421

30
x5 − 10039

1260
x7 +

246601

90720
x9−

6125659

9979200
x11 +O(x12)

> p := convert(fs1,polynom);

p := 4x− 38

3
x3 +

421

30
x5 − 10039

1260
x7 +

246601

90720
x9

− 6125659

9979200
x11

> plot({f(x), p}, x=-1..1, -2..2);



3.5 Calculus • 67

–2

–1

0

1

2

–1–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1
x

Maple can symbolically compute derivatives and integrals. For exam-
ple, differentiate an expression, integrate its result, and compare it with
the original expression.

> f := x -> x*sin(a*x) + b*x^2;

f := x → x sin(a x) + b x2

> Diff(f(x),x);

∂

∂x
(x sin(a x) + b x2)

> df := value(%);

df := sin(a x) + x cos(a x) a+ 2 b x

> Int(df, x);

∫

sin(a x) + x cos(a x) a+ 2 b x dx

> value(%);

−cos(a x)

a
+

cos(a x) + a x sin(a x)

a
+ b x2

> simplify(%);

x (sin(a x) + b x)



68 • Chapter 3: Finding Solutions

It is unnecessary to use the inert forms Diff and Int in conjunction
with the value command to symbolically compute the derivative and
integral, respectively. The results can be calculated in single commands
by using diff and int, respectively.

You can also perform definite integrations. For example, recompute
the previous integral on the interval x = 1 to x = 2.

> Int(df,x=1..2);

∫ 2

1
sin(a x) + x cos(a x) a+ 2 b x dx

> value(%);

2 sin(2 a) + 3 b− sin(a)

Consider a more complicated integral.

> Int(exp(-x^2), x);

∫

e(−x2) dx

> value(%);

1

2

√
π erf(x)

If Maple is uncertain whether a variable is real or complex, it may
return an unexpected result.

> g := t -> exp(-a*t)*ln(t);

g := t → e(−a t) ln(t)

> Int (g(t), t=0..infinity);

∫ ∞

0
e(−a t) ln(t) dt

> value(%);



3.5 Calculus • 69

lim
t→∞

− e(−a t) ln(t) + Ei(1, a t) + γ + ln(a)

a

Here Maple assumes that the parameter a is a complex number.
Hence, it returns a more general answer.

For situations where you know that a is a positive, real number, tell
Maple by using the assume command.

> assume(a > 0):
> ans := Int(g(t), t=0..infinity);

ans :=

∫ ∞

0
e(−a~ t) ln(t) dt

> value(%);

− ln(a~)

a~
− γ

a~

The result is much simpler. The only non-elementary term is the con-
stant gamma. The tilde (~) indicates that a carries an assumption. Now
remove the assumption to proceed to more examples. You must do this
in two steps. The answer, ans, contains a with assumptions. If you want
to reset and continue to use ans, then you must replace all occurrences
of a~ with a.

> ans := subs(a =’a’, ans );

ans :=

∫ ∞

0
e(−a t) ln(t) dt

The first argument, a = ’a’, deserves special attention. If you type
a after making an assumption about a, Maple automatically assumes you
mean a~. In Maple, single quotes delay evaluation. In this case, they
ensure that Maple interprets the second a as a and not as a~.

Now that you have removed the assumption on a inside ans, you can
remove the assumption on a itself by assigning it to its own name.

> a := ’a’:

Use single quotes here for the same reason as before. See also section 5.2.



70 • Chapter 3: Finding Solutions

3.6 Differential Equations: dsolve

Maple can symbolically solve many ordinary differential equations (ODEs),
including initial value and boundary value problems.

Define an ODE.

> ode1 := {diff(y(t),t,t) + 5*diff(y(t),t) + 6*y(t) = 0};

ode1 := {( ∂
2

∂t2
y(t)) + 5 (

∂

∂t
y(t)) + 6 y(t) = 0}

Define initial conditions.

> ic := {y(0)=0, D(y)(0)=1};

ic := {D(y)(0) = 1, y(0) = 0}

Solve with dsolve, using the union operator to form the union of the
two sets.

> soln := dsolve(ode1 union ic, {y(t)});

soln := y(t) = −e(−3 t) + e(−2 t)

If you want to evaluate the solution at points or plot it, remember to
use the unapply command to define a proper Maple function. Section 3.1
discusses this further.

You can conveniently extract a value from a solution set with the aid
of eval.

> eval( y(t), soln );

−e(−3 t) + e(−2 t)

Now, use this fact to define y as a function of t using unapply:

> y1:= unapply(%, t );

y1 := t → −e(−3 t) + e(−2 t)

> y1(a);

−e(−3 a) + e(−2 a)



3.6 Differential Equations: dsolve • 71

Verify that y1 is indeed a solution to the ODE:

> eval(ode1, y=y1);

{0 = 0}

and that y1 satisfies the initial conditions.

> eval(ic, y=y1);

{1 = 1, 0 = 0}

Another method for solution checking is also available. Assign the new
solution to y instead of y1.

> y := unapply( eval(y(t), soln), t );

y := t → −e(−3 t) + e(−2 t)

Now when you enter an equation containing y, Maple uses this func-
tion and evaluates the result, all in one step.

> ode1;

{0 = 0}

> ic;

{1 = 1, 0 = 0}

If you want to change the differential equation, or the definition of
y(t), then you can remove the definition with the following command.

> y := ’y’;

y := y

Maple also understands special functions, such as the Dirac delta or
impulse function, used in physics.

> ode2 := 10^6*diff(y(x),x,x,x,x) = Dirac(x-2) -
> Dirac(x-4);



72 • Chapter 3: Finding Solutions

ode2 := 1000000 (
∂4

∂x4
y(x)) = Dirac(x− 2)−Dirac(x− 4)

Specify boundary conditions

> bc := {y(0)=0, D(D(y))(0)=0, y(5)=0};

bc := {y(0) = 0, y(5) = 0, (D(2))(y)(0) = 0}

and an initial value.

> iv := {D(D(y))(5)=0};

iv := {(D(2))(y)(5) = 0}

> soln := dsolve({ode2} union bc union iv, {y(x)});

soln := y(x) =
1

6000000
Heaviside(x− 2)x3

− 1

750000
Heaviside(x− 2) +

1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

> eval(y(x), soln);



3.6 Differential Equations: dsolve • 73

1

6000000
Heaviside(x− 2)x3 − 1

750000
Heaviside(x− 2)

+
1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

> y := unapply(%, x);

y := x → 1

6000000
Heaviside(x− 2)x3

− 1

750000
Heaviside(x− 2) +

1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

This value of y satisfies the differential equation, the boundary con-
ditions, and the initial value.

> ode2;



74 • Chapter 3: Finding Solutions

−12Dirac(1, x− 2) + 24Dirac(1, x− 4)− 6Dirac(1, x− 4)x

+ 6Dirac(1, x− 2)x− 2Dirac(2, x− 4)x2

− 32Dirac(2, x− 4) + 8Dirac(2, x− 2)

+ 16Dirac(2, x− 4)x− 8Dirac(2, x− 2)x

+ 2Dirac(2, x− 2)x2 − 8Dirac(3, x− 4)x

+
1

6
Dirac(3, x− 2)x3 + 2Dirac(3, x− 2)x

−Dirac(3, x− 2)x2 − 1

6
Dirac(3, x− 4)x3

+ 2Dirac(3, x− 4)x2 +
32

3
Dirac(3, x− 4)

− 4

3
Dirac(3, x− 2) + 4Dirac(x− 2)− 4Dirac(x− 4) =

Dirac(x− 2)−Dirac(x− 4)

> simplify(%);

Dirac(x− 2)−Dirac(x− 4) = Dirac(x− 2)−Dirac(x− 4)

> bc;

{0 = 0}

> iv;

{0 = 0}

> plot(y(x), x=0..5, axes=BOXED);

0

2e–07

4e–07

6e–07

8e–07

1e–06

0 1 2 3 4 5
x

You should unassign y now since you are done with it.



3.6 Differential Equations: dsolve • 75

> y := ’y’;

y := y

Maple can also solve systems of differential equations. For example,
solve the following system of two simultaneous, second order equations.

> de_sys := { diff(y(x),x,x)=z(x), diff(z(x),x,x)=y(x) };

de_sys := { ∂2

∂x2
y(x) = z(x),

∂2

∂x2
z(x) = y(x)}

> soln := dsolve(de_sys, {z(x),y(x)});

soln := {z(x) = _C1 e(−x) +_C2 ex +_C3 sin(x) + _C4 cos(x),

y(x) = _C1 e(−x) +_C2 ex −_C3 sin(x)−_C4 cos(x)}
If you solve the system without providing additional conditions, Maple

automatically generates the appropriate constants _C1, . . . , _C4.
Again, observe that you can easily extract and define the solutions

with the aid of eval and unapply:

> y := unapply(eval(y(x), soln), x );

y := x → _C1 e(−x) +_C2 ex −_C3 sin(x)−_C4 cos(x)

> y(1);

_C1 e(−1) +_C2 e−_C3 sin(1)−_C4 cos(1)

and you can undefine it again when you are finished with it.

> y := ’y’;

y := y



76 • Chapter 3: Finding Solutions

3.7 The Organization of Maple

When you start Maple, it loads only the kernel . The kernel is the base
of Maple’s system. It contains fundamental and primitive commands: the
Maple language interpreter (which converts the commands you type into
machine instructions your computer processor can understand), algo-
rithms for basic numerical calculation, and routines to display results
and perform other input and output operations.

The kernel consists of highly optimized C code—approximately 10%
of the system’s total size. Maple programmers have deliberately kept the
size of the kernel small for speed and efficiency. The Maple kernel imple-
ments the most frequently used routines for integer and rational arith-
metic and simple polynomial calculations.

The remaining 90% of Maple’s mathematical knowledge is written
in the Maple language and resides in the Maple library. Maple’s library
divides into two groups: the main library and the packages. These groups
of functions sit above the kernel.

The main library contains the most frequently used Maple commands
(other than those in the kernel). These commands load upon demand—
you do not need to explicitly load them. The Maple language produces
very compact procedures that read with no observable delay, so you are
not likely to notice which commands are C-coded kernel commands and
which are loaded from the library.

The last commands in the library are in the packages. Each one of
Maple’s numerous packages contains a group of commands for related cal-
culations. For example, the LinearAlgebra package contains commands
for the manipulation of Matrices.

You can use a command from a package in three ways.

1. Use the complete name of the package and the desired command.

package[cmd]( ... )

2. Activate the short names for all the commands in a package using the
with command.

with(package)

Then use the short name for the command.



3.8 The Maple Packages • 77

cmd(...)

3. Activate the short name for a single command from a package.

with(package, cmd)

Then use the short form of the command name.

cmd(...)

This next example uses the distance command in the student pack-
age to calculate the distance between two points.

> with(student);

[D, Diff , Doubleint , Int , Limit , Lineint , Product , Sum,

Tripleint , changevar , completesquare , distance , equate ,

integrand , intercept , intparts , leftbox , leftsum,

makeproc , middlebox , middlesum, midpoint , powsubs ,

rightbox , rightsum, showtangent , simpson, slope ,

summand , trapezoid ]

> distance([1,1],[3,4]);

√
13

When you use with(package), you see a list of all the short names of
the commands in the package. Plus, Maple warns you if it has redefined
any pre-existing names.

3.8 The Maple Packages

Maple’s built-in packages of specialized commands perform tasks from an
extensive variety of disciplines, from Student Calculus to General Rela-
tivity Theory. The examples in this section are not intended to be com-
prehensive. They are simply examples of a few commands in selected
packages, to give you a glimpse of Maple’s functionality.



78 • Chapter 3: Finding Solutions

List of Packages
The following list of packages can also be found by reading the help page
?packages. For a full list of commands in a particular package, see the
help page, ?packagename .

algcurves tools for studying the one-dimensional algebraic varieties
(curves) defined by multi-variate polynomials.

codegen tools for creating, manipulating, and translating Maple proce-
dures into other languages. Includes automatic differentiation, code
optimization, translation into C and Fortran, etc.

combinat combinatorial functions, including commands for calculating
permutations and combinations of lists, and partitions of integers.
(Use the combstruct package instead, where possible.)

combstruct commands for generating and counting combinatorial struc-
tures, as well as determining generating function equations for such
counting.

context tools for building and modifying context-sensitive menus in
Maple’s graphical user interface (e.g., when right-clicking on an out-
put expression).

CurveFitting commands that support curve-fitting.

DEtools tools for manipulating, solving, and plotting systems of differ-
ential equations, phase portraits, and field plots.

diffalg commands for manipulating systems of differential polynomial
equations (ODEs or PDEs).

difforms commands for handling differential forms; for problems in dif-
ferential geometry.

Domains commands to create domains of computation; supports com-
puting with polynomials, matrices, and series over number rings, finite
fields, polynomial rings, and matrix rings.

ExternalCalling commands that link to external functions.

finance commands for financial computations.

GaussInt commands for working with Gaussian Integers; that is, num-
bers of the form a + bI where a and b are integers. Commands for
finding GCDs, factoring, and primality testing.



3.8 The Maple Packages • 79

genfunc commands for manipulating rational generating functions.

geom3d commands for three-dimensional Euclidean geometry; to define
and manipulate points, lines, planes, triangles, spheres, polyhedra,
etc. in three dimensions.

geometry commands for two-dimensional Euclidean geometry; to define
and manipulate points, lines, triangles, and circles in two dimensions.

Groebner commands for Gröbner basis computations; in particular tools
for Ore algebras and D-modules.

group commands for working with permutation groups and finitely-
presented groups.

inttrans commands for working with integral transforms and their in-
verses.

liesymm commands for characterizing the contact symmetries of systems
of partial differential equations.

linalg over 100 commands for matrix and vector manipulation; every-
thing from adding two matrices to symbolic eigenvectors and eigen-
values.

LinearAlgebra enhanced linear algebra commands for creating special
types of Matrices, calculating with large numeric Matrices, and per-
forming Matrix algebra.

LinearFunctionalSystems commands that solve linear functional sys-
tems with polynomial coefficients, find the universal denominator of
a rational solution, and transform a matrix recurrence system into an
equivalent system with a nonsingular leading or trailing matrix.

ListTools commands that manipulate lists.

LREtools commands for manipulating, plotting, and solving linear recur-
rence equations.

MathML commands that import and export Maple expressions to and from
MathML text.

Matlab commands to use several of Matlab’s numerical matrix func-
tions, including eigenvalues and eigenvectors, determinants, and LU-
decomposition. (Only accessible if Matlab is installed on your system.)



80 • Chapter 3: Finding Solutions

networks tools for constructing, drawing, and analyzing combinatorial
networks. Facilities for handling directed graphs, and arbitrary ex-
pressions for edge and vertex weights.

numapprox commands for calculating polynomial approximations to func-
tions on a given interval.

numtheory commands for classic number theory, primality testing, find-
ing the nth prime, factoring integers, generating cyclotomic polyno-
mials. This package also contains commands for handling convergents.

Ore_algebra routines for basic computations in algebras of linear oper-
ators.

orthopoly commands for generating various types of orthogonal polyno-
mials; useful in differential equation solving.

padic commands for computing p-adic approximations to real numbers.

PDEtools tools for manipulating, solving and plotting partial differential
equations.

plots commands for different types of specialized plots, including contour
plots, two- and three-dimensional implicit plotting, plotting text, and
plots in different coordinate systems.

plottools commands for generating and manipulating graphical objects.

PolynomialTools commands for manipulating polynomial objects.

powseries commands to create and manipulate formal power series rep-
resented in general form.

process the commands in this package allow you to write multi-process
Maple programs under UNIX.

RandomTools commands for working with random objects.

RationalNormalForms commands that construct the polynomial normal
form or rational canonical forms of a rational function, or minimal
representation of a hypergeometric term.

RealDomain provides an environment in which the assumed underlying
number system is the real number system not the complex number
system.



3.8 The Maple Packages • 81

simplex commands for linear optimization using the simplex algorithm.

Slode commands for finding formal power series solutions of linear ODEs.

SolveTools commands that solve systems of algebraic equations. This
package gives expert users access to the routines used by the solve

command for greater control over the solution process.

Spread tools for working with spreadsheets in Maple.

stats simple statistical manipulation of data; includes averaging, stan-
dard deviation, correlation coefficients, variance, and regression anal-
ysis.

StringTools optimized commands for string manipulation.

student commands for step-by-step calculus computations; including in-
tegration by parts, Simpson’s rule, maximizing functions, finding ex-
trema.

sumtools commands for computing indefinite and definite sums. Includes
Gosper’s algorithm and Zeilberger’s algorithm.

tensor commands for calculating with tensors and their applications in
General Relativity Theory.

Units commands for converting values between units, and environments
for performing calculations with units.

XMLTools commands that manipulate Maple’s internal representation of
XML documents.

The Student Calculus Package
The student package helps you do step-by-step calculus computations.
As an example, consider this problem: Given the function −2/3x2 + x,
find its derivative from first principles.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

What is the value of the derivative at x = 0?

> with(student):

To view a list of all the commands you are reading in, replace the colon
at the end of the command with a semicolon.



82 • Chapter 3: Finding Solutions

> f := x -> -2/3*x^2 + x;

f := x → −2

3
x2 + x

> ( f(x+h) - f(x) )/h;

−2

3
(x+ h)2 + h+

2

3
x2

h

> Limit(%, h=0);

lim
h→0

−2

3
(x+ h)2 + h+

2

3
x2

h

> value(%);

−4

3
x+ 1

> eval(%, x=0);

1

To see if this seems right, plot the curve and the tangent line at x = 0.

> showtangent(f(x), x=0);

–60

–40

–20

0
–10 –8 –6 –4 –2 2 4 6 8 10x

Where does this curve cross the x-axis?

> intercept(y=f(x), y=0);



3.8 The Maple Packages • 83

{y = 0, x = 0}, {y = 0, x =
3

2
}

You can find the area under the curve between these two points, using
Riemann sums.

> middlebox(f(x), x=0..3/2);

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1 1.2 1.4
x

Since the result is not a good approximation, increase the number of
boxes used to ten.

> middlebox( f(x), x=0..3/2, 10 );

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1 1.2 1.4
x

> middlesum( f(x), x=0..3/2, 10 );

3

20

(

9
∑

i=0

(−2

3
(
3

20
i+

3

40
)2 +

3

20
i+

3

40
)

)

> value(%);

603

1600



84 • Chapter 3: Finding Solutions

What is the actual value? First, use n boxes.

> middlesum( f(x), x=0..3/2, n );

3

2

n−1
∑

i=0





−
3

2

(i+
1

2
)2

n2
+

3

2

i+
1

2
n







n

Then take the limit as n goes to ∞.

> Limit( %, n=infinity );

lim
n→∞

3

2

n−1
∑

i=0





−
3

2

(i+
1

2
)2

n2
+

3

2

i+
1

2
n







n

> value(%);

3

8

Now, observe that you can obtain the same result using an integral.

> Int( f(x), x=0..3/2 );

∫ 3/2

0
− 2

3
x2 + x dx

> value(%);

3

8

See chapter 6 for further discussions on calculus with Maple.

The LinearAlgebra Package
In linear algebra, a set of linearly independent vectors that generates the
vector space is a basis. That is, you can uniquely express any element in
the vector space as a linear combination of the elements of the basis.



3.8 The Maple Packages • 85

A set of vectors {v1, v2, v3, . . . , vn} is linearly independent if and only
if whenever

c1v1 + c2v2 + c3v3 + · · ·+ cnvn = 0

then
c1 = c2 = c3 = · · · = cn = 0.

Problem: Determine a basis for the vector space generated by the vectors
[1,−1, 0, 1], [5,−2, 3,−1], and [6,−3, 3, 0]. Express the vector [1, 2, 3,−5]
with respect to this basis.
Solution: Enter the vectors.

> with(LinearAlgebra):
> v1:=<1|-1|0|1>:
> v2:=<5|-2|3|-1>:
> v3:=<6|-3|3|0>:
> vector_space:=<v1,v2,v3>;

vector_space :=





1 −1 0 1
5 −2 3 −1
6 −3 3 0





If the vectors are linearly independent, then they form a basis. To test
linear independence, set up the equation c1v1 + c2v2 + c3v3 = 0

c1[1,−1, 0, 1] + c2[5,−2, 3,−1] + c3[6,−3, 3, 0] = [0, 0, 0, 0]

which is equivalent to

c1 + 5c2 + 6c3 = 0

−c1 − 2c2 − 3c3 = 0

3c2 + 3c3 = 0

c1 − c2 = 0

> LinearSolve( Transpose(vector_space), <0,0,0,0> );





−_t0 3

−_t0 3

_t0 3





The vectors are linearly dependent since each is a linear product of a
variable. Thus, they cannot form a basis. The RowSpace command returns
a basis for the vector space.



86 • Chapter 3: Finding Solutions

> b:=RowSpace(vector_space);

b := [[1, 0, 1, −1], [0, 1, 1, −2]]

> b1:=b[1]; b2:=b[2];

b1 := [1, 0, 1, −1]

b2 := [0, 1, 1, −2]

> basis:=<b1,b2>;

basis :=

[

1 0 1 −1
0 1 1 −2

]

Express [1, 2, 3,−5] in coordinates with respect to this basis.

> LinearSolve( Transpose(basis), <1|2|3|-5> );

[

1
2

]

You can find further information on this package in the ?LinearAlgebra
help page.

The Matlab Package
The Matlab package enables you to call selected MATLAB functions from
a Maple session, provided you have MATLAB installed on your system.1

MATLAB is an abbreviation of matrix laboratory and is a popular nu-
merical computation package, used extensively by engineers and other
computing professionals.

To enable the connection between the two products, first establish the
connection between the two products with

1There is also a Symbolic Computation Toolbox available for MATLAB that allows
you to call Maple commands from MATLAB.



3.8 The Maple Packages • 87

> with(Matlab):

The call to the Matlab library automatically executes the openlink

command.
To determine the eigenvalues and eigenvectors of a matrix of integers,

first define the matrix in Maple syntax.

> A := Matrix([[1,2,3],[1,2,3],[2,5,6]]):

Then the following call to eig is made.

> P,W := eig(A, eigenvectors=true):

Notice what is to the left of the assignment operator. The (P,W) spec-
ifies that two outputs are to be generated and assigned to variables —
the eigenvalues to W and the eigenvectors to P. This multiple assignment
is available to standard Maple commands but, since existing Maple com-
mands are designed to create a single result, is rarely used.

Let’s look at the individual results.

> W;









9.321825 0. 0.

0. −.5612673 10−15 0.

0. 0. −.3218253









> P;









−.3940365889964673 −.9486832980505138 −.5567547110202646

−.3940365889964672 −2.758331802155925 10−16 −.5567547110202655

−.8303435030540421 .3162277660168383 .6164806432593667









The commands in this package can also take input in MATLAB for-
mat. See the help page ?Matlab for more information on acceptable input.

The Statistics Package
The stats package has many commands for data analysis and manipu-
lation, and various types of statistical plotting. It also contains a wide
range of statistical distributions.

The stats package contains subpackages. Within each subpackage,
the commands are grouped by functionality.



88 • Chapter 3: Finding Solutions

> with(stats);

[anova, describe , fit , importdata, random, statevalf ,

statplots , transform]

The stats package works with data in statistical lists , which can
be standard Maple lists. A statistical list can also contain ranges and
weighted values. The difference is best shown using an example. The name
marks is assigned a standard list,

> marks :=
> [64,93,75,81,45,68,72,82,76,73];

marks := [64, 93, 75, 81, 45, 68, 72, 82, 76, 73]

as is readings

> readings := [ 0.75, 0.75, .003, 1.01, .9125,
> .04, .83, 1.01, .874, .002 ];

readings :=

[.75, .75, .003, 1.01, .9125, .04, .83, 1.01, .874, .002]

which is equivalent to the following statistical list.

> readings := [ Weight(.75, 2), .003, Weight(1.01, 2),
> .9125, .04, .83, .874, .002 ];

readings := [Weight(.75, 2), .003, Weight(1.01, 2),

.9125, .04, .83, .874, .002]

The expression Weight(x,n) indicates that the value x appears n
times in the list.

If differences less than 0.01 are so small that they are not meaningful,
you can group them together, and simply give a range (using “..”).

> readings := [ Weight(.75, 2), Weight(1.01, 2), .9125,
> .04, .83, .874, Weight(0.002..0.003, 2) ];

readings := [Weight(.75, 2), Weight(1.01, 2), .9125, .04,

.83, .874, Weight(.002...003, 2)]

The describe subpackage contains commands for data analysis.



3.8 The Maple Packages • 89

> describe[mean](marks);

729

10

> describe[range](marks);

45..93

> describe[range](readings);

.002..1.01

> describe[standarddeviation](readings);

.4038750457

This package contains many statistical distributions. Generate some
random data using the normal distribution, group it into ranges, and then
plot a histogram of the ranges.

> random_data:=[random[normald](50)];

random_data := [1.253885016, −.8364873676,

−.4386378394, −1.140005385, .1529160443,

.7487697029, −.4908898750, −.6385850228,

.7648245898, −.04721150696, −1.463572278,

.4470293004, 1.342701867, 2.162605068,

−.2620109124, .1093403084, −.9886372087,

−.7765483851, −.1231141571, .3876183720,

1.625165927, 1.095665255, −.2068680316,

−1.283733823, 1.583279600, .3045008349,

−.7304597374, .4996033128, .8670709448,

−.1729739933, −.6819890237, .005183053789,

.8876933468, −.3758638317, 1.452138520,

2.858250470, .6917100232, .6341448687,

.6707087107, .5872984199, .03801888006,

−.1238893314, −.01231563388, −.7709242575,

−1.599692668, .8181350112, .08547526754,

.09467224460, −1.407989130, .4128440679]



90 • Chapter 3: Finding Solutions

> ranges:=[-5..-2,-2..-1,-1..0,0..1,1..2,2..5];

ranges := [−5..− 2, −2..− 1, −1..0, 0..1, 1..2, 2..5]

> data_list:=transform[tallyinto](random_data,ranges);

data_list := [Weight(2..5, 2), Weight(1..2, 6),

Weight(−5..− 2, 0), Weight(−2..− 1, 5),

Weight(−1..0, 17), Weight(0..1, 20)]

> statplots[histogram](data_list);

0

5

10

15

20

–6 –4 –2 2 4 6

The Linear Optimization Package
The simplex package contains commands for linear optimization, using
the simplex algorithm. Linear optimization involves finding optimal solu-
tions to equations under constraints.

An example of a classic optimization problem is the pizza delivery
problem. You have four pizzas to deliver, to four different places, spread
throughout the city. You want to deliver all four using as little gas as
possible. You also must get to all four locations in under twenty minutes,
so that the pizzas stay hot. If you can create mathematical equations
representing the routes to the four places and the distances, you can find
the optimal solution. That is, you can determine what route you should
take to get to all four places in as little time and using as little gas as
possible. The constraints on this particular system are that you have to
deliver all four pizzas within twenty minutes of leaving the restaurant.

Here is a very small system as an example.

> with(simplex);

Warning, the name basis has been redefined
Warning, the protected names maximize and minimize have
been redefined and unprotected



3.8 The Maple Packages • 91

[basis , convexhull , cterm, define_zero, display , dual ,

feasible , maximize , minimize , pivot , pivoteqn, pivotvar ,

ratio, setup, standardize ]

Say you want to maximize the expression w

> w := -x+y+2*z;

w := −x+ y + 2 z

subject to the constraints c1, c2, and c3.

> c1 := 3*x+4*y-3*z <= 23;

c1 := 3x+ 4 y − 3 z ≤ 23

> c2 := 5*x-4*y-3*z <= 10;

c2 := 5x− 4 y − 3 z ≤ 10

> c3 := 7*x +4*y+11*z <= 30;

c3 := 7x+ 4 y + 11 z ≤ 30

> maximize(w, {c1,c2,c3});

In this case, no answer means that Maple cannot find a solution. You can
use the command feasible to determine if the set of constraints is valid.

> feasible({c1,c2,c3});

true

Try again, but this time place an additional restriction on the solu-
tion.

> maximize(w, {c1,c2,c3}, NONNEGATIVE);

{x = 0, z =
1

2
, y =

49

8
}



92 • Chapter 3: Finding Solutions

3.9 Conclusion

This chapter encompasses fundamental Maple features that will assist
you greatly as you learn more complicated problem-solving methods. Sec-
tion 3.1 introduced you to solve and fsolve, and how to properly use
them. These methods will be useful time and again.

The final sections of this chapter introduced manipulations, dsolve,
and the organization of Maple and the Maple library, in an attempt to
give you a glimpse of Maple’s potential. By this point in the manual, you
will by no means know everything about Maple. You will, however, know
enough to begin using Maple productively. You may wish to pause at this
time in your study of this book to work, or play, with Maple.



4 Graphics

Sometimes the best way to get a better understanding of a mathemat-
ical structure is to graph it. Maple can produce several forms of graphs.
For instance, some of its plotting capabilities include two-dimensional,
three-dimensional, and animated graphs that you can view from any an-
gle. Maple accepts explicit, implicit, and parametric forms, and knows
many coordinate systems. Maple’s flexibility allows you to easily manip-
ulate graphs in many situations.

4.1 Graphing in Two Dimensions

When plotting an explicit function, y = f(x), Maple needs to know the
function and the domain.

> plot( sin(x), x=-2*Pi..2*Pi );

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6
x

Clicking on any point in the plot window reveals those particular
coordinates of the plot. The menus (found on the menubar or by right-
clicking on the plot itself) allow you to modify various characteristics

93



94 • Chapter 4: Graphics

of the plots or use many of the plotting command options listed under
?plot,options.

Maple can also graph user-defined functions.

> f := x -> 7*sin(x) + sin(7*x);

f := x → 7 sin(x) + sin(7x)

> plot(f(x), x=0..10);

–6

–4

–2
0

2

4

6

2 4 6 8 10
x

Maple allows you to focus on a specified section in the x- and y-
dimensions.

> plot(f(x), x=0..10, y=4..8);

4

5

6

7

8

y

0 2 4 6 8 10
x

Maple can plot infinite domains.

> plot( sin(x)/x, x=0..infinity);



4.1 Graphing in Two Dimensions • 95

0 infinity
x

Parametric Plots
You cannot specify some graphs explicitly. In other words, you cannot
write the dependent variable as a function, y = f(x). For example, on a
circle most x values correspond to two y values. One solution is to make
both the x-coordinate and the y-coordinate functions of some parame-
ter, for example, t. The graph generated from these functions is called a
parametric plot. Use this syntax to specify parametric plots.

plot( [ x-expr, y-expr, parameter=range ] )

That is, you plot a list containing the x-expr, the y-expr, and the name
and range of the parameter. For example

> plot( [ t^2, t^3, t=-1..1 ] );

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

The points (cos t, sin t) lie on a circle.

> plot( [ cos(t), sin(t), t=0..2*Pi ] );



96 • Chapter 4: Graphics

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Rather than looking like a circle, the above plot resembles an ellipse
because Maple, by default, scales the plot to fit the window. Here is
the same plot again but with scaling=constrained.You can change the
scaling using the menus or the scaling option.

> plot( [ cos(t), sin(t), t=0..2*Pi ], scaling=constrained );

–1

–0.5

0.5

1

–1 –0.5 0.5 1

The drawback of constrained scaling is that it may obscure impor-
tant details when the features in one dimension occur on a much smaller
or larger scale than the others. The following plot is unconstrained.

> plot( exp(x), x=0..3 );

2
4
6
8

10
12
14
16
18
20

0 0.5 1 1.5 2 2.5 3
x



4.1 Graphing in Two Dimensions • 97

The following is the constrained version of the same plot.

> plot( exp(x), x=0..3, scaling=constrained);

2
4
6
8

10
12
14
16
18
20

0123
x

Polar Coordinates
Cartesian (ordinary) coordinates is the Maple default and is one among
many ways of specifying a point in the plane. Polar coordinates, (r, θ),
can also be used.

In polar coordinates, r is the distance from the origin to the point,
while θ is the angle, measured in the counterclockwise direction, between
the x-axis and the line through the origin and the point.

Maple can plot a function in polar coordinates using the polarplot

command. To access the short form of this command, you must first em-
ploy the with(plots) command.

> with(plots):



98 • Chapter 4: Graphics

Figure 4.1 The Polar Coordinate System

θ

r

0

y

x

Use the following syntax to plot graphs in polar coordinates.

polarplot( r-expr, angle=range )

In polar coordinates, you can specify the circle explicitly, namely as r = 1.

> polarplot( 1, theta=0..2*Pi, scaling=constrained );

–1

–0.5

0.5

1

–1 –0.5 0.5 1

As in section 4.1, using the scaling=constrained option makes the
circle appear round. Here is the graph of r = sin(3θ).

> polarplot( sin(3*theta), theta=0..2*Pi );



4.1 Graphing in Two Dimensions • 99

–1

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8

The graph of r = θ is a spiral.

> polarplot(theta, theta=0..4*Pi);

–10
–8
–6
–4
–2

2
4
6
8

–5 5 10

The polarplot command also accepts parametrized plots. That is,
you can express the radius- and angle-coordinates in terms of a parameter,
for example, t. The syntax is similar to a parametrized plot in Cartesian
(ordinary) coordinates. See section 4.1.

polarplot( [ r-expr, angle-expr, parameter=range ] )

The equations r = sin(t) and θ = cos(t) define the following graph.

> polarplot( [ sin(t), cos(t), t=0..2*Pi ] );



100 • Chapter 4: Graphics

–0.4

–0.2

0.2

0.4

–1 –0.5 0.5 1

Here is the graph of θ = sin(3r).

> polarplot( [ r, sin(3*r), r=0..7 ] );

–4

–2

0

2

4

1 2 3 4 5 6

Functions with Discontinuities
Functions with discontinuities require extra attention. This function has
two discontinuities, at x = 1 and at x = 2.

f(x) =







−1 if x < 1,
1 if 1 ≤ x < 2,
3 otherwise.

Here is how to define f(x) in Maple.

> f := x -> piecewise( x<1, -1, x<2, 1, 3 );

f := x → piecewise(x < 1, −1, x < 2, 1, 3)

> plot(f(x), x=0..3);



4.1 Graphing in Two Dimensions • 101

–1

0

1

2

3

0.5 1 1.5 2 2.5 3
x

Maple draws almost vertical lines near the point of a discontinuity.
The option discont=true tells Maple to watch for discontinuities.

> plot(f(x), x=0..3, discont=true);

–1

0

1

2

3

0.5 1 1.5 2 2.5 3
x

Functions with singularities, that is, those functions which become ar-
bitrarily large at some point, constitute another special case. The function
x 7→ 1/(x− 1)2 has a singularity at x = 1.

> plot( 1/(x-1)^2, x=-5..6 );

0

50000

100000

150000

200000

250000

–4 –2 2 4 6
x



102 • Chapter 4: Graphics

In the previous plot, all the interesting details of the graph are lost
because there is a spike at x = 1. The solution is to view a narrower
range, perhaps from y = −1 to 7.

> plot( 1/(x-1)^2, x=-5..6, y=-1..7 );

–1
0

1

2

3

4

5

6

7

y

–4 –2 2 4 6
x

The tangent function has singularities at x = π
2 + πn, where n is any

integer.

> plot( tan(x), x=-2*Pi..2*Pi );

1000

2000

3000

–6 –4 –2 2 4 6
x

To see the details, reduce the range to y = −4 to 4, for example.

> plot( tan(x), x=-2*Pi..2*Pi, y=-4..4 );

–4

–3

–2

–1
0

1

2

3

4

y

–6 –4 –2 2 4 6
x



4.1 Graphing in Two Dimensions • 103

Maple draws almost vertical lines at the singularities, so you should
use the discont=true option.

> plot( tan(x), x=-2*Pi..2*Pi, y=-4..4, discont=true );

–4

–3

–2

–1
0

1

2

3

4

y

–6 –4 –2 2 4 6
x

Multiple Functions
To graph more than one function in the same plot, give plot a list of
functions.

> plot( [ x, x^2, x^3, x^4 ], x=-10..10, y=-10..10 );

–10
–8
–6
–4
–2

0

2
4
6
8

10

y

–10 –8 –6 –4 –2 2 4 6 8 10
x

> f := x -> piecewise( x<0, cos(x), x>=0, 1+x^2 );

f := x → piecewise(x < 0, cos(x), 0 ≤ x, 1 + x2)

> plot( [ f(x), diff(f(x), x), diff(f(x), x, x) ],
> x=-2..2, discont=true );



104 • Chapter 4: Graphics

–1

0

1

2

3

4

5

–2 –1 1 2
x

This technique also works for parametrized plots.

> plot( [ [ 2*cos(t), sin(t), t=0..2*Pi ],
> [ t^2, t^3, t=-1..1 ] ], scaling=constrained );

–1

–0.5

0.5

1

–2 –1 1 2

Using different line styles, such as solid, dashed, or dotted, is con-
venient for distinguishing between several graphs in the same plot. The
linestyle option controls this. Here Maple uses linestyle=SOLID for
the first function, sin(x)/x, and linestyle=DOT for the second function,
cos(x)/x.

> plot( [ sin(x)/x, cos(x)/x ], x=0..8*Pi, y=-0.5..1.5,
> linestyle=[SOLID,DOT] );



4.1 Graphing in Two Dimensions • 105

–0.4
–0.2

0

0.2
0.4
0.6
0.8

1
1.2
1.4

y

5 10 15 20 25
x

You can also change the line style using the standard menus and the
context-sensitive menus. Similarly, specify the colors of the graphs using
the color option. (You can see the effect with a color display but, in this
book, the lines appear in two different shades of grey.)

> plot( [ [f(x), D(f)(x), x=-2..2],
> [D(f)(x), (D@@2)(f)(x), x=-2..2] ],
> color=[gold, plum] );

–1

0

1

2

3

4

1 2 3 4 5

See ?plot,color for more details on colors.

Plotting Data Points
To plot numeric data, call pointplot with the data in a list of lists of the
form

[[x1, y1], [x2, y2], . . . , [xn, yn]].

If the list is long, assign it to a name.

> data_list:=[[-2,4],[-1,1],[0, 0],[1,1],[2,4],[3,9],[4,16]];

data_list :=

[[−2, 4], [−1, 1], [0, 0], [1, 1], [2, 4], [3, 9], [4, 16]]



106 • Chapter 4: Graphics

> pointplot(data_list);

0

2

4

6

8

10

12

14

16

–2 –1 1 2 3 4

By default, Maple does not join the points with straight lines. The
style=line option tells Maple to plot the lines. You can also use the
menus to tell Maple to draw lines.

> pointplot( data_list, style=line );

0

2

4

6

8

10

12

14

16

–2 –1 1 2 3 4

You can change the appearance of the points by using either the menus
or the symbol and symbolsize options.

> data_list_2:=[[1,1], [2,2], [3,3], [4,4]];

data_list_2 := [[1, 1], [2, 2], [3, 3], [4, 4]]

> pointplot(data_list_2, style=point, symbol=cross,
> symbolsize=16);



4.1 Graphing in Two Dimensions • 107

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

You can use the CurveFitting package to fit a curve through several
points, and then use the plot function to see the result. See the help page
?CurveFitting for more information.

Refining Plots
Maple uses an adaptive plotting algorithm. It calculates the value of the
function or expression at a modest number of approximately equidistant
points in the specified plotting interval. Maple then computes more points
within the subintervals that have a large amount of fluctuation. Occasion-
ally, this adaptive algorithm does not produce a satisfactory plot.

> plot(sum((-1)^(i)*abs(x-i/10), i=0..50), x=-1..6);

2.6

2.8

3

3.2

3.4

–1 0 1 2 3 4 5 6
x

To refine this plot, you can indicate that Maple should compute more
points.

> plot(sum((-1)^(i)*abs(x-i/10), i=0..50), x=-1..6,
> numpoints=500);



108 • Chapter 4: Graphics

2.6

2.8

3

3.2

3.4

–1 0 1 2 3 4 5 6
x

See ?plot and ?plot,options for further details and examples.

4.2 Graphing in Three Dimensions

You can plot a function of two variables as a surface in three-dimensional
space. This allows you to visualize the function. The syntax for plot3d is
similar to that for plot. Again, an explicit function, z = f(x, y), is easiest
to plot.

> plot3d( sin(x*y), x=-2..2, y=-2..2 );

You can rotate the plot by dragging in the plot window. The menus
allow you to change various characteristics of a plot.

As with plot, plot3d can handle user-defined functions.

> f := (x,y) -> sin(x) * cos(y);

f := (x, y) → sin(x) cos(y)



4.2 Graphing in Three Dimensions • 109

> plot3d( f(x,y), x=0..2*Pi, y=0..2*Pi );

By default, Maple displays the graph as a shaded surface, but you
can change this using either the menus or the style option. For example,
style=hidden draws the graph as a hidden wireframe structure.

> plot3d( f(x,y), x=0..2*Pi, y=0..2*Pi, style=hidden );

See ?plot3d,options for a list of style options.
The range of the second parameter can depend on the first parameter.

> plot3d( sqrt(x-y), x=0..9, y=-x..x );



110 • Chapter 4: Graphics

Parametric Plots
You cannot specify some surfaces explicitly as z = f(x, y). The sphere is
an example of such a plot. As for two-dimensional graphs (see Section 4.1),
one solution is a parametric plot. Make the three coordinates, x, y, and
z, functions of two parameters, for example, s and t. You can specify
parametric plots in three dimensions using the following syntax.

plot3d( [ x-expr, y-expr, z-expr ],

parameter1=range, parameter2=range )

Here are two examples.

> plot3d( [ sin(s), cos(s)*sin(t), sin(t) ],
> s=-Pi..Pi, t=-Pi..Pi );

> plot3d( [ s*sin(s)*cos(t), s*cos(s)*cos(t), s*sin(t) ],
> s=0..2*Pi, t=0..Pi );

Spherical Coordinates
The Cartesian (ordinary) coordinate system is only one of many coor-
dinate systems in three dimensions. In the spherical coordinate system,
the three coordinates are the distance r to the origin, the angle θ in the
xy-plane measured in the counterclockwise direction from the x-axis, and
the angle φ measured from the z-axis.



4.2 Graphing in Three Dimensions • 111

Figure 4.2 The Spherical Coordinate System

θ

rφ

0

z

y

x

Maple can plot a function in spherical coordinates using the sphereplot
command in the plots package. To access the command with its short
name, use with(plots). To avoid listing all the commands in the plots

package, use a colon, rather than a semicolon.

> with(plots):

You can use the sphereplot command in the following manner.

sphereplot( r-expr, theta=range, phi=range )

The graph of r = (4/3)θ sinφ looks like this:

> sphereplot( (4/3)^theta * sin(phi),
> theta=-1..2*Pi, phi=0..Pi );



112 • Chapter 4: Graphics

Plotting a sphere in spherical coordinates is easy: specify the radius,
perhaps 1, let θ run all the way around the equator, and let φ run from
the North Pole (φ = 0) to the South Pole (φ = π).

> sphereplot( 1, theta=0..2*Pi, phi=0..Pi,
> scaling=constrained );

(See section 4.1 for a discussion on constrained versus unconstrained
plotting.)

The sphereplot command also accepts parametrized plots, that is,
functions that define the radius and both angle-coordinates in terms of two
parameters, for example, s and t. The syntax is similar to a parametrized
plot in Cartesian (ordinary) coordinates. See section 4.2.

sphereplot( [ r-expr, theta-expr, phi-expr ],

parameter1=range, parameter2=range )

Here r = exp(s) + t, θ = cos(s+ t), and φ = t2.

> sphereplot( [ exp(s)+t, cos(s+t), t^2 ],
> s=0..2*Pi, t=-2..2 );



4.2 Graphing in Three Dimensions • 113

Cylindrical Coordinates
Specify a point in the cylindrical coordinate system using the three
coordinates r, θ, and z. Here r and θ are polar coordinates (see section 4.1)
in the xy-plane and z is the usual Cartesian z-coordinate.

Figure 4.3 The Cylindrical Coordinate System

rθ

0

z

y

x

Maple plots functions in cylindrical coordinates with the cylinderplot
command from the plots package.

> with(plots):

You can plot graphs in cylindrical coordinates using the following
syntax.

cylinderplot( r-expr, angle=range, z=range )

Here is a three-dimensional version of the spiral previously shown in
section 4.1.

> cylinderplot( theta, theta=0..4*Pi, z=-1..1 );



114 • Chapter 4: Graphics

Cones are easy to plot in cylindrical coordinates: let r equal z and let
θ vary from 0 to 2π.

> cylinderplot( z, theta=0..2*Pi, z=0..1 );

The cylinderplot command also accepts parametrized plots. The
syntax is similar to that of parametrized plots in Cartesian (ordinary)
coordinates. See section 4.2.

cylinderplot( [ r-expr, theta-expr, z-expr ],

parameter1=range, parameter2=range )

The following is a plot of r = st, θ = s, and z = cos(t2).

> cylinderplot( [s*t, s, cos(t^2)], s=0..Pi, t=-2..2 );

Refining Plots
If your plot is not as smooth or precise as you desire, tell Maple to calculate
more points. The option for doing this is

grid=[m, n]

where m is the number of points to use for the first coordinate, and n is
the number of points to use for the second coordinate.



4.2 Graphing in Three Dimensions • 115

> plot3d( sin(x)*cos(y), x=0..3*Pi, y=0..3*Pi, grid=[50,50] );

In the next example, a large number of points (100) for the first co-
ordinate (theta) makes the spiral look smooth. However, the function
does not change in the z-direction. Thus, a small number of points (5) is
sufficient.

> cylinderplot( theta, theta=0..4*Pi, z=-1..1, grid=[100,5] );

The default grid is approximately 25 by 25 points.

Shading and Lighting Schemes
Two methods for shading a surface in a three-dimensional plot are avail-
able. In the first method, one or more distinctly colored light sources
illuminate the surface. In the second method, the color of each point is a
direct function of its coordinates.

Maple has a number of preselected light source configurations which
give aesthetically pleasing results. You can choose from these light sources
through the menus or with the lightmodel option. For coloring the sur-
face directly, a number of predefined coloring functions are also available
through the menus or with the shading option.

Simultaneous use of light sources and direct coloring may complicate



116 • Chapter 4: Graphics

the resulting coloring. Use either light sources or direct coloring. Here is
a surface colored with zgrayscale shading and no lighting.

> plot3d( x*y^2/(x^2+y^4), x=-5..5,y=-5..5,
> shading=zgrayscale, lightmodel=none );

The same surface illuminated by lighting scheme light1 and no
shading follows.

> plot3d( x*y^2/(x^2+y^4), x=-5..5,y=-5..5,
> shading=none, lightmodel=light1 );

The plots appear in black and white in this book. Try them in Maple
to see the effects in color.

4.3 Animation

Graphing is an excellent way to represent information. However, static
plots do not always emphasize certain graphical behavior, such as the
deformation of a bouncing ball, as effectively as their animated counter-
parts.



4.3 Animation • 117

A Maple animation is a number of plot frames displayed in sequence,
similar to the action of movie frames. The two commands used for an-
imations, animate and animate3d, are defined in the plots package.
Remember that to access the commands using the short name, use the
with(plots) command.

Animation in Two Dimensions
You can specify a two-dimensional animation using this syntax.

animate( y-expr, x=range, time=range )

The following is an example of an animation.

> with(plots):

Warning, the name changecoords has been redefined

> animate( sin(x*t), x=-10..10, t=1..2 );

xxx x

x

x xx x

x xxx

xx x

To play an animation you must first select it by clicking on it. Then
choose Play from the Animation menu.

By default, a two-dimensional animation consists of sixteen plots
(frames). If the motion is not smooth, you can increase the number
of frames. Please note that computing many frames may require a lot
of time and memory. The following command can be pasted into Maple
to produce an animation with 50 frames.

> animate( sin(x*t), x=-10..10, t=1..2, frames=50);

The usual plot options are also available. Paste the following example
into Maple to view the animation.



118 • Chapter 4: Graphics

> animate( sin(x*t), x=-10..10, t=1..2,
> frames=50, numpoints=100 );

You can plot any two-dimensional animation as a three-dimensional
static plot. For example, try plotting the animation of sin(xt) above as a
surface.

> plot3d( sin(x*t), x=-10..10, t=1..2, grid=[50,100],
> orientation=[135,45], axes=boxed , style=HIDDEN );

–10

10

x

1

2
t

–1

0

1

Whether you prefer an animation or a plot is a matter of taste and
also depends on the concepts that the animation or plot is supposed to
convey.

Animating parametrized graphs is also possible. (See section 4.1.)

> animate( [ a*cos(u), sin(u), u=0..2*Pi ], a=0..2 );

The coords option tells animate to use a coordinate system other
than the Cartesian (ordinary) system.



4.3 Animation • 119

> animate( theta*t, theta=0..8*Pi, t=1..4, coords=polar );

Displaying animations in a book is difficult because still pictures can-
not convey the same graphical behavior as those in a movie. Therefore,
you should enter these commands in Maple to see the animations.

Animation in Three Dimensions
Use animate3d to animate surfaces in three dimensions. You can use the
animate3d command as follows.

animate3d( z-expr, x=range, y=range, time=range )

The following is an example of a three-dimensional animation.

> animate3d( cos(t*x)*sin(t*y),
> x=-Pi..Pi, y=-Pi..Pi, t=1..2 );

By default, a three-dimensional animation consists of eight plots. As
for two-dimensional animations, the frames option determines the num-
ber of frames.



120 • Chapter 4: Graphics

> animate3d( cos(t*x)*sin(t*y), x=-Pi..Pi, y=-Pi..Pi, t=1..2,
> frames=16 );

Section 4.2 describes three-dimensional parametrized plots. You can
also animate these.

> animate3d( [s*time, t-time, s*cos(t*time)],
> s=1..3, t=1..4, time=2..4, axes=boxed);

12
2 2–3

2 2 2

2 2 2 2

To animate a function in a coordinate system other than the Carte-
sian, use the coords option. Paste the following examples into Maple to
view the animations. For spherical coordinates, use coords=spherical.

> animate3d( (1.3)^theta * sin(t*phi), theta=-1..2*Pi,
> phi=0..Pi, t=1..8, coords=spherical );

For cylindrical coordinates, use coords=cylindrical.

> animate3d( sin(theta)*cos(z*t), theta=1..3, z=1..4,
> t=1/4..7/2, coords=cylindrical );

See ?plots,changecoords for a list of the coordinate systems in
Maple.

4.4 Annotating Plots

Adding text annotation to plots is possible in a variety of ways. The option
title prints the specified title in the plot window, centered and near the
top.



4.4 Annotating Plots • 121

> plot( sin(x), x=-2*Pi..2*Pi, title="Plot of Sine" );

Plot of Sine

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6x

Note that when specifying the title you must place double quotes (")
at both ends of the text. This is very important. Maple uses double quotes
to delimit strings. It considers whatever appears between double quotes
to be a piece of text that it should not process further. You can specify
the font, style, and size of the title with the titlefont option.

> with(plots):

Warning, the name changecoords has been redefined

> sphereplot( 1, theta=0..2*Pi, phi=0..Pi,
> scaling=constrained, title="The Sphere",
> titlefont=[HELVETICA, BOLD, 24] );

The Sphere

The labels option enables you to specify the labels on the axes, the
labelsfont option gives you control over the font and style of the labels,
and the labeldirections option enables you to place axis labels either
vertically or horizontally. Note that the labels do not have to match the
variables in the expression you are plotting.



122 • Chapter 4: Graphics

> plot( x^2, x=0..3, labels=["time", "velocity"],
> labeldirections=[horizontal,vertical] );

0

2

4

6

8

ve
lo

ci
ty

0.5 1 1.5 2 2.5 3
time

You can print labels only if your plot displays axes. For three-
dimensional graphs, there are no axes by default. You must use the axes

option.

> plot3d( sin(x*y), x=-1..1, y=-1..1,
> labels=["length", "width", "height"], axes=FRAMED );

–1

1
length

–1

1
width

–0.8

0.8

height

The legend option enables you to add a text legend to your plot.

> plot( [sin(x), cos(x)], x=-3*Pi/2..3*Pi/2, linestyle=[1,4],
> legend=["The Sine Function", "The Cosine Function"] );



4.5 Composite Plots • 123

The Sine Function
The Cosine Function

Legend

–1

–0.5

0.5

1

–4 –2 2 4x

4.5 Composite Plots

Maple allows you to display several plots simultaneously, after assigning
names to the individual plots. Since plot structures are usually rather
large, end the assignments with colons (rather than semicolons).

> my_plot := plot( sin(x), x=-10..10 ):

Now you can save the plot for future use, as you would any other expres-
sion. Exhibit the plot using the display command defined in the plots

package.

> with(plots):

> display( my_plot );

–1

–0.5

0

0.5

1

–10 –8 –6 –4 –2 2 4 6 8 10
x

The display command can draw several plots at the same time. Sim-
ply give a list of plots.



124 • Chapter 4: Graphics

> a := plot( [ sin(t), exp(t)/20, t=-Pi..Pi ] ):
> b := polarplot( [ sin(t), exp(t), t=-Pi..Pi ] ):
> display( [a,b] );

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

This technique allows you to display plots of different types in the
same axes. You can also display three-dimensional plots, even animations.

> c := sphereplot( 1, theta=0..2*Pi, phi=0..Pi ):

> d := cylinderplot( 0.5, theta=0..2*Pi, z=-2..2 ):
> display( [c,d], scaling=constrained );

Paste the previous definition of b and the following into Maple to view
an animation and a plot in the same axes.

> e := animate( m*x, x=-1..1, m=-1..1 ):
> display( [b,e] );

If you display two or more animations together, ensure that they have
the same number of frames. Paste the following example into Maple to
view two animations simultaneously.



4.5 Composite Plots • 125

> f := animate3d( sin(x+y+t), x=0..2*Pi, y=0..2*Pi, t=0..5,
> frames=20 ):
> g := animate3d( t, x=0..2*Pi, y=0..2*Pi, t=-1.5..1.5,
> frames=20):
> display( [f,g] );

Placing Text in Plots
The title and labels options to the plotting commands allow you to
put titles and labels on your graphs. The textplot and textplot3d com-
mands give more flexibility by allowing you to specify the exact positions
of the text. The plots package contains these two commands.

> with(plots):

You can use textplot and textplot3d as follows.

textplot( [ x-coord, y-coord, "text" ] );

textplot3d( [ x-coord, y-coord, z-coord, "text"] );

For example

> a := plot( sin(x), x=-Pi..Pi ):
> b := textplot( [ Pi/2, 1, "Local Maximum" ] ):
> c := textplot( [ -Pi/2, -1, "Local Minimum" ] ):
> display( [a,b,c] );

Local Minimum

Local Maximum

–1

–0.5

0.5

1

–3 –2 –1 1 2 3
x

See ?plots,textplot for details on controlling the placement of text.
Use the font option to specify the font textplot and textplot3d use.
In the following plot the origin, a saddle point, is labelled P .

> d := plot3d( x^2-y^2, x=-1..1, y=-1..1 ):
> e := textplot3d( [0, 0, 0, "P"],
> font=[HELVETICA, OBLIQUE, 22], color=white ):
> display( [d,e], orientation=[68,45] );



126 • Chapter 4: Graphics

P

4.6 Special Types of Plots

The plots package contains many routines for producing special types of
graphics.

Here is a variety of examples. For further explanation of a particular
plot command, see ?plots,command .

> with(plots):

Plot implicitly defined functions using implicitplot.

> implicitplot( x^2+y^2=1, x=-1..1, y=-1..1, scaling=
> constrained );

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1
x

Below is a plot of the region satisfying the inequalities x + y < 5,
0 < x, and x ≤ 4.



4.6 Special Types of Plots • 127

> inequal( {x+y<5, 0<x, x<=4}, x=-1..5, y=-10..10,
> optionsexcluded=(color=yellow) );

–10

–5

5

10

–1 1 2 3 4 5

Here the vertical axis has a logarithmic scale.

> logplot( 10^x, x=0..10 );

1.

.1e2

.1e3

.1e4

.1e5
1e+05
1e+06
1e+07
1e+08
1e+09
1e+10

2 4 6 8 10
x

A semilogplot has a logarithmic horizontal axis.

> semilogplot( 2^(sin(x)), x=1..10 );

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1. 2. 4. 7. .1e2
x

Maple can also create plots where both axes have logarithmic scales.

> loglogplot( x^17, x=1..7 );



128 • Chapter 4: Graphics

1.
.1e2
.1e3
.1e4
.1e5

1e+05
1e+06
1e+07
1e+08
1e+09
1e+10
1e+11
1e+12
1e+13
1e+14

2. 4. 7.
x

In a densityplot, lighter shading indicates a larger function value.

> densityplot( sin(x*y), x=-1..1, y=-1..1 );

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

Along the following curves, sin(xy) is constant, as in a topographical
map.

> contourplot(sin(x*y),x=-10..10,y=-10..10);

–10

–5

0

5

10

y

–10 –5 5 10
x

A rectangular grid in the complex plane becomes the following graph
when you map it by z 7→ z2.

> conformal( z^2, z=0..2+2*I );



4.6 Special Types of Plots • 129

0

2

4

6

8

–4 –2 2 4

The fieldplot command draws the given vector for many values of
x and y. That is, it plots a vector field, such as a magnetic field.

> fieldplot( [y*cos(x*y), x*cos(x*y)], x=-1..1, y=-1..1);

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

Maple can draw curves in three-dimensional space.

> spacecurve( [cos(t),sin(t),t], t=0..12 );

Here Maple inflates the previous spacecurve to form a tube.

> tubeplot( [cos(t),sin(t),t], t=0..4*Pi, radius=0.5 );



130 • Chapter 4: Graphics

The matrixplot command plots the values of a object of type Matrix.

> A := LinearAlgebra[HilbertMatrix](8):
> B := LinearAlgebra[ToeplitzMatrix]([1,2,3,4,-4,-3,-2,-1],
> symmetric):
> matrixplot( A+B, heights=histogram, axes=frame,
> gap=0.25, style=patch);

2
4

6
8

row

2
4

6
8

column

–4
–2

0
2
4

Following is a demonstration of a root locus plot.

> rootlocus( (s^5-1)/(s^2+1), s, -5..5, style=point,
> adaptive=false );

–1

–0.5

0

0.5

1

–1.5 –1 –0.5 0 0.5 1 1.5



4.7 Manipulating Graphical Objects • 131

The arrow command plots arrows or vectors in two or three dimen-
sions.

> plots[arrow]( [<2, 1>, <3, 2>], [<2, 5>, <1, 4>], difference );

1

2

3

4

5

1 1.5 2 2.5 3

Typing ?plots provides you with a listing of other available plot
types.

4.7 Manipulating Graphical Objects

The plottools package contains commands for creating graphical ob-
jects and manipulating their plots. Use with(plottools) to access the
commands using the short names.

> with(plottools):

The objects in the plottools package do not automatically display.
You must use the display command, defined in the plots package.

> with(plots):

Now you are ready for an example.

> display( dodecahedron(), scaling=constrained, style=patch );



132 • Chapter 4: Graphics

Give an object a name.

> s1 := sphere( [3/2,1/4,1/2], 1/4, color=red):

Note that the assignment ends with a colon (:). If you use a semicolon
(;), Maple displays a large plot structure. Again, you must use display

to see the plot.

> display( s1, scaling=constrained );

Place a second sphere in the picture and display the axes.

> s2 := sphere( [3/2,-1/4,1/2], 1/4, color=red):
> display( [s1, s2], axes=normal, scaling=constrained );



4.7 Manipulating Graphical Objects • 133

0.4

0.6–0.4
–0.2

0
0.2

0.4
1.3

1.4
1.5

1.6
1.7

You can also make cones with the plottools package.

> c := cone([0,0,0], 1/2, 2, color=khaki):
> display( c, axes=normal );

0.5
1
1.5
2

–0.4
–0.2

0.2
0.4

–0.4
–0.2

0.2
0.4

Experiment using Maple’s object rotation capabilities.

> c2 := rotate( c, 0, Pi/2, 0 ):
> display( c2, axes=normal );

–0.4
–0.2

0.2
0.4

–0.4
–0.2

0.2
0.4

–2
–1.5

–1
–0.5

Translating objects is yet another option.

> c3 := translate( c2, 3, 0, 1/4 ):
> display( c3, axes=normal );



134 • Chapter 4: Graphics

–0.2

0.2
0.4
0.6

–0.4
–0.2

0
0.2

0.41
1.5

2
2.5

3

The hemisphere command makes a hemisphere. You can specify the
radius and the coordinates of the center. Otherwise, leave an empty set
of parentheses to accept the defaults.

> cup := hemisphere():
> display( cup );

> cap := rotate( cup, Pi, 0, 0 ):
> display( cap );

All the sides of the dodecahedron mentioned earlier in this section are
pentagons. If you raise the midpoint of each pentagon using the stellate
command, the term for the resulting object is stellated dodecahedron.



4.7 Manipulating Graphical Objects • 135

> a := stellate( dodecahedron() ):
> display( a, scaling=constrained, style=patch );

> stelhs := stellate(cap, 2):
> display( stelhs );

Instead of stellating the dodecahedron, you can cut out, for example,
the inner three quarters of each pentagon.

> a := cutout( dodecahedron(), 3/4 ):
> display( a, scaling=constrained, orientation=[45, 30] );

> hedgehog := [s1, s2, c3, stelhs]:
> display( hedgehog, scaling=constrained,
> style=patchnogrid );



136 • Chapter 4: Graphics

4.8 Code for Color Plates

A number of the examples in the color plates are generated with only
a few lines of code. The commands used to create these examples are
provided here without the corresponding output. On some machines, the
numpoints option value may need to be decreased so that a plot can be
generated.

1. Three-dimensional virtual flowerpot.

> A := plot3d( {seq( x*cos(2*y + i*Pi/10), i=0..19)},
> x=1.9..2, y=0..2*Pi, coords=cardioidal,
> grid=[15,100], shading=XYZ ):
> B := plot3d( {seq( x*cos(2*y + i*Pi/10), i=0..19)},
> x=0.2..0.4, y=0..2*Pi, coords=invprospheroidal,
> grid=[15,100], shading=Z ):
> C := plot3d( {seq( (x+cos(y)/10)*cos(2*y + i*Pi/4), i=0..7)},
> x=0.2..0.4, y=0..2*Pi, coords=invprospheroidal,
> grid=[20,80], shading=XY):
> plots[display](A,plottools[scale](plottools
> [translate](B,0,0,-1.0), 0.4, 0.4, -1.1),
> plottools[scale](plottools[translate]
> (C, 0,0,-1.1), 0.3, 0.3, -0.9));
> plots[display](A,plottools[scale](plottools
> [translate](B,0,0,-1.0), 0.4, 0.4, -1.1),
> plottools[scale](plottools[translate]
> (C, 0,0,-1.1), 0.3, 0.3, -0.9),
> style=patchnogrid, orientation=[-169,73],
> light=[60,315,1,1,1],ambientlight=[0.6,0.6,0.6]);

2. Trinocular.



4.8 Code for Color Plates • 137

> plot3d([cos(u)*cos(u+v),cos(u)*sin(u+v),sin(3*v)],
> u=-Pi..Pi, v=-Pi..Pi, grid=[60,60],
> contours=50,orientation=[-173,-14],
> style=patchnogrid,lightmodel=light4,
> shading=zhue, scaling=constrained,
> numpoints=100000);

3. Tropical fish.

> a:=[1/2*sin(x+y)-1/2*sin(x-y),-sin(x+y)-sin(x-y),
> sin(x)+cos(y)]:
> b:=[1/5*sin(x+y)+1/5*sin(x-y),1/5*cos(x-y)-1/5*cos(x+y),
> 2/5*cos(x)]:
> plot3d({a,b},x=0..2*Pi,y=0..Pi,color=[exp(-x/3),
> exp(-y/3),x],style=patchnogrid,orientation=
> [-172,87],numpoints=3000);

4. The code for the Loop scheme applied to a facetted cuboctahedron is
not included because it is too long.

5. Spiral tube around a torus.

> with(plots):
> N := 25;
> F := (x,y) ->sin(x):
> tortube1 := tubeplot( [10*cos(t), 10*sin(t), 0, t=0..2*Pi,
> radius=2, numpoints=10*N, tubepoints=2*N], scaling =
> CONSTRAINED, style= PATCHNOGRID, orientation =
> [76,40], color=F ):
> tortube2 := tubeplot(
> [cos(t)*(10+4*sin(9*t)), sin(t)*(10+4*sin(9*t)),
> 4*cos(9*t), t=0..2*Pi, radius=1, numpoints=
> trunc(37.5*N), tubepoints=N], scaling =
> CONSTRAINED, style= PATCHNOGRID, orientation =
> [76,40] ):
> display({tortube1,tortube2});

6. The code for the Loop scheme applied to the dual of the great dodec-
ahedron is not included because it is too long.

7. Dirichlet problem for a circle.



138 • Chapter 4: Graphics

> with(plots):
> setoptions3d(scaling=constrained,projection=.5,
> style=patchnogrid):
> f1:=(x,y)->0.5*sin(10*x*y):f2:=t->f1(cos(t),sin(t)):
> a0:=evalf(Int(f2(t),t=-Pi..Pi)/Pi):
> a:=seq(evalf(Int(f2(t)*cos(n*t),t=-Pi..Pi)/Pi),n=1..50):
> b:=seq(evalf(Int(f2(t)*sin(n*t),t=-Pi..Pi)/Pi),n=1..50):
> L:=(r,s)->a0/2+sum(’r^n*(a[n]*cos(n*s)+b[n]*sin(n*s))’,
> ’n’=1..50):
> q:=plot3d([r*cos(s),r*sin(s),L(r,s)],r=0..1,s=0..2*Pi,
> color=[L(r,s),-L(r,s),0.2],grid=[29,100],
> numpoints=10000):
> p:=tubeplot([cos(t),sin(t),f2(t),t=-Pi..Pi,radius=.015],
> tubepoints=70,numpoints=1500):
> display3d({q,p},orientation=[3,89],lightmodel=light2);

8. The code for the carousel is not included because it is too long.

4.9 Conclusion

This chapter examined Maple’s two- and three-dimensional plotting capa-
bilities, involving explicitly, parametrically, and implicitly given functions.
Cartesian, polar, spherical, and cylindrical are a few of the many coor-
dinate systems that Maple can handle. Furthermore, you can animate a
graph and shade it in a variety of ways for a clearer understanding of its
nature.

Use the commands found in the plots package to display various
graphs of functions and expressions. Some of the special plot types that
you can create using these commands include contour, density, and loga-
rithmic plots. The commands within the plottools package create and
manipulate objects. Such commands, for instance, allow you to translate,
rotate, and even stellate a graphical entity.



5 Evaluation and
Simplification

In Maple, a significant amount of time and effort is spent manip-
ulating expressions. Expression manipulation is done for many reasons,
from converting output expressions into a familiar form to check answers,
to converting expressions into a specific form needed by certain Maple
routines.

The issue of simplification is surprisingly difficult in symbolic mathe-
matics. What is “simple” in one context may not be in another context—
each individual context can have its own definition of a “simple” form.

Maple provides a set of tools for working with expressions, for per-
forming both mathematical and structural manipulations. Mathematical
manipulations are those that correspond to some kind of standard mathe-
matical process, for example, factoring a polynomial, or rationalizing the
denominator of a rational expression. Structural manipulation tools al-
low you to access and modify parts of the Maple data structures that
represent expressions and other types of objects.

5.1 Mathematical Manipulations

Solving equations by hand usually involves performing a sequence of al-
gebraic manipulations. You can also perform these steps using Maple.

> eq := 4*x + 17 = 23;

eq := 4x+ 17 = 23

139



140 • Chapter 5: Evaluation and Simplification

Here, you must subtract 17 from both sides of the equation. To do
so, subtract the equation 17=17 from eq. Make sure to put parentheses
around the unnamed equation.

> eq - ( 17 = 17 );

4x = 6

Now divide through by 4. Note that you don’t have to use 4=4 in this
case.

> % / 4;

x =
3

2

The following sections focus on more sophisticated manipulations.

Expanding Polynomials as Sums
Sums are generally easier to comprehend than products, so you may find it
useful to expand a polynomial as a sum of products. The expand command
has this capability.

> poly := (x+1)*(x+2)*(x+5)*(x-3/2);

poly := (x+ 1) (x+ 2) (x+ 5) (x− 3

2
)

> expand( poly );

x4 +
13

2
x3 + 5x2 − 31

2
x− 15

The expand command expands the numerator of a rational expres-
sion.

> expand( (x+1)*(y^2-2*y+1) / z / (y-1) );

x y2

z (y − 1)
− 2

x y

z (y − 1)
+

x

z (y − 1)
+

y2

z (y − 1)
− 2

y

z (y − 1)

+
1

z (y − 1)

Use the normal command to cancel common factors. See section 5.1.



5.1 Mathematical Manipulations • 141

The expand command also knows expansion rules for many standard
mathematical functions.

> expand( sin(2*x) );

2 sin(x) cos(x)

> ln( abs(x^2)/(1+abs(x)) );

ln(
|x|2

1 + |x|
)

> expand(%);

2 ln(|x|)− ln(1 + |x|)

The combine command knows the same rules but applies them in the
opposite direction. See section 5.1.

You can specify subexpressions that you do not want to expand, as
an argument to expand.

> expand( (x+1)*(y+z) );

x y + x z + y + z

> expand( (x+1)*(y+z), x+1 );

(x+ 1) y + (x+ 1) z

You can expand an expression over a special domain.

> poly := (x+2)^2*(x-2)*(x+3)*(x-1)^2*(x-1);

poly := (x+ 2)2 (x− 2) (x+ 3) (x− 1)3

> expand( poly );

x7 + 2x6 − 10x5 − 12x4 + 37x3 + 10x2 − 52x+ 24

> % mod 3;



142 • Chapter 5: Evaluation and Simplification

x7 + 2x6 + 2x5 + x3 + x2 + 2x

However, using the Expand command is more efficient.

> Expand( poly ) mod 3;

x7 + 2x6 + 2x5 + x3 + x2 + 2x

When you use Expand with mod, Maple performs all intermediate cal-
culations in modulo arithmetic. You can also write your own expand sub-
routines. See ?expand for more details.

Collecting the Coefficients of Like Powers
An expression like x2 +2x+1− ax+ b− cx2 may be easier to read if you
collect the coefficients of x2, x, and the constant terms, using the collect
command.

> collect( x^2 + 2*x + 1 - a*x + b - c*x^2, x );

(1− c)x2 + (2− a)x+ b+ 1

The second argument to the collect command specifies on which
variable it should base the collection.

> poly := x^2 + 2*y*x - 3*y + y^2*x^2;

poly := x2 + 2 y x− 3 y + y2 x2

> collect( poly, x );

(1 + y2)x2 + 2 y x− 3 y

> collect( poly, y );

y2 x2 + (2x− 3) y + x2

You can collect on either variables or unevaluated function calls.

> trig_expr := sin(x)*cos(x) + sin(x) + y*sin(x);

trig_expr := sin(x) cos(x) + sin(x) + y sin(x)



5.1 Mathematical Manipulations • 143

> collect( trig_expr, sin(x) );

(cos(x) + 1 + y) sin(x)

> DE := diff(f(x),x,x)*sin(x) - diff(f(x),x)*sin(f(x))
> + sin(x)*diff(f(x),x) + sin(f(x))*diff(f(x),x,x);

DE := (
∂2

∂x2
f(x)) sin(x)− (

∂

∂x
f(x)) sin(f(x)) + sin(x) (

∂

∂x
f(x))

+ sin(f(x)) (
∂2

∂x2
f(x))

> collect( DE, diff );

(−sin(f(x)) + sin(x)) (
∂

∂x
f(x)) + (sin(x) + sin(f(x))) (

∂2

∂x2
f(x))

You cannot collect on sums or products.

> big_expr := z*x*y + 2*x*y + z;

big_expr := z x y + 2 y x+ z

> collect( big_expr, x*y );

Error, (in collect) cannot collect y*x

Instead, make a substitution before you collect. In the above case,
substituting a dummy name for x*y, then collecting on the dummy name
produces the desired result.

> subs( x=xyprod/y, big_expr );

z xyprod + 2 xyprod + z

> collect( %, xyprod );

(z + 2) xyprod + z

> subs( xyprod=x*y, % );



144 • Chapter 5: Evaluation and Simplification

(z + 2) y x+ z

Section 5.3 explains the use of the subs command.
If you are collecting coefficients of more than one variable simulta-

neously, two options are available, the recursive and distributed forms.
Recursive form initially collects in the first specified variable, then in the
next, and so on. The default is the recursive form.

> poly := x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;

poly := y x+ z x y + y x2 − z y x2 + x+ z x

> collect( poly, [x,y] );

(1− z) y x2 + ((1 + z) y + 1 + z)x

Distributed form collects the coefficients of all variables at the same
time.

> collect( poly, [x,y], distributed );

(1 + z) y x+ (1 + z)x+ (1− z) y x2

The collect command does not sort the terms. Use the sort com-
mand to sort. See section 5.1.

Factoring Polynomials and Rational Functions
You may want to write a polynomial as a product of terms of smallest
possible degree. Use the factor command to factor polynomials.

> factor( x^2-1 );

(x− 1) (x+ 1)

> factor( x^3+y^3 );

(x+ y) (x2 − y x+ y2)

You can also factor rational functions. The factor command factors
both the numerator and the denominator, then removes common terms.



5.1 Mathematical Manipulations • 145

> rat_expr := (x^16 - y^16) / (x^8 - y^8);

rat_expr :=
x16 − y16

x8 − y8

> factor( rat_expr );

x8 + y8

> rat_expr := (x^16 - y^16) / (x^7 - y^7);

rat_expr :=
x16 − y16

x7 − y7

> factor(rat_expr);

(y + x) (x2 + y2) (x4 + y4) (x8 + y8)

x6 + y x5 + y2 x4 + y3 x3 + y4 x2 + y5 x+ y6

Specifying the Algebraic Number Field The factor command factors a
polynomial over the ring implied by the coefficients. The following poly-
nomial has integer coefficients, so the terms in the factored form have
integer coefficients.

> poly := x^5 - x^4 - x^3 + x^2 - 2*x + 2;

poly := x5 − x4 − x3 + x2 − 2x+ 2

> factor( poly );

(x− 1) (x2 − 2) (x2 + 1)

In this next example, the coefficients include
√
2. Note the differences

in the result.

> expand( sqrt(2)*poly );

√
2x5 −

√
2x4 −

√
2x3 +

√
2x2 − 2

√
2x+ 2

√
2

> factor( % );



146 • Chapter 5: Evaluation and Simplification

√
2 (x2 + 1) (x+

√
2) (x−

√
2) (x− 1)

You can explicitly extend the coefficient field by giving a second ar-
gument to factor.

> poly := x^4 - 5*x^2 + 6;

poly := x4 − 5x2 + 6

> factor( poly );

(x2 − 2) (x2 − 3)

> factor( poly, sqrt(2) );

(x2 − 3) (x+
√
2) (x−

√
2)

> factor( poly, { sqrt(2), sqrt(3) } );

(x−
√
3) (x+

√
3) (x+

√
2) (x−

√
2)

You can also specify the extension by using RootOf. Here RootOf(x^2-2)
represents any solution to x2 − 2 = 0, that is either

√
2 or −

√
2.

> factor( poly, RootOf(x^2-2) );

(x2 − 3) (x+RootOf(_Z 2 − 2)) (x− RootOf(_Z 2 − 2))

See ?evala for more information on performing calculations in an
algebraic number field.

Factoring in Special Domains Use the Factor command to factor an
expression over the integers modulo p for some prime p. The syntax is
similar to that of the Expand command.

> Factor( x^2+3*x+3 ) mod 7;

(x+ 6) (x+ 4)

The Factor command also allows algebraic field extensions.



5.1 Mathematical Manipulations • 147

> Factor( x^3+1 ) mod 5;

(x2 + 4x+ 1) (x+ 1)

> Factor( x^3+1, RootOf(x^2+x+1) ) mod 5;

(x+RootOf(_Z 2 +_Z + 1)) (x+ 1)

(x+ 4RootOf(_Z 2 +_Z + 1) + 4)

For details about the algorithm used, factoring multivariate polynomi-
als, or factoring polynomials over an algebraic number field, see ?Factor.

Removing Rational Exponents
In general, it is preferred to represent rational expressions without frac-
tional exponents in the denominator. The rationalize command re-
moves roots from the denominator of a rational expression by multiplying
by a suitable factor.

> 1 / ( 2 + root[3](2) );

1

2 + 2(1/3)

> rationalize( % );

2

5
− 1

5
2(1/3) +

1

10
2(2/3)

> (x^2+5) / (x + x^(5/7));

x2 + 5

x+ x(5/7)

> rationalize( % );

(x2 + 5) (x(6/7) − x(12/7) − x(4/7) + x(10/7) + x(2/7) − x(8/7) + x2)
/

(x3 + x)

The result of rationalize is often larger than the original.



148 • Chapter 5: Evaluation and Simplification

Combining Terms
The combine command applies a number of transformation rules for var-
ious mathematical functions.

> combine( sin(x)^2 + cos(x)^2 );

1

> combine( sin(x)*cos(x) );

1

2
sin(2x)

> combine( exp(x)^2 * exp(y) );

e(2x+y)

> combine( (x^a)^2 );

x(2 a)

To see how combine arrives at the result, give infolevel[combine]

a positive value.

> infolevel[combine] := 1;

infolevel combine := 1

> expr := Int(1, x) + Int(x^2, x);

expr :=

∫

1 dx+

∫

x2 dx

> combine( expr );

combine: combining with respect to Int
combine: combining with respect to linear
combine: combining with respect to Int
combine: combining with respect to linear
combine: combining with respect to int
combine: combining with respect to linear
combine: combining with respect to Int
combine: combining with respect to linear
combine: combining with respect to int
combine: combining with respect to linear



5.1 Mathematical Manipulations • 149

combine: combining with respect to cmbplus
combine: combining with respect to cmbpwr
combine: combining with respect to power

∫

x2 + 1 dx

The expand command applies most of these transformation rules in the
other direction. See section 5.1.

Factored Normal Form
If an expression contains fractions, you may find it useful to turn the
expression into one large fraction, and cancel common factors in the nu-
merator and denominator. The normal command performs this process,
which often leads to simpler expressions.

> normal( x + 1/x );

x2 + 1

x

> expr := x/(x+1) + 1/x + 1/(1+x);

expr :=
x

x+ 1
+

1

x
+

1

x+ 1

> normal( expr );

x+ 1

x

> expr := (x^2 - y^2) / (x-y)^3;

expr :=
x2 − y2

(x− y)3

> normal( expr );

x+ y

(x− y)2



150 • Chapter 5: Evaluation and Simplification

> expr := (x - 1/x) / (x-2);

expr :=
x− 1

x
x− 2

> normal( expr );

x2 − 1

x (x− 2)

Use the second argument expanded if you want normal to expand the
numerator and the denominator.

> normal( expr, expanded );

x2 − 1

x2 − 2x

The normal command acts recursively over functions, sets, and lists.

> normal( [ expr, exp(x+1/x) ] );

[
x2 − 1

x (x− 2)
, e(

x2+1
x

)]

> big_expr := sin( (x*(x+1)-x)/(x+2) )^2
> + cos( (x^2)/(-x-2) )^2;

big_expr := sin(
(x+ 1)x− x

x+ 2
)2 + cos(

x2

−x− 2
)2

> normal( big_expr );

sin(
x2

x+ 2
)2 + cos(

x2

x+ 2
)2

Note from the previous example that normal does not simplify
trigonometric expressions, only rational polynomial functions.



5.1 Mathematical Manipulations • 151

A Special Case Normal may return an expression in expanded form
that is not as simple as the factored form.

> expr := (x^25-1) / (x-1);

expr :=
x25 − 1

x− 1

> normal( expr );

1 + x11 + x9 + x24 + x22 + x23 + x21 + x20 + x19 + x18 + x17 + x15

+ x14 + x13 + x2 + x+ x4 + x3 + x5 + x16 + x7 + x6 + x8 + x10

+ x12

To cancel the common (x− 1) term from the numerator and the de-
nominator without expanding the numerator, use factor. See section 5.1.

> factor(expr);

(x4 + x3 + x2 + x+ 1) (x20 + x15 + x10 + x5 + 1)

Simplifying Expressions
The results of Maple’s simplification calculations can be very complicated.
The simplify command tries to find a simpler expression by applying a
list of manipulations.

> expr := 4^(1/2) + 3;

expr :=
√
4 + 3

> simplify( expr );

5

> expr := cos(x)^5 + sin(x)^4 + 2*cos(x)^2
> - 2*sin(x)^2 - cos(2*x);

expr := cos(x)5 + sin(x)4 + 2 cos(x)2 − 2 sin(x)2 − cos(2x)

> simplify( expr );



152 • Chapter 5: Evaluation and Simplification

cos(x)5 + cos(x)4

Simplification rules are known for trigonometric expressions, logarith-
mic and exponential expressions, radical expressions, expressions with
powers, RootOf expressions, and various special functions.

If you specify a particular simplification rule as an argument to the
simplify command, then it uses only that simplification rule (or that
class of rules).

> expr := ln(3*x) + sin(x)^2 + cos(x)^2;

expr := ln(3x) + sin(x)2 + cos(x)2

> simplify( expr, trig );

ln(3x) + 1

> simplify( expr, ln );

ln(3) + ln(x) + sin(x)2 + cos(x)2

> simplify( expr );

ln(3) + ln(x) + 1

See ?simplify for a list of built-in simplification rules.

Simplification with Assumptions
Maple can refuse to perform an obvious simplification because, although
you know that a variable has special properties, Maple treats the variable
in a more general way.

> expr := sqrt( (x*y)^2 );

expr :=
√

x2 y2

> simplify( expr );

√

x2 y2



5.1 Mathematical Manipulations • 153

The option assume=property tells simplify to assume that all the
unknowns in the expression have that property.

> simplify( expr, assume=real );

|x y|

> simplify( expr, assume=positive );

x y

You can also use the general assume facility to place assumptions on
individual variables. See section 5.2.

Simplification with Side Relations
Sometimes you can simplify an expression using your own special-purpose
transformation rule. The simplify command allows you do to this by
means of side relations .

> expr := x*y*z + x*y + x*z + y*z;

expr := x y z + x y + x z + y z

> simplify( expr, { x*z=1 } );

x y + y z + y + 1

You can give one or more side relations in a set or list. The simplify
command uses the given equations as additional allowable simplifications.

Specifying the order in which simplify performs the simplification
provides another level of control.

> expr := x^3 + y^3;

expr := x3 + y3

> siderel := x^2 + y^2 = 1;

siderel := x2 + y2 = 1



154 • Chapter 5: Evaluation and Simplification

> simplify( expr, {siderel}, [x,y] );

y3 − x y2 + x

> simplify( expr, {siderel}, [y,x] );

x3 − y x2 + y

In the first case, Maple makes the substitution x2 = 1 − y2 in the
expression, then attempts to make substitutions for y2 terms. Not finding
any, it stops.

In the second case, Maple makes the substitution y2 = 1 − x2 in the
expression, then attempts to make substitutions for x2 terms. Not finding
any, it stops.

Gröbner basis manipulations of polynomials are the basis of how
simplify works. For more information, see ?simplify,siderels.

Sorting Algebraic Expressions
Maple prints the terms of a polynomial in the order the polynomial was
first created. You may want to sort the polynomial by decreasing degree.
The sort command makes this possible.

> poly := 1 + x^4 - x^2 + x + x^3;

poly := 1 + x4 − x2 + x+ x3

> sort( poly );

x4 + x3 − x2 + x+ 1

Note that sort reorders algebraic expressions in place, replacing the
original polynomial with the sorted copy.

> poly;

x4 + x3 − x2 + x+ 1

You can sort multivariate polynomials in two ways, by total degree or
by lexicographic order. The default case is total degree, which sorts terms
into descending order of degree. With this sort, if two terms have the



5.1 Mathematical Manipulations • 155

same degree, it sorts those terms by lexicographic order (in other words,
a comes before b and so forth).

> sort( x+x^3 + w^5 + y^2 + z^4, [w,x,y,z] );

w5 + z4 + x3 + y2 + x

> sort( x^3*y + y^2*x^2, [x,y] );

x3 y + x2 y2

> sort( x^3*y + y^2*x^2 + x^4, [x,y] );

x4 + x3 y + x2 y2

Note that the order of the variables in the list determines the ordering
of the expression.

> sort( x^3*y + y^2*x^2, [x,y] );

x3 y + x2 y2

> sort( x^3*y + y^2*x^2, [y,x] );

y2 x2 + y x3

You can also sort the entire expression by lexicographic ordering, using
the plex option to the sort command.

> sort( x + x^3 + w^5 + y^2 + z^4, [w,x,y,z], plex );

w5 + x3 + x+ y2 + z4

Again, the order of the unknowns in the call to sort determines the
ordering.

> sort( x + x^3 + w^5 + y^2 + z^4, [x,y,z,w], plex );

x3 + x+ y2 + z4 + w5

The sort command can also sort lists. See section 5.3.



156 • Chapter 5: Evaluation and Simplification

Converting Between Equivalent Forms
You can write many mathematical functions in several equivalent forms.
For example, you can express sin(x) in terms of the exponential func-
tion. The convert command can perform this and many other types of
conversions. For more information, see ?convert.

> convert( sin(x), exp );

−1

2
I (e(I x) − 1

e(I x)
)

> convert( cot(x), sincos );

cos(x)

sin(x)

> convert( arccos(x), ln );

−I ln(x+ I
√

−x2 + 1)

> convert( binomial(n,k), factorial );

n!

k! (n− k)!

The parfrac argument indicates partial fractions.

> convert( (x^5+1) / (x^4-x^2), parfrac, x );

x+
1

x− 1
− 1

x2

You can also use convert to find a fractional approximation to a
floating-point number.

> convert( .3284879342, rational );

19615

59713

Note that conversions are not necessarily mutually inverse.

> convert( tan(x), exp );



5.2 Assumptions • 157

−I ((e(I x))2 − 1)

(e(I x))2 + 1

> convert( %, trig );

−I ((cos(x) + I sin(x))2 − 1)

(cos(x) + I sin(x))2 + 1

The simplify command reveals that this expression is sin(x)/ cos(x),
that is, tan(x).

> simplify( % );

sin(x)

cos(x)

You can also use the convert command to perform structural manip-
ulations on Maple objects. See section 5.3.

5.2 Assumptions

There are two means of imposing assumptions on unknowns. To globally
change the properties of unknowns, use the assume facility. To perform
a single operation under assumptions on unknowns, use the assuming

command. The assume facility and assuming command are discussed in
the following subsections.

The assume Facility
The assume facility is a set of routines for dealing with properties of
unknowns. The assume command allows improved simplification of sym-
bolic expressions, especially with multiple-valued functions, for example,
the square root.

> sqrt(a^2);

√
a2



158 • Chapter 5: Evaluation and Simplification

Maple cannot simplify this, as the result is different for positive and
negative values of a. Stating an assumption about the value of a allows
Maple to simplify the expression.

> assume( a>0 );
> sqrt(a^2);

a~

The tilde (~) on a variable indicates that an assumption has been
made about it. New assumptions replace old ones.

> assume( a<0 );
> sqrt(a^2);

−a~

Use the about command to get information about the assumptions
on an unknown.

> about(a);

Originally a, renamed a~:
is assumed to be: RealRange(-infinity,Open(0))

Use the additionally command to make additional assumptions
about unknowns.

> assume(m, nonnegative);
> additionally( m<=0 );
> about(m);

Originally m, renamed m~:
is assumed to be: 0

Many functions make use of the assumptions on an unknown. The
frac command returns the fractional part of a number.

> frac(n);

frac(n)

> assume(n, integer);
> frac(n);



5.2 Assumptions • 159

0

The following limit depends on b.

> limit(b*x, x=infinity);

signum(b)∞

> assume( b>0 );
> limit(b*x, x=infinity);

∞

You can use infolevel to have Maple report the details of command
operations.

> infolevel[int] := 2;

infolevel int := 2

> int( exp(c*x), x=0..infinity );

int/cook/nogo1:
Given Integral
Int(exp(c*x),x = 0 .. infinity)
Fits into this pattern:
Int(exp(-Ucplex*x^S1-U2*x^S2)*x^N*ln(B*x^DL)^M*cos(C1*x^R)
/((A0+A1*x^D)^P),x = t1 .. t2)
Definite integration: Can’t determine if the integral is
convergent.
Need to know the sign of --> -c
Will now try indefinite integration and then take limits.
int/indef1: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/indef2: applying derivative-divides
int/indef1: first-stage indefinite integration

lim
x→∞

e(c x) − 1

c

The int command must know the sign of c (or rather the sign of -c).

> assume( c>0 );
> int( exp(c*x), x=0..infinity );



160 • Chapter 5: Evaluation and Simplification

int/cook/nogo1:
Given Integral
Int(exp(x),x = 0 .. infinity)
Fits into this pattern:
Int(exp(-Ucplex*x^S1-U2*x^S2)*x^N*ln(B*x^DL)^M*cos(C1*x^R)
/((A0+A1*x^D)^P),x = t1 .. t2)
int/cook/IIntd1:
--> U must be <= 0 for converging integral
--> will use limit to find if integral is +infinity
--> or - infinity or undefined

∞

Logarithms are multiple-valued. For general complex values of x, ln(ex)
is different from x.

> ln( exp( 3*Pi*I ) );

I π

Therefore, Maple does not simplify the following expression unless it
is known to be correct, for example, when x is real.

> ln(exp(x));

ln(ex)

> assume(x, real);
> ln(exp(x));

x~

You can use the is command to directly test the properties of un-
knowns.

> is( c>0 );

true

> is(x, complex);

true



5.2 Assumptions • 161

> is(x, real);

true

In this next example, Maple still assumes that the variable a is nega-
tive.

> eq := xi^2 = a;

eq := ξ2 = a~

> solve( eq, {xi} );

{ξ = I
√
−a~}, {ξ = −I

√
−a~}

To remove assumptions that you make on a name, simply unassign
the name. However, the expression eq still refers to a~.

> eq;

ξ2 = a~

You must remove the assumption on a inside eq before you remove
the assumption on a. First, remove the assumptions on a inside eq.

> eq := subs( a=’a’, eq );

eq := ξ2 = a

Then, unassign a.

> a := ’a’;

a := a

See ?assume for more information on the assume facility.
If you require an assumption to hold for only one evaluation, then you

can use the assuming command, described in the following subsection.
When using the assuming command, you do not need to remove the
assumptions on unknowns and equations.



162 • Chapter 5: Evaluation and Simplification

The assuming Command
To perform a single evaluation under assumptions on the name(s) in an
expression, use the assuming command. Its use is equivalent to imposing
assumptions by using the assume facility, evaluating the expression, then
removing the assumptions from the expression and names. This facili-
tates experimenting with the evaluation of an expression under different
assumptions.

> about(a);

a:
nothing known about this object

> sqrt(a^2) assuming a<0;

−a

> about(a);

a:
nothing known about this object

> sqrt(a^2) assuming a>0;

a

You can evaluate an expression under an assumption on all names in
an expression

> sqrt((a*b)^2) assuming positive;

a b~

or assumption(s) on specific names.

> ln(exp(x)) + ln(exp(y)) assuming x::real, y::complex;

x~ + ln(ey)



5.3 Structural Manipulations • 163

In this example, the double colon (::) indicates a property assign-
ment. In general, it is used for type checking. See the help page ?type for
more information.

See the help page ?assuming for more information about the assuming
command.

5.3 Structural Manipulations

Structural manipulations include selecting and changing parts of an ob-
ject. They use knowledge of the structure or internal representation of an
object rather than working with the expression as a purely mathematical
expression. In the special cases of lists and sets, choosing an element is
straightforward.

> L := { Z, Q, R, C, H, O };

L := {O, R, Z, Q, C, H}

> L[3];

Z

Selecting elements from lists and sets is easy, which makes manipu-
lating them straightforward. The concept of what constitutes the parts of
a general expression is more difficult. However, many of the commands
that manipulate lists and sets also apply to general expressions.

Mapping a Function onto a List or Set
You may want to apply a function or command to each of the elements
rather than to the object as a whole. The map command does this.

> f( [a, b, c] );

f([a, b, c])

> map( f, [a, b, c] );

[f(a), f(b), f(c)]



164 • Chapter 5: Evaluation and Simplification

> map( expand, { (x+1)*(x+2), x*(x+2) } );

{x2 + 2x, x2 + 3x+ 2}

> map( x->x^2, [a, b, c] );

[a2, b2, c2]

If you give map more than two arguments, it passes the extra argu-
ment(s) to the function.

> map( f, [a, b, c], p, q );

[f(a, p, q), f(b, p, q), f(c, p, q)]

> map( diff, [ (x+1)*(x+2), x*(x+2) ], x );

[2x+ 3, 2x+ 2]

The map2 command is closely related to map. Whereas map sequentially
replaces the first argument of a function, the map2 command replaces the
second argument to a function.

> map2( f, p, [a,b,c], q, r );

[f(p, a, q, r), f(p, b, q, r), f(p, c, q, r)]

You can use map2 to list all the partial derivatives of an expression.

> map2( diff, x^y/z, [x,y,z] );

[
xy y

x z
,
xy ln(x)

z
, −xy

z2
]

You can use map2 in conjunction with map when applying them to
subelements.

> map2( map, { [a,b], [c,d], [e,f] }, p, q );

{[a(p, q), b(p, q)], [c(p, q), d(p, q)], [e(p, q), f(p, q)]}



5.3 Structural Manipulations • 165

You can also use the seq command to generate sequences resembling
the output from map. Here seq generates a sequence by applying the
function f to the elements of a set and a list.

> seq( f(i), i={a,b,c} );

f(a), f(b), f(c)

> seq( f(p, i, q, r), i=[a,b,c] );

f(p, a, q, r), f(p, b, q, r), f(p, c, q, r)

Here is Pascal’s Triangle.

> L := [ seq( i, i=0..5 ) ];

L := [0, 1, 2, 3, 4, 5]

> [ seq( [ seq( binomial(n,m), m=L ) ], n=L ) ];

[[1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0],

[1, 3, 3, 1, 0, 0], [1, 4, 6, 4, 1, 0], [1, 5, 10, 10, 5, 1]]

> map( print, % );

[1, 0, 0, 0, 0, 0]

[1, 1, 0, 0, 0, 0]

[1, 2, 1, 0, 0, 0]

[1, 3, 3, 1, 0, 0]

[1, 4, 6, 4, 1, 0]

[1, 5, 10, 10, 5, 1]

[]

The add and mul commands work like seq except that they generate
sums and products, respectively, instead of sequences.

> add( i^2, i=[5, y, sin(x), -5] );



166 • Chapter 5: Evaluation and Simplification

50 + y2 + sin(x)2

The map, map2, seq, add, and mul commands can also act on general
expressions. See section 5.3.

Choosing Elements from a List or Set
You can select certain elements from a list or a set, if you have a boolean-
valued function that determines which elements to select. The following
boolean-valued function returns true if its argument is larger than three.

> large := x -> is(x > 3);

large := x → is(3 < x)

You can now use the select command to choose the elements in a
list or set that satisfy large.

> L := [ 8, 2.95, Pi, sin(9) ];

L := [8, 2.95, π, sin(9)]

> select( large, L );

[8, π]

Similarly, the remove command removes the elements from L that
satisfy large and displays as output the remaining elements.

> remove( large, L );

[2.95, sin(9)]

To perform both operations simultaneously, use the selectremove

command.

> selectremove( large, L);

[8, π], [2.95, sin(9)]

You can use the type command to determine the type of an expres-
sion.



5.3 Structural Manipulations • 167

> type( 3, numeric );

true

> type( cos(1), numeric );

false

The syntax of select here passes the third argument, numeric, to
the type command.

> select( type, L, numeric );

[8, 2.95]

See section 5.3 for more information on types and using select and
remove on a general expression.

Merging Two Lists
Sometimes you need to merge two lists. Here is a list of x-values and a
list of y-values.

> X := [ seq( ithprime(i), i=1..6 ) ];

X := [2, 3, 5, 7, 11, 13]

> Y := [ seq( binomial(6, i), i=1..6 ) ];

Y := [6, 15, 20, 15, 6, 1]

To plot the y-values against the x-values, construct a list of lists: [
[x1,y1], [x2,y2], ... ]. That is, for each pair of values, construct a
two-element list.

> pair := (x,y) -> [x, y];

pair := (x, y) → [x, y]

The zip command can merge the lists X and Y according to the binary
function pair.



168 • Chapter 5: Evaluation and Simplification

> P := zip( pair, X, Y );

P := [[2, 6], [3, 15], [5, 20], [7, 15], [11, 6], [13, 1]]

> plot( P );

2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12

If the two lists have different length, then zip returns a list as long
as the shorter one.

> zip( (x,y) -> x.y, [a,b,c,d,e,f], [1,2,3] );

[a, 2 b, 3 c]

You can specify a fourth argument to zip. Then zip returns a list as
long as the longer input list, using the fourth argument for the missing
values.

> zip( (x,y) -> x.y, [a,b,c,d,e,f], [1,2,3], 99 );

[a, 2 b, 3 c, 99 d, 99 e, 99 f ]

> zip( igcd, [7657,342,876], [34,756,213,346,123], 6! );

[1, 18, 3, 2, 3]

The zip command can also merge vectors. See ?zip for more infor-
mation.

Sorting Lists
A list is a fundamental order-preserving data structure in Maple. The
elements in a list remain in the order used in creating the list. You can
create a copy of a list sorted in another order using the sort command.



5.3 Structural Manipulations • 169

The sort command sorts lists, among other things, in ascending order.
It sorts a list of numbers in numerical order.

> sort( [1,3,2,4,5,3,6,3,6] );

[1, 2, 3, 3, 3, 4, 5, 6, 6]

The sort command also sorts a list of strings in lexicographic order.

> sort( ["Mary", "had", "a", "little", "lamb"] );

[“Mary”, “a”, “had”, “lamb”, “little”]

If a list contains both numbers and strings, or expressions different
from numbers and strings, sort uses the machine addresses, which are
session dependent.

> sort( [x, 1, "apple"] );

[1, x, “apple”]

> sort( [-5, 10, sin(34)] );

[10, sin(34), −5]

Note that to Maple, π is not numeric.

> sort( [4.3, Pi, 2/3] );

[4.3,
2

3
, π]

You can specify a boolean function to define an ordering for a list.
The boolean function must take two arguments and returns true if the
first argument should precede the second. You can use this to sort a list
of numbers in descending order.

> sort( [3.12, 1, 1/2], (x,y) -> evalb( x>y ) );

[3.12, 1,
1

2
]



170 • Chapter 5: Evaluation and Simplification

The is command can compare constants like π and sin(5) with pure
numbers.

> bf := (x,y) -> is( x < y );

bf := (x, y) → is(x < y)

> sort( [4.3, Pi, 2/3, sin(5)], bf );

[sin(5),
2

3
, π, 4.3]

You can also sort strings by length.

> shorter := (x,y) -> evalb( length(x) < length(y) );

shorter := (x, y) → evalb(length(x) < length(y))

> sort( ["Mary", "has", "a", "little", "lamb"], shorter );

[“a”, “has”, “lamb”, “Mary”, “little”]

Maple does not have a built-in method for sorting lists of mixed strings
and numbers, other than by machine address. To sort a mixed list of
strings and numbers, you can do the following.

> big_list := [1,"d",3,5,2,"a","c","b",9];

big_list := [1, “d”, 3, 5, 2, “a”, “c”, “b”, 9]

Make two lists from the original, one consisting of numbers and one
consisting of strings.

> list1 := select( type, big_list, string );

list1 := [“d”, “a”, “c”, “b”]

> list2 := select( type, big_list, numeric );

list2 := [1, 3, 5, 2, 9]

Then sort the two lists independently.



5.3 Structural Manipulations • 171

> list1 := sort(list1);

list1 := [“a”, “b”, “c”, “d”]

> list2 := sort(list2);

list2 := [1, 2, 3, 5, 9]

Finally, stack the two lists together.

> sorted_list := [ op(list1), op(list2) ];

sorted_list := [“a”, “b”, “c”, “d”, 1, 2, 3, 5, 9]

The sort command can also sort algebraic expressions. See sec-
tion 5.1.

Section 5.3 gives more information about the commands in this ex-
ample.

The Parts of an Expression
To manipulate the details of an expression, you must select the individ-
ual parts. Three easy cases for doing this involve equations, ranges, and
fractions. The lhs command selects the left-hand side of an equation.

> eq := a^2 + b^ 2 = c^2;

eq := a2 + b2 = c2

> lhs( eq );

a2 + b2

The rhs command similarly selects the right-hand side.

> rhs( eq );

c2

The lhs and rhs commands also work on ranges.

> lhs( 2..5 );



172 • Chapter 5: Evaluation and Simplification

2

> rhs( 2..5 );

5

> eq := x = -2..infinity;

eq := x = −2..∞

> lhs( eq );

x

> rhs( eq );

−2..∞

> lhs( rhs(eq) );

−2

> rhs( rhs(eq) );

∞

The numer and denom commands extract the numerator and denom-
inator, respectively, from a fraction.

> numer( 2/3 );

2

> denom( 2/3 );

3

> fract := ( 1+sin(x)^3-y/x) / ( y^2 - 1 + x );



5.3 Structural Manipulations • 173

fract :=
1 + sin(x)3 − y

x
y2 − 1 + x

> numer( fract );

x+ sin(x)3 x− y

> denom( fract );

x (y2 − 1 + x)

Consider the expression

> expr := 3 + sin(x) + 2*cos(x)^2*sin(x);

expr := 3 + sin(x) + 2 cos(x)2 sin(x)

The whattype command identifies expr as a sum.

> whattype( expr );

+

Use the op command to list the terms of a sum or, in general, the
operands of an expression.

> op( expr );

3, sin(x), 2 cos(x)2 sin(x)

The expression expr consists of three terms. Use the nops command
to count the number of operands in an expression.

> nops( expr );

3

You can select, for example, the third term as follows.

> term3 := op(3, expr);



174 • Chapter 5: Evaluation and Simplification

term3 := 2 cos(x)2 sin(x)

The expression term3 is a product of three factors.

> whattype( term3 );

∗

> nops( term3 );

3

> op( term3 );

2, cos(x)2, sin(x)

Retrieve the second factor in term3 in the following manner.

> factor2 := op(2, term3);

factor2 := cos(x)2

It is an exponentiation.

> whattype( factor2 );

^

The expression factor2 has two operands.

> op( factor2 );

cos(x), 2

The first operand is a function and has only one operand.

> op1 := op(1, factor2);

op1 := cos(x)

> whattype( op1 );



5.3 Structural Manipulations • 175

function

> op( op1 );

x

The name x is a symbol.

> whattype( op(op1) );

symbol

Since you did not assign a value to x, it has only one operand, namely
itself.

> nops( x );

1

> op( x );

x

You can represent the result of finding the operands of the operands
of an expression as a picture called an expression tree . The expression
tree for expr looks like this.

x

x
2cos

x
2^sin

sin*3

+

The operands of a list or set are the elements.



176 • Chapter 5: Evaluation and Simplification

> op( [a,b,c] );

a, b, c

> op( {d,e,f} );

d, f, e

Section 5.3 describes how the map command applies a function to all
the elements of a list or set. The functionality of map extends to general
expressions.

> map( f, x^2 );

f(x)f(2)

The select and remove commands, described in section 5.3, also work
on general expressions.

> large := z -> evalb( is(z>3) = true );

large := z → evalb(is(3 < z) = true)

> remove( large, 5+8*sin(x) - exp(9) );

8 sin(x)− e9

Maple has a number of commands that can be used as the boolean
function in a call to select or remove. The has command determines
whether an expression contains a certain subexpression.

> has( x*exp(cos(t^2)), t^2 );

true

> has( x*exp(cos(t^2)), cos );

true

Some of the solutions to the following set of equations contain
RootOf’s.



5.3 Structural Manipulations • 177

> sol := { solve( { x^2*y^2 = b*y, x^2-y^2 = a*x },
> {x,y} ) };

sol := {{y = 0, x = 0}, {y = 0, x = a}, {
x = RootOf(_Z 6 − b2 − a_Z 5),

y =
b

RootOf(_Z 6 − b2 − a_Z 5)2
}}

You can use select and has to choose those solutions.

> select( has, sol, RootOf );

{{x = RootOf(_Z 6 − b2 − a_Z 5),

y =
b

RootOf(_Z 6 − b2 − a_Z 5)2
}}

You can also select or remove subexpressions by type. The type com-
mand determines if an expression is of a certain type.

> type( 3+x, ‘+‘ );

true

Here the select command passes its third argument, ‘+‘, to type.

> expr := ( 3+x ) * x^2 * sin( 1+sqrt(Pi) );

expr := (3 + x)x2 sin(1 +
√
π)

> select( type, expr, ‘+‘ );

3 + x

The hastype command determines if an expression contains a subex-
pression of a certain type.

> hastype( sin( 1+sqrt(Pi) ), ‘+‘ );

true

You can use the combination select(hastype,...) to select the
operands of an expression that contain a certain type.



178 • Chapter 5: Evaluation and Simplification

> select( hastype, expr, ‘+‘ );

(3 + x) sin(1 +
√
π)

If you are interested in the subexpressions of a certain type rather
than the operands that contain them, use the indets command.

> indets( expr, ‘+‘ );

{3 + x, 1 +
√
π}

The two RootOf’s in sol above are of type RootOf. Since the two
RootOf’s are identical, the set that indets returns contains only one
element.

> indets( sol, RootOf );

{RootOf(_Z 6 − b2 − a_Z 5)}

Not all commands are their own type, as is RootOf, but you can
use the structured type specfunc(type, name). This type matches the
function name with arguments of type type.

> type( diff(y(x), x), specfunc(anything, diff) );

true

You can use this to find all the derivatives in a large differential equa-
tion.

> DE := expand( diff( cos(y(t)+t)*sin(t*z(t)), t ) )
> + diff(x(t), t);



5.3 Structural Manipulations • 179

DE := −sin(t z(t)) sin(y(t)) cos(t) (
∂

∂t
y(t))

− sin(t z(t)) sin(y(t)) cos(t)

− sin(t z(t)) cos(y(t)) sin(t) (
∂

∂t
y(t))

− sin(t z(t)) cos(y(t)) sin(t) + cos(t z(t)) cos(y(t)) cos(t) z(t)

+ cos(t z(t)) cos(y(t)) cos(t) t (
∂

∂t
z(t))

− cos(t z(t)) sin(y(t)) sin(t) z(t)

− cos(t z(t)) sin(y(t)) sin(t) t (
∂

∂t
z(t)) + (

∂

∂t
x(t))

> indets( DE, specfunc(anything, diff) );

{ ∂

∂t
z(t),

∂

∂t
y(t),

∂

∂t
x(t)}

The following operands of DE contain the derivatives.

> select( hastype, DE, specfunc(anything, diff) );

−sin(t z(t)) sin(y(t)) cos(t) (
∂

∂t
y(t))

− sin(t z(t)) cos(y(t)) sin(t) (
∂

∂t
y(t))

+ cos(t z(t)) cos(y(t)) cos(t) t (
∂

∂t
z(t))

− cos(t z(t)) sin(y(t)) sin(t) t (
∂

∂t
z(t)) + (

∂

∂t
x(t))

DE has only one operand that is itself a derivative.

> select( type, DE, specfunc(anything, diff) );

∂

∂t
x(t)

Maple recognizes many types. See ?type for a partial list, and
?type,structured for more information on structured types, such as
specfunc.



180 • Chapter 5: Evaluation and Simplification

Substitution
Often you want to substitute a value for a variable (i.e., evaluate an
expression at a point). For example, if you need to solve the problem, “If
f(x) = ln(sin(xecos(x))), find f ′(2),” then you must substitute the value 2
for x in the derivative. The command finds the derivative.

> y := ln( sin( x * exp(cos(x)) ) );

y := ln(sin(x ecos(x)))

> yprime := diff( y, x );

yprime :=
cos(x ecos(x)) (ecos(x) − x sin(x) ecos(x))

sin(x ecos(x))

Now use the eval command to substitute a value for x in yprime.

> eval( yprime, x=2 );

cos(2 ecos(2)) (ecos(2) − 2 sin(2) ecos(2))

sin(2 ecos(2))

The evalf command returns a floating-point approximation of the
result.

> evalf( % );

−.1388047428

The command makes syntactical substitutions, not mathematical sub-
stitutions. This means that you can make substitutions for any subexpres-
sion.

> subs( cos(x)=3, yprime );

cos(x e3) (e3 − x sin(x) e3)

sin(x e3)

But you are limited to subexpressions as Maple sees them.

> expr := a * b * c * a^b;



5.3 Structural Manipulations • 181

expr := a b c ab

> subs( a*b=3, expr );

a b c ab

To Maple, expr is a product of four factors.

> op( expr );

a, b, c, ab

The product a*b is not a factor in expr. You can make the substitution
a*b=3 in three ways: solve the subexpression for one of the variables,

> subs( a=3/b, expr );

3 c (
3

b
)b

use a side relation to simplify,

> simplify( expr, { a*b=3 } );

3 c ab

or use the algsubs command, which performs algebraic substitutions.

> algsubs( a*b=3, expr);

3 c ab

Note that in the first case all occurrences of a have been replaced by
3/b. Whereas, in the second and third cases both variables a and b remain
in the result.

You can make several substitutions with one call to subs.

> expr := z * sin( x^2 ) + w;

expr := z sin(x2) + w

> subs( x=sqrt(z), w=Pi, expr );



182 • Chapter 5: Evaluation and Simplification

z sin(z) + π

The subs command makes the substitutions from left to right.

> subs( z=x, x=sqrt(z), expr );

√
z sin(z) + w

If you give a set or list of substitutions, subsmakes those substitutions
simultaneously.

> subs( { x=sqrt(Pi), z=3 }, expr );

3 sin(π) + w

Note that in general you must explicitly evaluate the result of a call
to subs.

> eval( % );

w

Use the subsop command to substitute for a specific operand of an
expression.

> expr := 5^x;

expr := 5x

> op( expr );

5, x

> subsop( 1=t, expr );

tx

The zeroth operand of a function is typically the name of the function.

> expr := cos(x);



5.3 Structural Manipulations • 183

expr := cos(x)

> subsop( 0=sin, expr );

sin(x)

Section 5.3 explains the operands of an expression.

Changing the Type of an Expression
You may find it necessary to convert an expression to another type. Here
is the Taylor series for sin(x).

> f := sin(x);

f := sin(x)

> t := taylor( f, x=0 );

t := x− 1

6
x3 +

1

120
x5 +O(x6)

For example, you cannot plot a series, you must use convert(...,

polynom) to convert it into a polynomial approximation first.

> p := convert( t, polynom );

p := x− 1

6
x3 +

1

120
x5

Similarly, the title of a plot must be a string, not a general expression.
You can use convert(..., string) to convert an expression to a string.

> p_txt := convert( p, string );

p_txt := “x-1/6*x^3+1/120*x^ 5”



184 • Chapter 5: Evaluation and Simplification

> plot( p, x=-4..4, title=p_txt );

x–1/6*x^3+1/120*x^5

–1.5

–1

–0.5
0

0.5

1

1.5

–4 –3 –2 –1 1 2 3 4
x

The cat command concatenates all its arguments to create a new
string.

> ttl := cat( convert( f, string ),
> " and its Taylor approximation ",
> p_txt );

ttl := “sin(x) and its Taylor approximation x-1/6*x^\
3+1/120*x^5”

> plot( [f, p], x=-4..4, title=ttl );

sin(x) and its Taylor approximation x–1/6*x^3+1/120*x^5

–1.5

–1

–0.5
0

0.5

1

1.5

–4 –3 –2 –1 1 2 3 4
x

You can also convert a list to a set or a set to a list.

> L := [1,2,5,2,1];

L := [1, 2, 5, 2, 1]

> S := convert( L, set );



5.4 Evaluation Rules • 185

S := {1, 2, 5}

> convert( S, list );

[1, 2, 5]

The convert command can perform many other structural and math-
ematical conversions. See ?convert for more information.

5.4 Evaluation Rules

In a symbolic mathematics program such as Maple you encounter the
issue of evaluation. If you assign the value y to x, the value z to y, and
the value 5 to z, then to what should x evaluate?

Levels of Evaluation
Maple, in most cases, does full evaluation of names. That is, when you use
a name or symbol, Maple checks if the name or symbol has an assigned
value. If it has a value, Maple substitutes the value for the name. If this
value itself has an assigned value, Maple performs a substitution again,
and so on, recursively, until no more substitutions are possible.

> x := y;

x := y

> y := z;

y := z

> z := 5;

z := 5

Now Maple evaluates x fully. That is, Maple substitutes y for x, z for
y, and finally, 5 for z.

> x;



186 • Chapter 5: Evaluation and Simplification

5

You can use the eval command to control the level of evaluation of an
expression. If you call eval with just one argument, then eval evaluates
that argument fully.

> eval(x);

5

A second argument to eval specifies how far you want to evaluate the
first argument.

> eval(x, 1);

y

> eval(x, 2);

z

> eval(x, 3);

5

The main exceptions to the rule of full evaluation are special data
structures like tables, matrices, and procedures, and the behavior of local
variables inside a procedure.

Last-Name Evaluation
The data structures array, table, matrix, and proc have a special eval-
uation behavior called last-name evaluation.

> x := y;

x := y

> y := z;

y := z



5.4 Evaluation Rules • 187

> z := array( [ [1,2], [3,4] ] );

z :=

[

1 2
3 4

]

Maple substitutes y for x and z for y. Because evaluation of the last
name, z, would produce an array, one of the four special structures, z is
unevaluated.

> x;

z

Maple uses last-name evaluation for arrays, tables, matrices, and pro-
cedures to retain compact representations of unassigned table entries (for
example, T[3]) and unevaluated commands (for example, sin(x)). You
can force full evaluation by calling eval explicitly.

> eval(x);

[

1 2
3 4

]

> add2 := proc(x,y) x+y; end proc;

add2 := proc(x, y)x+ y end proc

> add2;

add2

You can easily force full evaluation, using eval or print.

> eval(add2);

proc(x, y)x+ y end proc

Note that full evaluation of Maple library procedures, by default, sup-
presses the code in the procedure. To illustrate this, examine the erfi

command



188 • Chapter 5: Evaluation and Simplification

> erfi;

erfi

> eval(erfi);

proc(x::algebraic) . . . end proc

Set the interface variable verboseproc to 2, and then try again.

> interface( verboseproc=2 );
> eval(erfi);



5.4 Evaluation Rules • 189

proc(x::algebraic)

option‘Copyright (c) 1996 Waterloo Maple Inc . Al \
l rights reserved .‘;

if nargs 6= 1 then

error “expecting 1 argument, got %1”, nargs

elif type(x, ’complex(float)’) then evalf(’erfi ’(x))

elifx = 0 then 0
elif type(x, ’∞’) then

if type(x, ’cx_infinity ’) thenundefined + undefined ∗ I
elif type(x, ’undefined ’) then

NumericTools : −ThrowUndefined (x)

elif type(x, ’extended_numeric ’) thenx

elif type(<(x), ’∞’) then∞+∞∗ I
elseCopySign(I, =(x))
end if

elif type(x, ’undefined ’) then

NumericTools : −ThrowUndefined (x, ’preserve ’ = ’axes ’)

elif type(x, ‘ ∗ ‘) and member(I, {op(x)}) then I ∗ erf(−I ∗ x)
elif type(x, ’complex(numeric)’) and csgn(x) < 0 then

− erfi(−x)

eliftype(x, ‘ ∗ ‘) and type(op(1, x), ’complex(numeric)’)

and csgn(op(1, x)) < 0then − erfi(−x)

elif type(x, ‘ + ‘) and traperror(sign(x)) = −1 then − erfi(−x)

else ’erfi ’(x)

end if
end proc

The default value of verboseproc is 1.

> interface( verboseproc=1 );

The help page ?interface explains the possible settings of verboseproc
and the other interface variables.

One-Level Evaluation
Local variables of a procedure use one-level evaluation. That is, if you
assign a local variable, then the result of evaluation is the value most
recently assigned directly to that variable.

> test:=proc()
> local x, y, z;



190 • Chapter 5: Evaluation and Simplification

> x := y;
> y := z;
> z := 5;
> x;
> end proc:
> test();

y

Compare this evaluation with the similar interactive example in sec-
tion 5.4. Full evaluation within a procedure is rarely necessary and can
lead to inefficiency. If you require full evaluation within a procedure, use
eval.

Commands with Special Evaluation Rules

The assigned and evaln Commands The functions assigned and
evaln evaluate their arguments only to the level at which they become
names.

> x := y;

x := y

> y := z;

y := z

> evaln(x);

x

The assigned command checks if a name has a value assigned to it.

> assigned( x );

true

The seq Command The seq command for creating expression sequences
does not evaluate its arguments, so that even if a variable has an assigned
value, seq can use it as a counting variable.



5.4 Evaluation Rules • 191

> i := 2;

i := 2

> seq( i^2, i=1..5 );

1, 4, 9, 16, 25

> i;

2

Contrast this with the behavior of sum.

> sum( i^2, i=1..5 );

Error, (in sum) summation variable previously assigned,
second argument evaluates to 2 = 1 .. 5

You can easily solve this problem using right single quotes, as shown
in the next section.

Quotation and Unevaluation
The Maple language supports the use of quotes to delay evaluation one
level. Surrounding a name in right single quotes (’) prevents Maple from
evaluating the name. Hence, right single quotes are referred to as uneval-
uation quotes.

> i := 4;

i := 4

> i;

4

> ’i’;

i

Use this method to avoid the following problem.



192 • Chapter 5: Evaluation and Simplification

> i;

4

> sum( i^2, i=1..5 );

Error, (in sum) summation variable previously assigned,
second argument evaluates to 4 = 1 .. 5

> sum( ’i^2’, ’i’=1..5 );

55

> i;

4

Full evaluation of a quoted expression removes one level of quotes.

> x := 0;

x := 0

> ’’’x’+1’’;

’’x’ + 1’

> %;

’x’ + 1

> %;

x+ 1

> %;

1

Quoting an expression delays evaluation, but does not prevent auto-
matic simplifications and arithmetic.



5.4 Evaluation Rules • 193

> ’1-1’;

0

> ’p+q-i-p+3*q’;

4 q − i

If you enclose a simple variable in right single quotes, the result is the
name of the variable. You can use this method to unassign a variable.

> x := 1;

x := 1

> x;

1

> x := ’x’;

x := x

> x;

x

However, in general, you must use evaln.

> i := 4;

i := 4

> a[i] := 9;

a4 := 9

Note that ’a[i]’ is a[i] not a[4].

> ’a[i]’;



194 • Chapter 5: Evaluation and Simplification

ai

You must use evaln to unassign a[i].

> evaln( a[i] );

a4

> a[i] := evaln( a[i] );

a4 := a4

Using Quoted Variables as Function Arguments
Some Maple commands use names as a way to return information in
addition to the standard return value. The divide command assigns the
quotient to the global name, q.

> divide( x^2-1, x-1, ’q’ );

true

> q;

x+ 1

Remember to use a quoted name to ensure that you are not passing
a variable with an assigned value into the procedure. You can avoid the
need for quotes if you ensure that the name you use has no previously
assigned value.

> q := 2;

q := 2

> divide( x^2-y^2, x-y, q );

Error, wrong number (or type) of parameters in function
divide



5.4 Evaluation Rules • 195

> q := evaln(q);

q := q

> divide( x^2-y^2, x-y, q );

true

> q;

x+ y

The rem, quo, irem, and iquo commands behave in a similar manner.

Concatenation of Names
Concatenation is a way to form new variable names based on others.

> a||b;

ab

The concatenation operator, “||”, in a name causes evaluation of the
right-hand side of the operator, but not the left.

> a := x;

a := x

> b := 2;

b := 2

> a||b;

a2

> c := 3;

c := 3



196 • Chapter 5: Evaluation and Simplification

> a||b||c;

a23

If a name does not evaluate to a single symbol, Maple does not eval-
uate a concatenation.

> a := x;

a := x

> b := y+1;

b := y + 1

> new_name := a||b;

new_name := a||(y + 1)

> y := 3;

y := 3

> new_name;

a4

You can use concatenated names to assign and create expressions.

> i := 1;

i := 1

> b||i := 0;

b1 := 0

You need to use right single quotes.

> sum( ’a||k’ * x^k, k=0..8 );



5.5 Conclusion • 197

a0 + a1 x+ a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 + a7 x7

+ a8 x8

If you do not use right single quotes, Maple evaluates a||k to ak.

> sum( a||k * x^k, k=0..8 );

ak + ak x+ ak x2 + ak x3 + ak x4 + ak x5 + ak x6 + ak x7

+ ak x8

You can also use concatenation to form title strings for plots.

5.5 Conclusion

In this chapter, you have seen how to perform many kinds of expression
manipulations, from adding two equations to selecting individual parts of
a general expression. In general, no rule specifies which form of an expres-
sion is the simplest. But, the commands you have seen in this chapter allow
you to convert an expression to many forms, often the ones you would
consider simplest. If not, you can use side relations to specify your own
simplification rules, or assumptions to specify properties of unknowns.

You have also seen that Maple, in most cases, uses full evaluation
of variables. Some exceptions exist, which include last-name evaluation
for certain data structures, one-level evaluation for local variables in a
procedure, and delayed evaluation for names in right single quotes.



198 • Chapter 5: Evaluation and Simplification



6 Examples from Calculus

This chapter provides examples of how Maple can help you present and
solve problems from calculus. The first section describes elementary con-
cepts such as the derivative and the integral, the second section treats
ordinary differential equations in some depth, and the third section con-
cerns partial differential equations.

6.1 Introductory Calculus

This section contains a number of examples of how to illustrate ideas
and solve problems from calculus. The student package contains many
commands that are especially useful in this area.

The Derivative
This section illustrates the graphical meaning of the derivative: the slope
of the tangent line. Then it shows you how to find the set of inflection
points for a function.

Define the function f :x 7→ exp(sin(x)) in the following manner.

> f := x -> exp( sin(x) );

f := x → esin(x)

Find the derivative of f evaluated at x0 = 1.

> x0 := 1;

x0 := 1

p0 and p1 are two points on the graph of f .

199



200 • Chapter 6: Examples from Calculus

> p0 := [ x0, f(x0) ];

p0 := [1, esin(1)]

> p1 := [ x0+h, f(x0+h) ];

p1 := [1 + h, esin(1+h)]

The slope command from the student package finds the slope of the
secant line through p0 and p1.

> with(student):
> m := slope( p0, p1 );

m := −esin(1) − esin(1+h)

h

If h = 1, the slope is

> eval( m, h=1 );

−esin(1) + esin(2)

The evalf command gives a floating-point approximation.

> evalf( % );

.162800903

As h tends to zero, the secant slope values seem to converge.

> h_values := [ seq( 1/i^2, i=1..20 ) ];

h_values := [1,
1

4
,
1

9
,
1

16
,
1

25
,
1

36
,
1

49
,
1

64
,
1

81
,

1

100
,

1

121
,

1

144
,

1

169
,

1

196
,

1

225
,

1

256
,

1

289
,

1

324
,

1

361
,

1

400
]

> seq( evalf(m), h=h_values );



6.1 Introductory Calculus • 201

.162800903, 1.053234750, 1.17430579, 1.21091762,

1.22680698, 1.23515485, 1.2400915, 1.2432565,

1.2454086, 1.2469391, 1.2480669, 1.2489216, 1.2495855,

1.2501111, 1.2505343, 1.2508805, 1.2511671, 1.2514069,

1.2516098, 1.2517828

The following is the equation of the secant line.

> y - p0[2] = m * ( x - p0[1] );

y − esin(1) = −(esin(1) − esin(1+h)) (x− 1)

h

The isolate command converts the equation to slope–intercept form.

> isolate( %, y );

y = −(esin(1) − esin(1+h)) (x− 1)

h
+ esin(1)

You must convert the equation to a function.

> secant := unapply( rhs(%), x );

secant := x → −(esin(1) − esin(1+h)) (x− 1)

h
+ esin(1)

You can now plot the secant and the function for different values of
h. First, make a sequence of plots.

> S := seq( plot( [f(x), secant(x)], x=0..4,
> view=[0..4, 0..4] ),
> h=h_values ):

The display command from the plots package can display the plots
in sequence—that is, as an animation.

> with(plots):

Warning, the name changecoords has been redefined



202 • Chapter 6: Examples from Calculus

> display( S, insequence=true, view=[0..4, 0..4] );

x

x x

x

xxx

x

x

x

x

x

x

x

x

x x

x

x

x

In the limit as h tends to zero, the slope is

> Limit( m, h=0 );

lim
h→0

− esin(1) − esin(1+h)

h

The value of this limit is

> value( % );

esin(1) cos(1)

This answer is, of course, the value of f ′(x0). To see this, first define
the function f1 to be the first derivative of f . Since f is a function, use D.
The D operator computes derivatives of functions, while diff computes
derivatives of expressions. See the help page ?operators,D for more in-
formation.

> f1 := D(f);

f1 := x → cos(x) esin(x)

Now you can see that f1(x0) equals the limit above.

> f1(x0);

esin(1) cos(1)

In this case, the second derivative exists.



6.1 Introductory Calculus • 203

> diff( f(x), x, x );

−sin(x) esin(x) + cos(x)2 esin(x)

Define the function f2 to be the second derivative of f .

> f2 := unapply( %, x );

f2 := x → −sin(x) esin(x) + cos(x)2 esin(x)

When you plot f and its first and second derivatives, you can see
that f is increasing whenever f1 is positive, and that f is concave down
whenever f2 is negative.

> plot( [f(x), f1(x), f2(x)], x=0..10 );

–2

–1

0

1

2

2 4 6 8 10
x

The graph of f has an inflection point where the double derivative
changes sign, and the double derivative can change sign at the values of
x where f2(x) is zero.

> sol := { solve( f2(x)=0, x ) };

sol :=

{

arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





 , −arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





+ π,

arctan(−1

2
− 1

2

√
5, −1

2

√

−2− 2
√
5),

arctan(−1

2
− 1

2

√
5,

1

2

√

−2− 2
√
5)

}

Two of these solutions are complex.



204 • Chapter 6: Examples from Calculus

> evalf( sol );

{.6662394325, 2.475353222,
−1.570796327 + 1.061275062 I,

−1.570796327− 1.061275062 I}
In this example, only the real solutions are of interest. You can use

the select command to select the real constants from the solution set.

> infl := select( type, sol, realcons );

infl :=











arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





 , −arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





+ π











> evalf( infl );

{.6662394325, 2.475353222}

You can see from the graph above that f2 actually does change signs
at these x-values. The set of inflection points is given by the following.

> { seq( [x, f(x)], x=infl ) };



6.1 Introductory Calculus • 205































































































arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





 , e





















2
−1/2 + 1/2

√
5

√

−2 + 2
√
5

√

1 + 4
(−1/2 + 1/2

√
5)2

−2 + 2
√
5





















































,





−arctan





2
−1

2
+

1

2

√
5

√

−2 + 2
√
5





+ π,

e





















2
−1/2 + 1/2

√
5

√

−2 + 2
√
5

√

1 + 4
(−1/2 + 1/2

√
5)2

−2 + 2
√
5

















































> evalf( % );

{[.6662394325, 1.855276958],
[2.475353222, 1.855276958]}

Since f is periodic, it has, of course, infinitely many inflection points.
You can obtain these by shifting the two inflection points above horizon-
tally by integer multiples of 2π.

A Taylor Approximation
This section illustrates how you can use Maple to analyze the error term
in a Taylor approximation. Following is Taylor’s formula.

> taylor( f(x), x=a );



206 • Chapter 6: Examples from Calculus

f(a) + D(f)(a) (x− a) +
1

2
(D(2))(f)(a) (x− a)2 +

1

6
(D(3))(f)(a)

(x− a)3 +
1

24
(D(4))(f)(a) (x− a)4 +

1

120
(D(5))(f)(a) (x− a)5+

O((x− a)6)

You can use it to find a polynomial approximation of a function f
near x = a.

> f := x -> exp( sin(x) );

f := x → esin(x)

> a := Pi;

a := π

> taylor( f(x), x=a );

1− (x− π) +
1

2
(x− π)2 − 1

8
(x− π)4 +

1

15
(x− π)5 +O((x− π)6)

Before you can plot the Taylor approximation, you must convert it
from a series to a polynomial.

> poly := convert( %, polynom );

poly := 1− x+ π +
1

2
(x− π)2 − 1

8
(x− π)4 +

1

15
(x− π)5

Now plot the function f along with poly.

> plot( [f(x), poly], x=0..10, view=[0..10, 0..3] );

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10
x



6.1 Introductory Calculus • 207

The expression (1/6!)f (6)(ξ)(x−a)6 gives the error of the approxima-
tion, where ξ is some number between x and a. The sixth derivative of f
is

> diff( f(x), x$6 );

−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x)

The use of the sequence operator $ in the previous command allows
you to abbreviate the calling sequence. Otherwise, you are required to
type , x six times to calculate the sixth derivative. Define the function
f6 to be that derivative.

> f6 := unapply( %, x );

f6 := x → −sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x)

The following is the error in the approximation.

> err := 1/6! * f6(xi) * (x - a)^6;

err :=
1

720
(−sin(ξ) esin(ξ) + 16 cos(ξ)2 esin(ξ) − 15 sin(ξ)2 esin(ξ)

+ 75 sin(ξ) cos(ξ)2 esin(ξ) − 20 cos(ξ)4 esin(ξ) − 15 sin(ξ)3 esin(ξ)

+ 45 sin(ξ)2 cos(ξ)2 esin(ξ) − 15 sin(ξ) cos(ξ)4 esin(ξ)

+ cos(ξ)6 esin(ξ))(x− π)6

The previous plot indicates that the error is small (in absolute value)
for x between 2 and 4.

> plot3d( abs( err ), x=2..4, xi=2..4,
> style=patch, axes=boxed );



208 • Chapter 6: Examples from Calculus

2

4

x

2

4
xi

0

0.16

To find the size of the error, you need a full analysis of the expression
err for x between 2 and 4 and ξ between a and x, that is, on the two
closed regions bounded by x = 2, x = 4, ξ = a, and ξ = x. The curve

command from the plottools package can illustrate these two regions.

> with(plots): with(plottools):

Warning, the name changecoords has been redefined
Warning, the name arrow has been redefined

> display( curve( [ [2,2], [2,a], [4,a], [4,4], [2,2] ] ),
> labels=[x, xi] );

2

2.5

3

3.5

4

xi

2 2.5 3 3.5 4
x

The partial derivatives of err help you find extrema of err inside the
two regions. Then you need to check the four boundaries. The two partial
derivatives of err are

> err_x := diff(err, x);



6.1 Introductory Calculus • 209

err_x :=
1

120
(−sin(ξ) esin(ξ) + 16 cos(ξ)2 esin(ξ)

− 15 sin(ξ)2 esin(ξ) + 75 sin(ξ) cos(ξ)2 esin(ξ) − 20 cos(ξ)4 esin(ξ)

− 15 sin(ξ)3 esin(ξ) + 45 sin(ξ)2 cos(ξ)2 esin(ξ)

− 15 sin(ξ) cos(ξ)4 esin(ξ) + cos(ξ)6 esin(ξ))(x− π)5

> err_xi := diff(err, xi);

err_xi :=
1

720
(−cos(ξ) esin(ξ) − 63 sin(ξ) cos(ξ) esin(ξ)

+ 91 cos(ξ)3 esin(ξ) − 210 sin(ξ)2 cos(ξ) esin(ξ)

+ 245 sin(ξ) cos(ξ)3 esin(ξ) − 35 cos(ξ)5 esin(ξ)

− 105 sin(ξ)3 cos(ξ) esin(ξ) + 105 sin(ξ)2 cos(ξ)3 esin(ξ)

− 21 sin(ξ) cos(ξ)5 esin(ξ) + cos(ξ)7 esin(ξ))(x− π)6

The two partial derivatives are zero at a critical point.

> sol := solve( {err_x=0, err_xi=0}, {x, xi} );

sol := {x = π, ξ = ξ}

The error is zero at this critical point.

> eval( err, sol );

0

You need to collect a set of critical values. The largest critical value
then bounds the maximal error.

> critical := { % };

critical := {0}

The partial derivative err_xi is zero at a critical point on either of
the two boundaries at x = 2 and x = 4.

> sol := { solve( err_xi=0, xi ) };



210 • Chapter 6: Examples from Calculus

sol := {arctan(RootOf(%1, index = 4),

RootOf(_Z 2 +RootOf(%1, index = 4)2 − 1)),
1

2
π, arctan(

RootOf(%1, index = 1),

RootOf(_Z 2 +RootOf(%1, index = 1)2 − 1)), arctan(

RootOf(%1, index = 2),

RootOf(_Z 2 +RootOf(%1, index = 2)2 − 1)), arctan(

RootOf(%1, index = 3),

RootOf(_Z 2 +RootOf(%1, index = 3)2 − 1)), arctan(

RootOf(%1, index = 6),

RootOf(_Z 2 +RootOf(%1, index = 6)2 − 1)), arctan(

RootOf(%1, index = 5),

RootOf(_Z 2 +RootOf(%1, index = 5)2 − 1))}
%1 := −56− 161_Z + 129_Z 2 + 308_Z 3 + 137_Z 4

+ 21_Z 5 +_Z 6

> evalf(sol);

{−1.570796327 + 1.767486929 I, 1.570796327,

−1.570796327 + .8535664710 I, −.3257026605,

.6948635283, −1.570796327 + 2.473801030 I,

−1.570796327 + 3.083849212 I}
You should check the solution set by plotting the function.

> plot( eval(err_xi, x=2), xi=2..4 );

–0.2

0

0.2

0.4

0.6

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
xi

Two solutions to err_xi=0 seem to exist between 2 and 4 where solve
found none: π/2 is less than 2. Thus, you must use numerical methods. If
x = 2, then ξ should be in the interval from 2 to a.



6.1 Introductory Calculus • 211

> sol := fsolve( eval(err_xi, x=2), xi, 2..a );

sol := 2.446729125

At that point the error is

> eval( err, {x=2, xi=sol});

.07333000221 (2− π)6

Now add this value to the set of critical values.

> critical := critical union {%};

critical := {0, .07333000221 (2− π)6}

If x = 4 then ξ should be between a and 4.

> sol := fsolve( eval(err_xi, x=4), xi, a..4 );

sol := 3.467295314

At that point, the error is

> eval( err, {x=4, xi=sol} );

−.01542298119 (4− π)6

> critical := critical union {%};

critical :=
{0, −.01542298119 (4− π)6, .07333000221 (2− π)6}

At the ξ = a boundary, the error is

> B := eval( err, xi=a );

B := − 1

240
(x− π)6

The derivative, B1, of B is zero at a critical point.

> B1 := diff( B, x );



212 • Chapter 6: Examples from Calculus

B1 := − 1

40
(x− π)5

> sol := { solve( B1=0, x ) };

sol := {π}

At the critical point the error is

> eval( B, x=sol[1] );

0

> critical := critical union { % };

critical :=
{0, −.01542298119 (4− π)6, .07333000221 (2− π)6}

At the last boundary, ξ = x, the error is

> B := eval( err, xi=x );

B :=
1

720
(−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x))(x− π)6

Again, you need to find where the derivative is zero.

> B1 := diff( B, x );



6.1 Introductory Calculus • 213

B1 :=
1

720
(−cos(x) esin(x) − 63 sin(x) cos(x) esin(x)

+ 91 cos(x)3 esin(x) − 210 sin(x)2 cos(x) esin(x)

+ 245 sin(x) cos(x)3 esin(x) − 35 cos(x)5 esin(x)

− 105 sin(x)3 cos(x) esin(x) + 105 sin(x)2 cos(x)3 esin(x)

− 21 sin(x) cos(x)5 esin(x) + cos(x)7 esin(x))(x− π)6 +
1

120
(

−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x))(x− π)5

> sol := { solve( B1=0, x ) };

sol := {π}

Checking the solution by plotting is a good idea.

> plot( B1, x=2..4 );

0

0.2

0.4

0.6

0.8

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
x

The plot of B1 indicates that a solution between 2.1 and 2.3 exists.
solve cannot find that solution, so you must resort to numerical methods
again.

> fsolve( B1=0, x, 2.1..2.3 );

2.180293062

Add the numerical solution to the set of symbolic solutions.



214 • Chapter 6: Examples from Calculus

> sol := sol union { % };

sol := {π, 2.180293062}

The following is the set of extremal errors at the ξ = x boundary.

> { seq( B, x=sol ) };

{0, .04005698601 (2.180293062− π)6}

Now enlarge the set of large errors.

> critical := critical union %;

critical := {0, −.01542298119 (4− π)6,

.04005698601 (2.180293062− π)6, .07333000221 (2− π)6}
Finally, you must add the error at the four corners to the set of critical

values.

> critical := critical union
> { eval( err, {xi=2, x=2} ),
> eval( err, {xi=2, x=4} ),
> eval( err, {xi=4, x=2} ),
> eval( err, {xi=4, x=4} ) };



6.1 Introductory Calculus • 215

critical := {0, −.01542298119 (4− π)6,

.04005698601 (2.180293062− π)6,
1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(4− π)6, .07333000221 (2− π)6,
1

720
(

−sin(2) esin(2) + 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2)

+ 75 sin(2) cos(2)2 esin(2) − 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(2− π)6,
1

720
(−sin(2) esin(2)

+ 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2) + 75 sin(2) cos(2)2 esin(2)

− 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(4− π)6,
1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(2− π)6}
Now all you need to do is find the maximum of the absolute values of

the elements of critical. First, map the abs command onto the elements
of critical.

> map( abs, critical );



216 • Chapter 6: Examples from Calculus

{0,− 1

720
(−sin(4) esin(4) + 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4)

+ 75 sin(4) cos(4)2 esin(4) − 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(4− π)6, .01542298119 (4− π)6,− 1

720
(

−sin(2) esin(2) + 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2)

+ 75 sin(2) cos(2)2 esin(2) − 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(2− π)6, .04005698601 (2.180293062− π)6,

.07333000221 (2− π)6,− 1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(2− π)6,− 1

720
(−sin(2) esin(2)

+ 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2) + 75 sin(2) cos(2)2 esin(2)

− 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(4− π)6}
Then find the maximal element. The max command expects a sequence

of numbers, so you must use the op command to convert the set of values
into a sequence.

> max_error := max( op(%) );

max_error := .07333000221 (2− π)6

Approximately, this number is

> evalf( max_error );

.1623112756

You can now plot f , its Taylor approximation, and a pair of curves
indicating the error band.



6.1 Introductory Calculus • 217

> plot( [ f(x), poly, f(x)+max_error, f(x)-max_error ],
> x=2..4,
> color=[ red, blue, brown, brown ] );

0.5

1

1.5

2

2.5

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
x

The plot shows that the actual error stays well inside the error esti-
mate.

The Integral
The integral of a function can be considered as a measure of the area
between the x-axis and the graph of the function. The definition of the
Riemann integral relies on this graphical interpretation of the integral.

> f := x -> 1/2 + sin(x);

f := x → 1

2
+ sin(x)

Here, the leftbox command from the student package draws the
graph of f along with 6 boxes. The height of each box is the value of f
evaluated at the left-hand side of the box.

> with(student):
> leftbox( f(x), x=0..10, 6 );

–0.5

0

0.5

1

1.5

2 4 6 8 10
x



218 • Chapter 6: Examples from Calculus

The leftsum command calculates the area of the boxes.

> leftsum( f(x), x=0..10, 6 );

5

3

(

5
∑

i=0

(
1

2
+ sin(

5

3
i))

)

Approximately, this number is

> evalf( % );

6.845601766

The approximation of the area improves as you increase the number
of boxes.

> boxes := [ seq( i^2, i=3..14 ) ];

boxes := [9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]

For each number in the list boxes, calculate the value of leftsum.

> seq( evalf( leftsum( f(x), x=0..10, n ) ), n=boxes );

6.948089404, 6.948819106, 6.923289160, 6.902789476,

6.888196449, 6.877830055, 6.870316621, 6.864739770,

6.860504862, 6.857222009, 6.854630207, 6.852550663

> S := seq( leftbox( f(x), x=0..10, n ),
> n=boxes ):

The display command from the plots package can show the sequence
of plots S as an animation.

> with(plots):

Warning, the name changecoords has been redefined



6.1 Introductory Calculus • 219

> display( S, insequence=true );

x xx

x x x

x

x

x

xxx

In the limit, as the number of boxes tends to infinity, you obtain the
definite integral.

> Int( f(x), x=0..10 );

∫ 10

0

1

2
+ sin(x) dx

The value of the integral is

> value( % );

6− cos(10)

and in floating-point numbers, this value is approximately

> evalf( % );

6.839071529

The indefinite integral of f is

> Int( f(x), x );

∫

1

2
+ sin(x) dx

> value( % );

1

2
x− cos(x)



220 • Chapter 6: Examples from Calculus

Define the function F to be the antiderivative.

> F := unapply( %, x );

F := x → 1

2
x− cos(x)

Choose the constant of integration so that F (0) = 0.

> F(x) - F(0);

1

2
x− cos(x) + 1

> F := unapply( %, x );

F := x → 1

2
x− cos(x) + 1

If you plot F and the left-boxes together, you can see that F increases
more when the corresponding box is larger.

> display( [ plot( F(x), x=0..10, color=blue ),
> leftbox( f(x), x=0..10, 14 ) ] );

0

1

2

3

4

5

6

2 4 6 8 10
x

The student package also contains commands for drawing and sum-
ming boxes evaluated at the right-hand side or at the midpoint of the
box.

Mixed Partial Derivatives
This section describes the D operator for derivatives and gives an example
of a function whose mixed partial derivatives are different.

Consider the following function.



6.1 Introductory Calculus • 221

> f := (x,y) -> x * y * (x^2-y^2) / (x^2+y^2);

f := (x, y) → x y (x2 − y2)

x2 + y2

The function f is not defined at (0, 0).

> f(0,0);

Error, (in f) numeric exception: division by zero

At (x, y) = (r cos(θ), r sin(θ)) the function value is

> f( r*cos(theta), r*sin(theta) );

r2 cos(θ) sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2

As r tends to zero so does the function value.

> Limit( %, r=0 );

lim
r→0

r2 cos(θ) sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2

> value( % );

0

Thus, you can extend f as a continuous function by defining it to be
zero at (0, 0).

> f(0,0) := 0;

f(0, 0) := 0

The above assignment places an entry in f ’s remember table. Here is
the graph of f .

> plot3d( f, -3..3, -3..3 );



222 • Chapter 6: Examples from Calculus

The partial derivative of f with respect to its first parameter, x, is

> fx := D[1](f);

fx := (x, y) → y (x2 − y2)

x2 + y2
+ 2

x2 y

x2 + y2
− 2

x2 y (x2 − y2)

(x2 + y2)2

This formula does not hold at (0, 0).

> fx(0,0);

Error, (in fx) numeric exception: division by zero

Therefore, you must use the limit definition of the derivative.

> fx(0,0) := limit( ( f(h,0) - f(0,0) )/h, h=0 );

fx(0, 0) := 0

At (x, y) = (r cos(θ), r sin(θ)) the value of fx is

> fx( r*cos(theta), r*sin(theta) );

r sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2
+ 2

r3 cos(θ)2 sin(θ)

r2 cos(θ)2 + r2 sin(θ)2

− 2
r3 cos(θ)2 sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

(r2 cos(θ)2 + r2 sin(θ)2)2

> combine( % );



6.1 Introductory Calculus • 223

3

4
r sin(3 θ)− 1

4
r sin(5 θ)

As the distance r from (x, y) to (0, 0) tends to zero, so does |fx(x, y)−
fx(0, 0)|.

> Limit( abs( % - fx(0,0) ), r=0 );

lim
r→0

∣

∣

∣

∣

3

4
r sin(3 θ)− 1

4
r sin(5 θ)

∣

∣

∣

∣

> value( % );

0

Hence, fx is continuous at (0, 0).
By symmetry, the same arguments apply to the derivative of f with

respect to its second parameter, y.

> fy := D[2](f);

fy := (x, y) → x (x2 − y2)

x2 + y2
− 2

x y2

x2 + y2
− 2

x y2 (x2 − y2)

(x2 + y2)2

> fy(0,0) := limit( ( f(0,k) - f(0,0) )/k, k=0 );

fy(0, 0) := 0

Here is a mixed second derivative of f .

> fxy := D[1,2](f);

fxy := (x, y) → x2 − y2

x2 + y2
+ 2

x2

x2 + y2
− 2

x2 (x2 − y2)

(x2 + y2)2

− 2
y2

x2 + y2
− 2

y2 (x2 − y2)

(x2 + y2)2
+ 8

x2 y2 (x2 − y2)

(x2 + y2)3

Again, the formula does not hold at (0, 0).

> fxy(0,0);

Error, (in fxy) numeric exception: division by zero



224 • Chapter 6: Examples from Calculus

The limit definition is

> Limit( ( fx(0,k) - fx(0,0) )/k, k=0 );

lim
k→0

− 1

> fxy(0,0) := value( % );

fxy(0, 0) := −1

The other mixed second derivative is

> fyx := D[2,1](f);

fyx := (x, y) → x2 − y2

x2 + y2
+ 2

x2

x2 + y2
− 2

x2 (x2 − y2)

(x2 + y2)2

− 2
y2

x2 + y2
− 2

y2 (x2 − y2)

(x2 + y2)2
+ 8

x2 y2 (x2 − y2)

(x2 + y2)3

At (0, 0), you need to use the limit definition.

> Limit( ( fy(h, 0) - fy(0,0) )/h, h=0 );

lim
h→0

1

> fyx(0,0) := value( % );

fyx(0, 0) := 1

Note that the two mixed partial derivatives are different at (0, 0).

> fxy(0,0) <> fyx(0,0);

−1 6= 1

> evalb( % );

true



6.2 Ordinary Differential Equations • 225

The mixed partial derivatives are equal only if they are continuous. If
you plot fxy, you can see that it is not continuous at (0, 0).

> plot3d( fxy, -3..3, -3..3 );

Maple can help you with many other problems from introductory
calculus. See ?student for more information.

6.2 Ordinary Differential Equations

Maple provides you with a varied set of tools for solving, manipulating,
and plotting ordinary differential equations and systems of differential
equations.

The dsolve Command
The most commonly used command for investigating the behavior of or-
dinary differential equations (ODEs) in Maple is dsolve. You can use this
general-purpose tool to obtain both closed form and numerical solutions
to a wide variety of ODEs. This is the basic syntax of dsolve.

dsolve(eqns, vars)

Here eqns is a set of differential equations and initial values, and vars is
a set of variables with respect to which dsolve solves.

Here is a differential equation and an initial condition.

> eq := diff(v(t),t)+2*t = 0;

eq := (
∂

∂t
v(t)) + 2 t = 0



226 • Chapter 6: Examples from Calculus

> ini := v(1) = 5;

ini := v(1) = 5

Use dsolve to obtain the solution.

> dsolve( {eq, ini}, {v(t)} );

v(t) = −t2 + 6

If you omit some or all of the initial conditions, then dsolve returns
a solution containing arbitrary constants of the form _Cnumber .

> eq := diff(y(x),x$2) - y(x) = 1;

eq := (
∂2

∂x2
y(x))− y(x) = 1

> dsolve( {eq}, {y(x)} );

{y(x) = ex_C2 + e(−x)_C1 − 1}

To specify initial conditions for the derivative of a function, use the
following notation.

D(fcn)(var_value) = value

(D@@n)(fcn)(var_value) = value

The D notation represents the derivative. The D@@n notation represents the
nth derivative. Here is a differential equation and some initial conditions
involving the derivative.

> de1 := diff(y(t),t$2) + 5*diff(y(t),t) + 6*y(t) = 0;

de1 := (
∂2

∂t2
y(t)) + 5 (

∂

∂t
y(t)) + 6 y(t) = 0

> ini := y(0)=0, D(y)(0)=1;

ini := y(0) = 0, D(y)(0) = 1

Again, use dsolve to find the solution.



6.2 Ordinary Differential Equations • 227

> dsolve( {de1, ini}, {y(t)} );

y(t) = −e(−3 t) + e(−2 t)

Additionally, dsolve may return a solution in parametric form,
[x=f(_T), y(x)=g(_T)], where _T is the parameter.

The explicit Option Maple may return the solution to a differential
equation in implicit form.

> de2 := diff(y(x),x$2) = (ln(y(x))+1)*diff(y(x),x);

de2 :=
∂2

∂x2
y(x) = (ln(y(x)) + 1) (

∂

∂x
y(x))

> dsolve( {de2}, {y(x)} );

{y(x) = _C1 },

{

∫ y(x) 1

_a ln(_a) + _C1
d_a − x−_C2 = 0

}

Use the explicit option to look for an explicit solution for the first
result.

> dsolve( {de2}, {y(x)}, explicit );

{y(x) = _C1 },
{

y(x) = RootOf

(∫ _Z 1

_f ln(_f ) + _C1
d_f − x−_C2

)}

However, in some cases, Maple may not be able to find an explicit
solution.

There is also an implicit option to force answers to be returned in
implicit form.

The method=laplace Option Applying Laplace transform methods to
differential equations often reduces the complexity of the problem. The
transform maps the differential equations into algebraic equations, which
are much easier to solve. The difficulty is in the transformation of the
equations to the new domain, and especially the transformation of the
solutions back.



228 • Chapter 6: Examples from Calculus

The Laplace transform method can handle linear ODEs of arbitrary
order, and some cases of linear ODEs with non-constant coefficients, pro-
vided that Maple can find the transforms. This method can also solve
systems of coupled equations.

Consider the following problem in classical dynamics. Two weights
with masses m and αm, respectively, rest on a frictionless plane joined by
a spring with spring constant k. What are the trajectories of each weight
if the first weight is subject to a unit step force u(t) at time t = 1? First,
set up the differential equations that govern the system. Newton’s Second
Law governs the motion of the first weight, and hence, the mass m times
the acceleration must equal the sum of the forces that you apply to the
first weight, including the external force u(t).

> eqn1 :=
> alpha*m*diff(x[1](t),t$2) = k*(x[2](t) - x[1](t)) + u(t);

eqn1 := αm (
∂2

∂t2
x1(t)) = k (x2(t)− x1(t)) + u(t)

Similarly for the second weight.

> eqn2 := m*diff(x[2](t),t$2) = k*(x[1](t) - x[2](t));

eqn2 := m (
∂2

∂t2
x2(t)) = k (x1(t)− x2(t))

Apply a unit step force to the first weight at t = 1.

> u := t -> Heaviside(t-1);

u := t → Heaviside(t− 1)

At time t = 0, both masses are at rest at their respective locations.

> ini := x[1](0) = 2, D(x[1])(0) = 0,
> x[2](0) = 0, D(x[2])(0) = 0 ;

ini := x1(0) = 2, D(x1)(0) = 0, x2(0) = 0, D(x2)(0) = 0

Solve the problem using Laplace transform methods.

> dsolve( {eqn1, eqn2, ini}, {x[1](t), x[2](t)},
> method=laplace );



6.2 Ordinary Differential Equations • 229

{

x1(t) =
1

2
(−2 t k α+ t2 k α+ αk − e

(

√
%1 (t− 1)

αm
)
m− 2 t k

+ 2m− e
(−

√
%1 (t− 1)

αm
)
m+ t2 k + k)Heaviside(t− 1)

/

(mk (1 + 2α+ α2)) +
e
(−

√
%1 t

αm
)
+ e

(

√
%1 t

αm
)
+ 2α

1 + α
,

x2(t) =
1

2
(t2 k α+ αk − 2 t k α+ α e

(−
√
%1 (t− 1)

αm
)
m

− 2αm+ α e
(

√
%1 (t− 1)

αm
)
m+ k − 2 t k + t2 k)

Heaviside(t− 1)
/

((1 + α)2mk)

− α (−2 + e
(−

√
%1 t

αm
)
+ e

(

√
%1 t

αm
)
)

1 + α

}

%1 := −αmk (1 + α)

Evaluate the result at values for the constants.

> ans := eval( %, {alpha=1/10, m=1, k=1} );

ans := {x1(t) =
50

121

(−11

5
t+

11

10
t2 +

31

10
− e(1/10%1) − e(−1/10%1))

Heaviside(t− 1) +
10

11
e(−1/10

√
−11

√
100 t)

+
10

11
e(1/10

√
−11

√
100 t) +

2

11
, x2(t) =

50

121

(
11

10
t2 +

9

10
− 11

5
t+

1

10
e(−1/10%1) +

1

10
e(1/10%1))

Heaviside(t− 1) +
2

11
− 1

11
e(−1/10

√
−11

√
100 t)

− 1

11
e(1/10

√
−11

√
100 t)}

%1 :=
√
−11

√
100 (t− 1)



230 • Chapter 6: Examples from Calculus

You can turn the above solution into two functions, say y1(t) and
y2(t), as follows. First evaluate the expression x[1](t) at the solution to
select the x1(t) expression.

> eval( x[1](t), ans );

50

121
(−11

5
t+

11

10
t2 +

31

10
− e(1/10

√
−11

√
100 (t− 1))

− e(−1/10
√
−11

√
100 (t− 1)))Heaviside(t− 1)

+
10

11
e(−1/10

√
−11

√
100 t) +

10

11
e(1/10

√
−11

√
100 t) +

2

11

Then convert the expression to a function by using unapply.

> y[1] := unapply( %, t );

y1 := t → 50

121
(−11

5
t+

11

10
t2 +

31

10
− e(1/10

√
−11

√
100 (t− 1))

− e(−1/10
√
−11

√
100 (t− 1)))Heaviside(t− 1)

+
10

11
e(−1/10

√
−11

√
100 t) +

10

11
e(1/10

√
−11

√
100 t) +

2

11

You can also do the two steps at once.

> y[2] := unapply( eval( x[2](t), ans ), t );

y2 := t → 50

121
(
11

10
t2 +

9

10
− 11

5
t

+
1

10
e(−1/10

√
−11

√
100 (t− 1)) +

1

10
e(1/10

√
−11

√
100 (t− 1)))

Heaviside(t− 1) +
2

11
− 1

11
e(−1/10

√
−11

√
100 t)

− 1

11
e(1/10

√
−11

√
100 t)

Now you can plot the two functions.

> plot( [ y[1](t), y[2](t) ], t=-3..6 );



6.2 Ordinary Differential Equations • 231

2

4

6

8

10

12

14

–2 2 4 6
t

Instead of using dsolve(..., method=laplace), you can use the
Laplace transform method by hand. The inttrans package defines the
Laplace transform and its inverse (and many other integral transforms).

> with(inttrans);

[addtable , fourier , fouriercos , fouriersin, hankel , hilbert ,

invfourier , invhilbert , invlaplace , invmellin, laplace ,

mellin, savetable ]

The Laplace transforms of the two differential equations eqn1 and
eqn2 are

> laplace( eqn1, t, s );

αm (s (s laplace(x1(t), t, s)− x1(0))−D(x1)(0)) =

k (laplace(x2(t), t, s)− laplace(x1(t), t, s)) +
e(−s)

s

and

> laplace( eqn2, t, s );

m (s (s laplace(x2(t), t, s)− x2(0))−D(x2)(0)) =

k (laplace(x1(t), t, s)− laplace(x2(t), t, s))

Evaluate the set consisting of the two transforms at the initial condi-
tions.

> eval( {%, %%}, {ini} );



232 • Chapter 6: Examples from Calculus

{αms (s laplace(x1(t), t, s)− 2) =

k (laplace(x2(t), t, s)− laplace(x1(t), t, s)) +
e(−s)

s
,

m s2 laplace(x2(t), t, s) =

k (laplace(x1(t), t, s)− laplace(x2(t), t, s))}
You must solve this set of algebraic equations for the Laplace trans-

forms of the two functions x1(t) and x2(t).

> sol := solve( %, { laplace(x[1](t),t,s),
> laplace(x[2](t),t,s) } );

sol := {laplace(x2(t), t, s) =
k (2αms2 es + 1)

es s3m (k + αms2 + αk)
,

laplace(x1(t), t, s) =
(ms2 + k) (2αms2 es + 1)

es s3m (k + αms2 + αk)
}

Maple has solved the algebraic problem. You must take the inverse
Laplace transform to get the functions x1(t) and x2(t) .

> invlaplace( %, s, t );



6.2 Ordinary Differential Equations • 233

{

x2(t) = k

(

1

2
(t2 k α+ αk − 2 t k α+ α e

(−
√
%1 (t− 1)

αm
)
m

− 2αm+ α e
(

√
%1 (t− 1)

αm
)
m+ k − 2 t k + t2 k)

Heaviside(t− 1)
/

((1 + α)2 k2)

− αm (−2 + e
(−

√
%1 t

αm
)
+ e

(

√
%1 t

αm
)
)

k (1 + α)

)

/m, x1(t) =

(

1

2
(−2 t k α

+ t2 k α+ αk − e
(

√
%1 (t− 1)

αm
)
m− 2 t k + 2m

− e
(−

√
%1 (t− 1)

αm
)
m+ t2 k + k)Heaviside(t− 1)

/

(k

(1 + 2α+ α2)) +
m (e

(−
√
%1 t

αm
)
+ e

(

√
%1 t

αm
)
+ 2α)

1 + α

)

/m

}

%1 := −αmk (1 + α)

Evaluate at values for the constants.

> eval( %, {alpha=1/10, m=1, k=1} );

{x1(t) =
50

121
(−11

5
t+

11

10
t2 +

31

10
− e(1/10%1) − e(−1/10%1))

Heaviside(t− 1) +
10

11
e(−1/10

√
−11

√
100 t)

+
10

11
e(1/10

√
−11

√
100 t) +

2

11
, x2(t) =

50

121

(
11

10
t2 +

9

10
− 11

5
t+

1

10
e(−1/10%1) +

1

10
e(1/10%1))

Heaviside(t− 1) +
2

11
− 1

11
e(−1/10

√
−11

√
100 t)

− 1

11
e(1/10

√
−11

√
100 t)}

%1 :=
√
−11

√
100 (t− 1)

As expected, you get the same solution as before.



234 • Chapter 6: Examples from Calculus

The type=series Option The series method for solving differential
equations finds an approximate symbolic solution to the equations in
the following manner. Maple finds a series approximation to the equa-
tions. It then solves the series approximation symbolically, using exact
methods. This technique is useful when Maple’s standard algorithms fail,
but you still want a symbolic solution rather than a purely numeric so-
lution. The series method can often help with non-linear and high-order
ODEs.

When using the series method, Maple assumes that a solution of the
form

xc

( ∞
∑

i=0

aix
i

)

exists, where c is a rational number.
Consider the following differential equation.

> eq := 2*x*diff(y(x),x,x) + diff(y(x),x) + y(x) = 0;

eq := 2x (
∂2

∂x2
y(x)) + (

∂

∂x
y(x)) + y(x) = 0

Ask Maple to solve the equation.

> dsolve( {eq}, {y(x)}, type=series );

y(x) = _C1
√
x(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4−

1

1247400
x5 +O(x6)) + _C2

(1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5 +O(x6))

Use rhs to select the solution, then convert it to a polynomial.

> rhs(%);

_C1
√
x(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400

x5 +O(x6)) + _C2

(1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5 +O(x6))



6.2 Ordinary Differential Equations • 235

> poly := convert(%, polynom);

poly := _C1
√
x

(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400
x5)

+ _C2 (1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5)

Now you can plot the solution for different values of the arbitrary
constants _C1 and _C2.

> [ seq( _C1=i, i=0..5 ) ];

[_C1 = 0, _C1 = 1, _C1 = 2, _C1 = 3, _C1 = 4, _C1 = 5]

> map(subs, %, _C2=1, poly);

[1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

2%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

3%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

4%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

5%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5]

%1 :=
√
x (1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400
x5)

> plot( %, x=1..10 );



236 • Chapter 6: Examples from Calculus

–4

–3

–2

–1
0

1

2

3

2 4 6 8 10x

The type=numeric Option Although the series methods for solving
ODEs are well understood and adequate for finding accurate approxi-
mations of the dependent variable, they do exhibit some limitations. To
obtain a result, the resultant series must converge. Moreover, in the pro-
cess of finding the solution, Maple must calculate many derivatives, which
can be expensive in terms of time and memory. For these and other rea-
sons, alternative numerical solvers have been developed.

Here is a differential equation and an initial condition.

> eq := x(t) * diff(x(t), t) = t^2;

eq := x(t) (
∂

∂t
x(t)) = t2

> ini := x(1) = 2;

ini := x(1) = 2

The output from the dsolve command with the numeric option is a
procedure that returns a list of equations.

> sol := dsolve( {eq, ini}, {x(t)}, type=numeric );

sol := proc(rkf45_x) . . . end proc

The solution satisfies the initial condition.

> sol(1);

[t = 1., x(t) = 2.]



6.2 Ordinary Differential Equations • 237

> sol(0);

[t = 0., x(t) = 1.82573355688213534]

Use the eval command to select a particular value from the list of
equations.

> eval( x(t), sol(1) );

2.

You can also create an ordered pair.

> eval( [t, x(t)], sol(0) );

[0., 1.82573355688213534]

The plots package contains a command, odeplot, for plotting the
result of dsolve( ..., type=numeric).

> with(plots):

> odeplot( sol, [t, x(t)], -1..2 );

1.8

2

2.2

2.4

2.6

2.8

x

–1 –0.5 0 0.5 1 1.5 2
t

See ?plots,odeplot for the syntax of odeplot.
Here is a system of two ODEs.

> eq1 := diff(x(t),t) = y(t);



238 • Chapter 6: Examples from Calculus

eq1 :=
∂

∂t
x(t) = y(t)

> eq2 := diff(y(t),t) = x(t)+y(t);

eq2 :=
∂

∂t
y(t) = x(t) + y(t)

> ini := x(0)=2, y(0)=1;

ini := x(0) = 2, y(0) = 1

In this case, the solution-procedure yields a list of three equations.

> sol1 := dsolve( {eq1, eq2, ini}, {x(t),y(t)},
> type=numeric );

sol1 := proc(rkf45_x) . . . end proc

> sol1(0);

[t = 0., x(t) = 2., y(t) = 1.]

> sol1(1);

[t = 1., x(t) = 5.58118995848040277,

y(t) = 7.82530917991747188]

The odeplot command can now plot y(t) against x(t),

> odeplot( sol1, [x(t), y(t)], -3..1, labels=["x","y"] );

–4

–2

0

2

4

6

8

y

2 3 4 5 6
x



6.2 Ordinary Differential Equations • 239

x(t) and y(t) against t,

> odeplot( sol1, [t, x(t), y(t)], -3..1,
> labels=["t","x","y"], axes=boxed );

–3

1
t

2

6
x

–4

8

y

or any other combination.
Always use caution when using numeric methods because errors can

accumulate in floating-point calculations. Universal rules for preventing
this effect do not exist, so no software package can anticipate all condi-
tions. The solution is to use the startinit option to make dsolve (or
rather the procedure which dsolve returns) begin at the initial value for
every calculation at a point (x, y(x)).

You can specify which algorithm dsolve(..., type=numeric) uses
when solving your differential equation. See ?dsolve,numeric.

Example: Taylor Series
In its general form, a series method solution to an ODE requires the
forming of a Taylor series about t = 0 for some function f(t). Thus, you
must be able to obtain and manipulate the higher order derivatives of
your function, f ′(t), f ′′(t), f ′′′(t), and so on.

Once you have obtained the derivatives, you substitute them into the
Taylor series representation of f(t).

> taylor(f(t), t);

f(0) + D(f)(0) t+
1

2
(D(2))(f)(0) t2 +

1

6
(D(3))(f)(0) t3+

1

24
(D(4))(f)(0) t4 +

1

120
(D(5))(f)(0) t5 +O(t6)

As an example, consider Newton’s Law of Cooling:

dθ

dt
= − 1

10
(θ − 20), θ(0) = 100.



240 • Chapter 6: Examples from Calculus

Using the D operator, you can easily enter the above equation into
Maple.

> eq := D(theta) = -1/10*(theta-20);

eq := D(θ) = − 1

10
θ + 2

> ini := theta(0)=100;

ini := θ(0) = 100

The first step is to obtain the required number of higher derivatives.
Determine this number from the order of your Taylor series. If you use
the default value of Order that Maple provides,

> Order;

6

then you must generate derivatives up to order

> dev_order := Order - 1;

dev_order := 5

You can now use seq to generate a sequence of the higher order deriva-
tives of theta(t).

> S := seq( (D@@(dev_order-n))(eq), n=1..dev_order );

S := (D(5))(θ) = − 1

10
(D(4))(θ), (D(4))(θ) = − 1

10
(D(3))(θ),

(D(3))(θ) = − 1

10
(D(2))(θ), (D(2))(θ) = − 1

10
D(θ),

D(θ) = − 1

10
θ + 2

The fifth derivative is a function of the fourth derivative, the fourth
a function of the third and so on. Therefore, if you make substitutions
according to S, you can express all the derivatives as functions of theta.
For example, the third element of S is the following.



6.2 Ordinary Differential Equations • 241

> S[3];

(D(3))(θ) = − 1

10
(D(2))(θ)

Substituting according to S on the right-hand side, yields

> lhs(%) = subs( S, rhs(%) );

(D(3))(θ) = − 1

1000
θ +

1

50

To make this substitution on all the derivatives at once, use the map

command.

> L := map( z -> lhs(z) = eval(rhs(z), {S}), [S] );

L := [(D(5))(θ) =
1

100
(D(3))(θ), (D(4))(θ) =

1

100
(D(2))(θ),

(D(3))(θ) =
1

100
D(θ), (D(2))(θ) =

1

100
θ − 1

5
,

D(θ) = − 1

10
θ + 2]

You must evaluate the derivatives at t = 0.

> L(0);

[(D(5))(θ)(0) =
1

100
(D(3))(θ)(0),

(D(4))(θ)(0) =
1

100
(D(2))(θ)(0),

(D(3))(θ)(0) =
1

100
D(θ)(0), (D(2))(θ)(0) =

1

100
θ(0)− 1

5
,

D(θ)(0) = − 1

10
θ(0) + 2]

Now generate the Taylor series.

> T := taylor(theta(t), t);



242 • Chapter 6: Examples from Calculus

T := θ(0) + D(θ)(0) t+
1

2
(D(2))(θ)(0) t2 +

1

6
(D(3))(θ)(0)

t3 +
1

24
(D(4))(θ)(0) t4 +

1

120
(D(5))(θ)(0) t5 +O(t6)

Substitute the derivatives into the series.

> subs( op(L(0)), T );

θ(0) + (− 1

10
θ(0) + 2) t+ (

1

200
θ(0)− 1

10
) t2+

(− 1

6000
θ(0) +

1

300
) t3 + (

1

240000
θ(0)− 1

12000
) t4+

(− 1

12000000
θ(0) +

1

600000
) t5 +O(t6)

Now, evaluate the series at the initial condition and convert it to a
polynomial.

> eval( %, ini );

100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5 +O(t6)

> p := convert(%, polynom);

p := 100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5

You can now plot the response.

> plot(p, t=0..30);

–20

0

20

40

60

80

100

5 10 15 20 25 30
t

This particular example has the following analytic solution.



6.2 Ordinary Differential Equations • 243

> dsolve( {eq(t), ini}, {theta(t)} );

θ(t) = 20 + 80 e(−1/10 t)

> q := rhs(%);

q := 20 + 80 e(−1/10 t)

Thus, you can compare the series solution with the actual solution.

> plot( [p, q], t=0..30 );

–20

0

20

40

60

80

100

5 10 15 20 25 30
t

Instead of finding the Taylor series by hand, you can use the series

option of the dsolve command.

> dsolve( {eq(t), ini}, {theta(t)}, ’series’ );

θ(t) =

100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5 +O(t6)

When You Cannot Find a Closed Form Solution
In some instances, you cannot express the solution to a linear ODE in
closed form. In such cases, dsolve may return solutions containing the
data structure DESol. DESol is a place holder representing the solution
of a differential equation without explicitly computing it. Thus, DESol
is similar to RootOf, which represents the roots of an expression. This
allows you to manipulate the resulting expression symbolically prior to
attempting another approach.

> de := (x^7+x^3-3)*diff(y(x),x,x) + x^4*diff(y(x),x)
> + (23*x-17)*y(x);



244 • Chapter 6: Examples from Calculus

de :=

(x7 + x3 − 3) (
∂2

∂x2
y(x)) + x4 (

∂

∂x
y(x)) + (23x− 17) y(x)

The dsolve command cannot find a closed form solution to de.

> dsolve( de, y(x) );

y(x) = DESol({(23x− 17)_Y(x) + x4 (
∂

∂x
_Y(x))

+ (x7 + x3 − 3) (
∂2

∂x2
_Y(x))}, {_Y(x)})

You can now try another method on the DESol itself. For example,
find a series approximation.

> series(rhs(%), x);

_Y(0) + D(_Y )(0)x− 17

6
_Y(0)x2+

(−17

18
D(_Y )(0) +

23

18
_Y(0))x3+

(
289

216
_Y(0) +

23

36
D(_Y )(0))x4+

(
289

1080
D(_Y )(0)− 833

540
_Y(0))x5 +O(x6)

The diff and int commands can also operate on DESol.

Plotting Ordinary Differential Equations
You cannot solve many differential equations analytically. In such cases,
plotting the differential equation is advantageous.

> ode1 :=
> diff(y(t), t$2) + sin(t)^2*diff(y(t),t) + y(t) = cos(t)^2;

ode1 := (
∂2

∂t2
y(t)) + sin(t)2 (

∂

∂t
y(t)) + y(t) = cos(t)2

> ic1 := y(0) = 1, D(y)(0) = 0;

ic1 := y(0) = 1, D(y)(0) = 0



6.2 Ordinary Differential Equations • 245

First, attempt to solve this ODE analytically using dsolve.

> dsolve({ode1, ic1}, {y(t)} );

The dsolve command returned nothing, indicating that it could not
find a solution. Try Laplace methods.

> dsolve( {ode1, ic1}, {y(t)}, method=laplace );

Again, dsolve did not find a solution. Since dsolve was not successful,
try the DEplot command found in the DEtools package.

> with(DEtools):

DEplot is a general ODE plotter which you can use with the following
syntax.

DEplot( ode, dep-var, range, [ini-conds] )

Here ode is the differential equation you want to plot, dep-var is the
dependent variable, range is the range of the independent variable, and
ini-conds is a list of initial conditions.

Here is a plot of the function satisfying both the differential equation
ode1 and the initial conditions ic1 above.

> DEplot( ode1, y(t), 0..20, [ [ ic1 ] ] );

0.2

0.4

0.6

0.8

1

y(t)

0 5 10 15 20
t

You can refine the plot by specifying a smaller stepsize.

> DEplot( ode1, y(t), 0..20, [ [ ic1 ] ], stepsize=0.2 );



246 • Chapter 6: Examples from Calculus

0.2

0.4

0.6

0.8

1

y(t)

0 5 10 15 20
t

If you specify more than one list of initial conditions, DEplot plots a
solution for each.

> ic2 := y(0)=0, D(y)(0)=1;

ic2 := y(0) = 0, D(y)(0) = 1

> DEplot( ode1, y(t), 0..20, [ [ic1], [ic2] ], stepsize=0.2 );

0.2

0.4

0.6

0.8

1

1.2

1.4

y(t)

5 10 15 20
t

DEplot can also plot solutions to a set of differential equations.

> eq1 := diff(y(t),t) + y(t) + x(t) = 0;

eq1 := (
∂

∂t
y(t)) + y(t) + x(t) = 0

> eq2 := y(t) = diff(x(t), t);

eq2 := y(t) =
∂

∂t
x(t)



6.2 Ordinary Differential Equations • 247

> ini1 := x(0)=0, y(0)=5;

ini1 := x(0) = 0, y(0) = 5

> ini2 := x(0)=0, y(0)=-5;

ini2 := x(0) = 0, y(0) = −5

The system {eq1, eq2} has two dependent variables, x(t) and y(t),
so you must include a list of dependent variables.

> DEplot( {eq1, eq2}, [x(t), y(t)], -5..5,
> [ [ini1], [ini2] ] );

–60

–40

–20

0

20

40

60

y

–60 –40 –20 20 40 60
x

Note that DEplot also generates a direction field, as above, whenever
it is meaningful to do so. See ?DEtools,DEplot for more details on how
to plot ODEs.

DEplot3d is the three-dimensional version of DEplot. The basic syntax
of DEplot3d is similar to that of DEplot. See ?DEtools,DEplot3d for
details. Here is a three-dimensional plot of the system plotted in two
dimensions above.

> DEplot3d( {eq1, eq2}, [x(t), y(t)], -5..5,
> [ [ini1], [ini2] ] );



248 • Chapter 6: Examples from Calculus

–4
–2

0
2

4
t

–60
–40

–20
0

20
40

60
x(t)

–40
–20

0
20
40

y(t)

Here is an example of a plot of a system of three differential equations.

> eq1 := diff(x(t),t) = y(t)+z(t);

eq1 :=
∂

∂t
x(t) = y(t) + z(t)

> eq2 := diff(y(t),t) = -x(t)-y(t);

eq2 :=
∂

∂t
y(t) = −y(t)− x(t)

> eq3 := diff(z(t),t) = x(t)+y(t)-z(t);

eq3 :=
∂

∂t
z(t) = x(t) + y(t)− z(t)

These are two lists of initial conditions.

> ini1 := [x(0)=1, y(0)=0, z(0)=2];

ini1 := [x(0) = 1, y(0) = 0, z(0) = 2]

> ini2 := [x(0)=0, y(0)=2, z(0)=-1];

ini2 := [x(0) = 0, y(0) = 2, z(0) = −1]

The DEplot3d command plots two solutions to the system of differ-
ential equations {eq1, eq2, eq3}, one solution for each list of initial
values.



6.2 Ordinary Differential Equations • 249

> DEplot3d( {eq1, eq2, eq3}, [x(t), y(t), z(t)], t=0..10,
> [ini1, ini2], stepsize=0.1, orientation=[-171, 58] );

–1

2

x

–1
2

y
–1

2

z

Discontinuous Forcing Functions
In many practical instances the forcing function to a system is discon-
tinuous. Maple provides a number of ways in which you can describe a
system in terms of ODEs and include, in a meaningful way, descriptions
of discontinuous forcing functions.

The Heaviside Step Function Using the Heaviside function allows you
to model delayed and piecewise-defined forcing functions. You can use
Heaviside with dsolve to find both symbolic and numeric solutions.

> eq := diff(y(t),t) = -y(t)*Heaviside(t-1);

eq :=
∂

∂t
y(t) = −y(t)Heaviside(t− 1)

> ini := y(0) = 3;

ini := y(0) = 3

> dsolve({eq, ini}, {y(t)});

y(t) = 3 e((−t+1)Heaviside(t−1))

Convert the solution to a function that can be plotted.

> rhs( % );

3 e((−t+1)Heaviside(t−1))



250 • Chapter 6: Examples from Calculus

> f := unapply(%, t);

f := t → 3 e((−t+1)Heaviside(t−1))

> plot(f, 0..4);

0.5

1

1.5

2

2.5

3

0 1 2 3 4

Solve the same equation numerically.

> sol1 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol1 := proc(rkf45_x) . . . end proc

You can use the odeplot command from the plots package to plot
the solution.

> with(plots):

> odeplot( sol1, [t, y(t)], 0..4 );

0.5

1

1.5

2

2.5

3

y

0 1 2 3 4
t



6.2 Ordinary Differential Equations • 251

The Dirac Delta Function You can use the Dirac delta function in
a manner similar to the Heaviside function above to produce impulsive
forcing functions.

> eq := diff(y(t),t) = -y(t)*Dirac(t-1);

eq :=
∂

∂t
y(t) = −y(t)Dirac(t− 1)

> ini := y(0) = 3;

ini := y(0) = 3

> dsolve({eq, ini}, {y(t)});

y(t) = 3 e(−Heaviside(t−1))

Convert the solution to a function that can be plotted.

> f := unapply( rhs( % ), t );

f := t → 3 e(−Heaviside(t−1))

> plot( f, 0..4 );

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0 1 2 3 4

However, the numeric solution does not see the non-zero value of
Dirac(0).

> sol2 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol2 := proc(rkf45_x) . . . end proc



252 • Chapter 6: Examples from Calculus

Again, use odeplot from plots to plot the numeric solution.

> with(plots, odeplot);

[odeplot ]

> odeplot( sol2, [t,y(t)], 0..4 );

2.999999996

2.999999997

2.999999998

2.999999999

3

3.000000001

3.000000002

3.000000003

y

0 1 2 3 4
t

Piecewise Functions The piecewise command allows you to construct
complicated forcing functions by approximating sections of it with ana-
lytic functions, and then taking the approximations together to represent
the whole function. First, look at the behavior of piecewise.

> f:= x -> piecewise(1<=x and x<2, 1, 0);

f := x → piecewise(1 ≤ x and x < 2, 1, 0)

> f(x);

{

1, if , 1− x ≤ 0 and x− 2 < 0;
0, otherwise.

Note that the order of the conditionals is important. The first conditional
that returns true causes the function to return a value.

> plot(f, 0..3);



6.2 Ordinary Differential Equations • 253

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Thus, you can use this piecewise function as a forcing function.

> eq := diff(y(t),t) = 1-y(t)*f(t);

eq :=
∂

∂t
y(t) = 1− y(t)

({

1, if 1− t ≤ 0 and t− 2 < 0;
0, otherwise.

)

> ini := y(0)=3;

ini := y(0) = 3

> sol3 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol3 := proc(rkf45_x) . . . end proc

Again, use the odeplot command in the plots package to plot the
result.

> with(plots, odeplot):
> odeplot( sol3, [t, y(t)], 0..4 );

2.5

3

3.5

4

y

0 1 2 3 4
t



254 • Chapter 6: Examples from Calculus

The DEtools package contains commands that can help you investi-
gate, manipulate, plot, and solve differential equations. See ?DEtools for
details.

6.3 Partial Differential Equations

Partial differential equations (PDEs) are in general very difficult to solve.
Maple provides a number of commands for solving, manipulating, and
plotting PDEs. Some of these commands are in the standard library, but
most of them reside in the PDEtools package.

The pdsolve Command
The pdsolve command can solve many partial differential equations. This
is the basic syntax of the pdsolve command.

pdsolve( pde, var )

Here pde is the partial differential equation and var is the variable for
which you want Maple to solve.

The following is the one-dimensional wave equation.

> wave := diff(u(x,t), t,t) - c^2 * diff(u(x,t), x,x);

wave := (
∂2

∂t2
u(x, t))− c2 (

∂2

∂x2
u(x, t))

You want to solve for u(x,t). First load the PDEtools package.

> with(PDEtools):
> sol := pdsolve( wave, u(x,t) );

sol := u(x, t) = _F1(c t+ x) + _F2(c t− x)

Note the solution is in terms of two arbitrary functions, _F1 and _F2.
To plot the solution you need a particular set of functions.

> f1 := xi -> exp(-xi^2);

f1 := ξ → e(−ξ2)



6.3 Partial Differential Equations • 255

> f2 := xi -> piecewise(-1/2<xi and xi<1/2, 1, 0);

f2 := ξ → piecewise(
−1

2
< ξ and ξ <

1

2
, 1, 0)

Substitute these functions into the solution.

> eval( sol, {_F1=f1, _F2=f2, c=1} );

u(x, t) = e(−(t+x)2) +

({

1 −t+ x <
1

2
and t− x <

1

2
0 otherwise

)

You can use the rhs command to select the solution.

> rhs(%);

e(−(t+x)2) +

({

1 −t+ x <
1

2
and t− x <

1

2
0 otherwise

)

The unapply command converts the expression to a function.

> f := unapply(%, x,t);

f := (x, t) →

e(−(t+x)2) + piecewise(−t+ x <
1

2
and t− x <

1

2
, 1, 0)

Now you can plot the solution.

> plot3d( f, -8..8, 0..5, grid=[40,40] );



256 • Chapter 6: Examples from Calculus

Changing the Dependent Variable in a PDE
Below is the one-dimensional heat equation.

> heat := diff(u(x,t),t) - k*diff(u(x,t), x,x) = 0;

heat := (
∂

∂t
u(x, t))− k (

∂2

∂x2
u(x, t)) = 0

Try to find a solution of the form X(x)T (t) to this equation. Use the
aptly named HINT option of pdsolve to suggest a course of action.

> pdsolve( heat, u(x,t), HINT=X(x)*T(t));

(u(x, t) = X(x) T(t))&where

[{ ∂2

∂x2
X(x) = _c1X(x),

∂

∂t
T(t) = k_c1T(t)}]

The result here is correct, but difficult to read.
Alternatively, you can tell pdsolve to use separation of variables (as

a product, ‘*‘) and then solve the resulting ODEs (using the ’build’

option).

> sol := pdsolve(heat, u(x,t), HINT=‘*‘, ’build’);

sol := u(x, t) = e(
√_c1 x)_C3 e(k_c1 t)_C1 +

_C3 e(k_c1 t)_C2

e(
√_c1 x)

Evaluate the solution at specific values for the constants.

> S := eval( rhs(sol), {_C3=1, _C1=1, _C2=1, k=1, _c[1]=1} );

S := ex et +
et

ex

You can plot the solution.

> plot3d( S, x=-5..5, t=0..5 );



6.3 Partial Differential Equations • 257

Checking the solution by evaluation with the original equation is a
good idea.

> eval( heat, u(x,t)=rhs(sol) );

%1_C3 k_c1 e
(k_c1 t)_C1 +

_C3 k_c1 e
(k_c1 t)_C2

%1

− k (_c1%1_C3 e(k_c1 t)_C1 +
_C3 e(k_c1 t)_C2 _c1

%1
) = 0

%1 := e(
√_c1 x)

> simplify(%);

0 = 0

Plotting Partial Differential Equations
The solutions to many PDEs can be plotted with the PDEplot command
found in the PDEtools package.

> with(PDEtools):

You can use the PDEplot command with the following syntax.

PDEplot( pde, var, ini, s=range )

Here pde is the PDE, var is the dependent variable, ini is a parametric
curve in three-dimensional space with parameter s, and range is the range
of s.

Consider this partial differential equation.

> pde := diff(u(x,y), x) + cos(2*x) * diff(u(x,y), y) = -sin(y);



258 • Chapter 6: Examples from Calculus

pde := (
∂

∂x
u(x, y)) + cos(2x) (

∂

∂y
u(x, y)) = −sin(y)

Use the curve given by z = 1 + y2 as an initial condition, that is,
x = 0, y = s, and z = 1 + s2.

> ini := [0, s, 1+s^2];

ini := [0, s, 1 + s2]

PDEplot draws the initial-condition curve and the solution surface.

> PDEplot( pde, u(x,y), ini, s=-2..2 );

–2

2
x

–2

2
y

1

7

u(x,y)

To draw the surface, Maple calculates these base characteristic curves.
The initial-condition curve is easier to see here than in the above plot.

> PDEplot( pde, u(x,y), ini, s=-2..2, basechar=only );

–2

2
x

–2

2
y

1

5

u(x,y)

The basechar=true option tells PDEplot to draw both the character-
istic curves and the surface, as well as the initial-condition curve which is
always present.



6.4 Conclusion • 259

> PDEplot( pde, u(x,y), ini, s=-2..2, basechar=true );

–2

2
x

–2

2
y

1

7

u(x,y)

Many plot3d options are also available. See ?plot3d,options. The
initcolor option sets the color of the initial value curve.

> PDEplot( pde, u(x,y), ini, s=-2..2,
> basechar=true, initcolor=white,
> style=patchcontour, contours=20,
> orientation=[-43,45] );

–2

2
x

–2

2

y

1

7

u(x,y)

6.4 Conclusion

This chapter has demonstrated how Maple can be used to aid in the inves-
tigation and solution of problems using calculus. You have seen how Maple
can visually represent concepts, such as the derivative and the Riemann
integral; help analyze the error term in a Taylor approximation; and ma-
nipulate and solve ordinary and partial differential equations, numerically
as well as symbolically.



260 • Chapter 6: Examples from Calculus



7 Input and Output

You can do much of your work directly within Maple’s worksheets. You
can perform calculations, plot functions, and document the results. How-
ever, at some point you may need to import data or export results to a file
to interact with another person or piece of software. The data could be
measurements from scientific experiments or numbers generated by other
programs. Once you import the data into Maple, you can use Maple’s
plotting capabilities to visualize the results, and its algebraic capabilities
to construct or investigate an associated mathematical model.

Maple provides a number of convenient ways to both import and ex-
port raw numerical data and graphics. It presents individual algebraic
and numeric results in formats suitable for use in FORTRAN, C, or the
mathematical typesetting system LATEX. You can even export the entire
worksheet as a text file (for inclusion in electronic mail) or as a LATEX doc-
ument. You can cut and paste results, and export either single expressions
or entire worksheets.

This chapter discusses the most common aspects of exporting and
importing information to and from files. It introduces how Maple inter-
acts with the file system on your computer, and how Maple can begin
interacting with other software.

7.1 Reading Files

The two most common reasons to read files are to obtain data and to
retrieve Maple commands stored in a text file.

The first case is often concerned with data generated from an experi-
ment. You can store numbers separated by white space and line breaks in a

261



262 • Chapter 7: Input and Output

text file, then read them into Maple for study. You can most easily accom-
plish these operations by using Maple’s ExportMatrix and ImportMatrix

commands, respectively.
The second case concerns reading commands from a text file. Perhaps

you have received a worksheet in text format, or written a Maple proce-
dure by using your favorite text editor and stored it in a text file. You can
cut and paste commands into Maple or you can use the read command.
Section 7.1 discusses the latter option.

Reading Columns of Numbers from a File
Maple is very good at manipulating data. If you generate data outside
Maple, you must read it into Maple before you can manipulate it. Often
such external data is in the form of columns of numbers in a text file. The
file data.txt below is an example.

0 1 0

1 .540302 .841470

2 -.416146 .909297

3 -.989992 .141120

4 -.653643 -.756802

5 .283662 -.958924

6 .960170 -.279415

The ImportMatrix command reads columns of numbers. Use ImportMatrix
as follows.

ImportMatrix( "filename", delimiter=string )

Here, filename is the name of the file that you want ImportMatrix to
read, and string is the character that separates the entries in the file. The
default value of string is a tab, represented by using "Á". In data.txt, the
entries are separated by spaces, so the value of string is " ".

> L := ImportMatrix( "data.txt", delimiter=" " );

L :=





















0 1 0
1 .540302 .841470
2 −.416146 .909297
3 −.989992 .141120
4 −.653643 −.756802
5 .283662 −.958924
6 .960170 −.279415























7.1 Reading Files • 263

Now, for example, you can plot the third column against the first.
Use the convert command to select the first and the third entries in each
column.

> convert( L[[1..-1],[1,3]], listlist );

[[0, 0], [1, .841470], [2, .909297], [3, .141120],

[4, −.756802], [5, −.958924], [6, −.279415]]

The plot command can plot lists directly.

> plot(%);

–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6
0.8

1 2 3 4 5 6

To select the second column of numbers, you can use the fact that
L[5,2] is the second number in the fifth sublist,

> L[5,2];

−.653643

So, you need the following data.

> L[ 1..-1, 2 ];





















1
.540302
−.416146
−.989992
−.653643
.283662
.960170





















Convert this data to a list, and then find the mean.



264 • Chapter 7: Input and Output

> convert(L[1..-1,2],list);

[1, .540302, −.416146, −.989992, −.653643, .283662,

.960170]

> stats[describe,mean](%) ;

.1034790000

You can also perform calculations on your matrix L using the
LinearAlgebra package.

> LinearAlgebra[Transpose](L) . L;

[91. , 1.30279200000000017 , −6.41489400000000032]

[1.30279200000000017 , 3.87482763517700012 ,

−.109077927014000096]

[−6.41489400000000032 , −.109077927014000096 ,

3.12516489671399978]

For more information regarding options for use with ImportMatrix,
see the help page ?ImportMatrix .

Reading Commands from a File
Some Maple users find it convenient to write Maple programs in a text
file with their favorite text editor, and then import the file into Maple.
You can paste the commands from the text file into your worksheet or
you can use the read command.

When you read a file with the read command, Maple treats each line
in the file as a command. Maple executes the commands and displays the
results in your worksheet but it does not, by default, place the commands
from the file in your worksheet. Use the read command with the following
syntax.

read "filename";

Here is the file ks.tst of Maple commands.

S := n -> sum( binomial(n, beta)

* ( (2*beta)!/2^beta - beta!*beta ), beta=1..n );

S( 19 );



7.2 Writing Data to a File • 265

When you read the file, Maple displays the results but not the commands.

> read "ks.tst";

S := n →
n
∑

β = 1

binomial(n, β) (
(2β)!

2β
− β!β)

1024937361666644598071114328769317982974

If you set the interface variable echo to 2, Maple inserts the com-
mands from the file into your worksheet.

> interface( echo=2 );
> read "ks.tst";

> S := n -> sum( binomial(n, beta)
> * ( (2*beta)!/2^beta - beta!*beta ), beta=1..n );

S := n →
n
∑

β = 1

binomial(n, β) (
(2β)!

2β
− β!β)

> S( 19 );

1024937361666644598071114328769317982974

The read command can also read files in Maple’s internal format. See
section 7.2.

7.2 Writing Data to a File

After using Maple to perform a calculation, you may want to save the
result in a file. You can then process the result later, either with Maple
or with another program.

Writing Columns of Numerical Data to a File
If the result of a Maple calculation is a long list or a large array of num-
bers, you can convert it to a Matrix and write the numbers to a file in a
structured manner. The ExportMatrix command writes columns of nu-
merical data to a file, allowing you to import the numbers into another



266 • Chapter 7: Input and Output

program. You can use the ExportMatrix command with the following
syntax.

ExportMatrix( "filename", data )

Here, filename is the string containing the name of the file to which
ExportMatrix writes the data, and data is a Matrix. Note that any list,
vector, list of lists, or table-based matrix can be converted to a Matrix
by using the Matrix constructor. For more information, see ?Matrix .

> L:=LinearAlgebra[RandomMatrix](5);

L :=













−66 −65 20 −90 30
55 5 −7 −21 62
68 66 16 −56 −79
26 −36 −34 −8 −71
13 −41 −62 −50 28













> ExportMatrix("matrixdata.txt", L):

If the data is a Vector or any object that can be converted to type
Vector, then ExportVector can be used. Lists and table-based vectors
can be converted by using the Vector constructor. For more information,
see ?Vector .

> L := [ 3, 3.1415, -65, 0 ];

L := [3, 3.1415, −65, 0]

> V := Vector(L);

V :=









3
3.1415
−65
0









> ExportVector( "vectordata.txt", V ):

You can extend these routines so that they write more compli-
cated data, such as complex numbers or symbolic expressions. See
?ExportMatrix and ?ExportVector for more information.



7.2 Writing Data to a File • 267

Saving Expressions in Maple’s Internal Format
If you construct a complicated expression or procedure, you may want to
save it for future use in Maple. If you save the expression or procedure
in Maple’s internal format, then Maple can retrieve it efficiently. You can
accomplish this by using the save command to write the expression to a
file whose name ends with the characters “.m”. Use the save command
with the following syntax.

save nameseq, "filename.m";

Here nameseq is a sequence of names; you can save only named objects.
The save command saves the objects in filename.m. The .m indicates
that save will write the file using Maple’s internal format.

Here are a few expressions.

> qbinomial := (n,k) -> product(1-q^i, i=n-k+1..n) /
> product(1-q^i, i=1..k );

qbinomial := (n, k) →

n
∏

i=n−k+1

(1− qi)

k
∏

i=1

(1− qi)

> expr := qbinomial(10, 4);

expr :=
(1− q7) (1− q8) (1− q9) (1− q10)

(1− q) (1− q2) (1− q3) (1− q4)

> nexpr := normal( expr );

nexpr := (q6 + q5 + q4 + q3 + q2 + q + 1) (q4 + 1) (q6 + q3 + 1)

(q8 + q6 + q4 + q2 + 1)

You can now save these expressions to the file qbinom.m.

> save qbinomial, expr, nexpr, "qbinom.m";

The restart command clears the three expressions from memory.
Thus expr evaluates to its own name below.



268 • Chapter 7: Input and Output

> restart:
> expr;

expr

Use the read command to retrieve the expressions that you saved in
qbinom.m.

> read "qbinom.m";

Now expr has its value again.

> expr;

(1− q7) (1− q8) (1− q9) (1− q10)

(1− q) (1− q2) (1− q3) (1− q4)

See section 7.1 for more information on the read command.

Converting to LATEX Format
TEX is a program for typesetting mathematics, and LATEX is a macro
package for TEX. The latex command converts Maple expressions to
LATEX format. Thus, you can use Maple to solve a problem, then convert
the result to LATEX code that can be included in a LATEX document. Use
the latex command in the following manner.

latex( expr, "filename" )

The latex command writes the LATEX code corresponding to the
Maple expression expr to the file filename. If filename exists, latex over-
writes it. If you omit filename, latex prints the LATEX code on the screen.
You can cut and paste from the output into your LATEX document.

> latex( a/b );

{\frac {a}{b}}

> latex( Limit( int(f(x), x=-n..n), n=infinity ) );

\lim _{n\rightarrow \infty }\int _{-n}^{n}\!f
\left( x \right) {dx}



7.3 Exporting Whole Worksheets • 269

The latex command produces code suitable for LATEX’s math mode.
However, it does not produce the command for entering and leaving math
mode, and it does not attempt any line breaking or alignment.

Section 7.3 describes how you can save an entire worksheet in LATEX
format.

7.3 Exporting Whole Worksheets

You can, of course, save your worksheets by choosing Save or Save As
from the Filemenu. However, you can also export a worksheet in six other
formats: plain text, Maple text, LATEX, HTML, HTML with MathML, and
RTF, by choosing Export As from the File menu. This allows you to
process a worksheet outside Maple.

Plain Text
You can save a worksheet as plain text by choosing Export As from
the File menu, then Plain Text. In this case, Maple precedes input
with a greater-than sign and a space (> ). Maple uses character-based
typesetting for special symbols like integral signs and exponents, but you
cannot export graphics as text. The following is a portion of a Maple
worksheet exported in plain text format.

An Indefinite Integral

by Jane Maplefan

Calculation

Look at the integral Int(x^2*sin(x-a),x);. Notice that its

integrand, x^2*sin(x-a);, depends on the parameter a;.

Give the integral a name so that you can refer to it later.

> expr := Int(x^2 * sin(x-a), x);

/

| 2

expr := | x sin(x - a) dx

|

/

The value of the integral is an anti-derivative of the

integrand.



270 • Chapter 7: Input and Output

> answer := value( % );

Maple Text
Maple text is specially marked text that retains the worksheet’s distinc-
tion between text, Maple input, and Maple output. Thus, you can export
a worksheet as Maple text, send the text file by electronic mail, and the
recipient can import the Maple text into a Maple session and regenerate
most of the structure of your original worksheet. When reading or pasting
Maple text, Maple treats each line that begins with a Maple prompt and
a space (> ) as Maple input, each line that begins with a hash mark and
a space (# ) as text, and ignores all other lines.

You can export an entire worksheet as Maple text by choosing Export
As from the File menu, then Maple Text. The following is a portion of
a Maple worksheet exported as Maple text.

# An Indefinite Integral

# by Jane Maplefan

# Calculation

# Look at the integral Int(x^2*sin(x-a),x);. Notice that its

# integrand, x^2*sin(x-a);, depends on the parameter a;.

# Give the integral a name so that you can refer to it later.

> expr := Int(x^2 * sin(x-a), x);

/

| 2

expr := | x sin(x - a) dx

|

/

# The value of the integral is an anti-derivative of the

# integrand.

> answer := value( % );

To open a worksheet in Maple text format as the one above, choose
Open from the File menu. In the dialog box that appears, choose Maple
Text from the drop-down list of file types. Double-click on the desired
file, then choose Maple Text in the dialog box that appears.

You can also copy and paste Maple text by using the Edit menu. If
you copy a part of your worksheet as Maple text and paste it into another
application, then the pasted text appears as Maple text. Similarly, if you
paste Maple text into your worksheet using Paste Maple Text from
the Edit menu, then Maple retains the structure of the Maple text. In



7.3 Exporting Whole Worksheets • 271

contrast, if you use ordinary paste, Maple does not retain its structure.
If you paste into an input region, Maple interprets the pasted section as
input. If you paste into a text region, Maple interprets the pasted section
as text.

LATEX
You can export a Maple worksheet in LATEX format by choosing Export
As from the File menu, then LaTeX. The .tex file that Maple generates
is ready for processing by LATEX. All distributions of Maple include the
necessary style files.

If your worksheet contains embedded graphics, then Maple generates
PostScript files corresponding to the graphics and inserts the LATEX code
to include these PostScript files in your LATEX document.

The following is a portion of a Maple worksheet exported as LATEX.

%% Created by Maple 7.00 (IBM INTEL NT)

%% Source Worksheet: tut1.mws

%% Generated: Wed Apr 11 12:23:32 2001

\documentclass{article}

\usepackage{maple2e}

\DefineParaStyle{Author}

\DefineParaStyle{Heading 1}

\DefineParaStyle{Maple Output}

\DefineParaStyle{Maple Plot}

\DefineParaStyle{Title}

\DefineCharStyle{2D Comment}

\DefineCharStyle{2D Math}

\DefineCharStyle{2D Output}

\DefineCharStyle{Hyperlink}

\begin{document}

\begin{maplegroup}

\begin{Title}

An Indefinite Integral

\end{Title}

\begin{Author}

by Jane Maplefan

\end{Author}

\end{maplegroup}

\section{Calculation}



272 • Chapter 7: Input and Output

Look at the integral

\mapleinline{inert}{2d}{Int(x^2*sin(x-a),x);}{%

$\int x^{2}\,\mathrm{sin}(x - a)\,dx$%

}. Notice that its integrand,

\mapleinline{inert}{2d}{x^2*sin(x-a);}{%

$x^{2}\,\mathrm{sin}(x - a)$%

}, depends on the parameter

\mapleinline{inert}{2d}{a;}{%

$a$%

}.

The LATEX style files assume that you are printing the .tex file using
the dvips printer driver. You can change this default by specifying an
option to the \usepackage LATEX command in the preamble of your .tex
file.

Section 7.4 describes how to save graphics directly. You can include
such graphics files in your LATEX document using the \mapleplot LATEX
command.

HTML and HTML with MathML
You can export a Maple worksheet in HTML (HyperText Markup Lan-
guage) format by choosing Export As from the Filemenu, thenHTML.
The .html file that Maple generates can be loaded into any HTML
browser. You can also export a Maple worksheet in HTML with MathML
(Mathematical Markup Language) format by choosing Export As from
the File menu, then HTML with MathML. MathML is the Internet
standard, sanctioned by the World Wide Web Consortium (W3C), for
the communication of structured mathematical formulae between appli-
cations. See the help page ?MathML for more information about MathML.

Maple generates .gif files to represent plots and animations in your
worksheet. Maple converts formatted mathematical output to MathML or
.gif file format for HTML with MathML or HTML exports, respectively.

The following is a Maple worksheet exported as HTML. Notice that
other HTML documents (including a table of contents), which were cre-
ated by the export process, are called within it.

<html>

<head>

<title>tut1.htm</title>

<!-- Created by Maple 7.00, IBM INTEL NT -->

</head>



7.3 Exporting Whole Worksheets • 273

<basefont size=3>

<frameset cols="25%,*">

<frame src="tut1TOC.htm" name="TableOfContents">

<frame src="tut11.htm" name="Content">

<noframes>

Sorry, this document requires that your browser support

frames.

<a href="tut11.htm" target="Content">This link</a>

will take you to a non-frames presentation of the document.

</noframes>

</frameset>

</basefont>

</html>

The following is a portion of the tut11.htm file called in the above
file.

<b><font color=#000000 size=5>Calculation</font></b>

</p>

<p align=left>

<font color=#000000>Look at the integral </font>

<img src="tut11.gif" width=120 height=60 alt="[Maple Math]"

align=middle>

<font color=#000000>. Notice that its integrand, </font>

<img src="tut12.gif" width=89 height=50 alt="[Maple Math]"

align=middle>

<font color=#000000>, depends on the parameter </font>

<img src="tut13.gif" width=13 height=32 alt="[Maple Math]"

align=middle>

<font color=#000000>.</font>

</p>

<p align=left>

<font color=#000000>Give the integral a name so that you

can refer to it later.</font>

</p>

<p align=left><a name="expr command">

<tt>&gt; </tt>

<b><font color=#FF0000>expr := Int(x^2 * sin(x-a),

x);</font></b>

</p>

<p align=center>

<img src="tut14.gif" width=169 height=49 alt="[Maple Math]">



274 • Chapter 7: Input and Output

</p>

<p align=left>

<font color=#000000>The value of the integral is </font>

<a href="tut4.html" target="_top">an anti-derivative</a>

<font color=#000000> of the integrand.</font>

</p>

RTF
You can export a Maple worksheet in RTF (Rich Text Format) by choos-
ing Export As from the File menu, then RTF. The .rtf file that
Maple generates can be loaded into any word processor that supports
RTF. Maple embeds plots and formatted math in the file as bitmaps
wrapped in Windows Metafiles. Spreadsheets are not fully exported, but
visible cells and column and row headers are exported.

The following is a portion of a Maple worksheet exported as RTF.

{\rtf1\ansi\ansicpg1252\deff0\deflang1033

{\fonttbl

{\f0 Times New Roman}

{\f1 Symbol}

{\f2 Courier New}

}

{\colortbl

\red205\green205\blue205;

\red255\green0\blue0;

\red0\green0\blue0;

\red0\green0\blue255;

}

{\stylesheet

{\s0 \widctlpar}

{\s1\qr footer_header}

{\*\cs12\f2\fs24\cf1\i0 \b \ul0 \additive Maple Input}

{\*\cs13\f0\fs24\cf2\i0 \b0 \ul0 \additive 2D Comment}

{\*\cs14\f0\fs24\cf1\i0 \b0 \ul0 \additive 2D Input}

{\*\cs15\f0\fs24\cf3\i0 \b0 \ul0 \additive 2D Output}



7.4 Printing Graphics • 275

7.4 Printing Graphics

On most platforms, Maple by default displays graphics directly in the
worksheet—as inline plots . You can use the plotsetup command to
change this behavior. The following command instructs Maple to display
graphics in separate windows on your screen.

> plotsetup(window);

With your plot in a separate window, you can print it through the
File menu as you would print any other worksheet.

The plotsetup command has the following general syntax.

plotsetup( DeviceType, plotoutput="filename",

plotoption="options" )

Here, DeviceType is the graphics device that Maple should use, filename
is the name of the output file, and options is a string of options that the
graphics driver recognizes.

The following command instructs Maple to send graphics in PostScript
format to the file myplot.ps.

> plotsetup( postscript, plotoutput="myplot.ps" );

The plot that the plot command below generates does not appear on
the screen but, instead, goes to the file myplot.ps.

> plot( sin(x^2), x=-4..4 );

Maple can also generate graphics in a form suited to an HP LaserJet
printer. Maple sends the graph that the plot3d command generates below
to the file myplot.hp.

> plotsetup( hpgl, plotoutput="myplot.hp",
> plotoptions=laserjet );
> plot3d( tan(x*sin(y)), x=-Pi/3..Pi/3, y=-Pi..Pi);

If you want to print more than one plot, you must change the
plotoutput option between each plot. Otherwise, the new plot overwrites
the previous one.

> plotsetup( plotoutput="myplot2.hp" );
> plot( exp@sin, 0..10 );

When you are done exporting graphics, you must tell Maple to send
future graphics to your worksheet again.



276 • Chapter 7: Input and Output

> plotsetup( inline );

See ?plot,device for a description of the plotting devices supported
in Maple.

7.5 Conclusion

In this chapter, you have seen a number of Maple’s elementary input
and output facilities: how to print graphics, how to save and retrieve
individual Maple expressions, how to read and write numerical data, and
how to export a Maple worksheet as a LATEX or HTML document.

In addition, Maple has many low-level input and output commands,
such as fprintf, fscanf, writeline, readbytes, fopen, and fclose.
See the corresponding help pages for details.

The help pages are Maple’s interactive reference manual. They are
always at your fingertips when you are using Maple. Like a traditional
reference manual, use them by studying the index, or by searching through
them. In particular, the complete text search facility provides a method
of searching for information, superior to a traditional index. In addition,
hyperlinks make it easy for you to check related topics.

This book aims to supply you with a good base of knowledge from
which to further explore Maple. In this role, it focuses on the interac-
tive use of Maple. Of course, Maple is a complete language, and provides
complete facilities for programming. In fact, the majority of Maple’s com-
mands are coded in the Maple language, as this high-level, mathematically
oriented language is far superior to traditional computer languages for
such tasks. The Maple 7 Programming Guide introduces you to pro-
gramming in Maple.



Index

!, 7
I (

√
−1), 13

π, 11
~, 58
%, 8
->, 18
:, 27
:=, 18
;, 27
?, 5
$, 207
_C, 75
", 30
@, 226, 240
\, 7
||, 21, 31, 195
_EnvAllSolutions, 55
~, 158

about, 158
absolute value, 9
accessing

list items, 25
range of subexpressions, 39
subexpressions, 39

accessing package commands, 76
accuracy, floating-point, 11–12
adaptive plotting, 107
add, 165
adding

restrictions to solve, 47
additionally, 158
algebraic substitution, 40
algsubs, 40, 181
animate, 117, 118

coords, 118
frames, 117

animate3d, 119, 120
coords, 120
frames, 119

animations, 201
cylindrical coordinates, 120
displaying, 117
frames of, 117, 119, 124
parametric, 2-D, 118
parametric, 3-D, 120
playing, 117
in polar coordinates, 118
in spherical coordinates, 120
three-dimensional, 119
two-dimensional, 117

annotations, 120, 125
antiderivatives, 67, 84, 217, 220
applying

commands to lists (map), 37
commands to multiple expres-

sions (map), 37
functions to sets, 24
operations to lists, 38
procedures to lists, 46
simplification rules, 32

approximate vs. exact results, 9–
10

approximations
floating-point, 9, 11–13
series, 65

arbitrary precision integers, 7
arithmetic

modulo, 14
basic, 5
exact, 9
in finite rings and fields, 14

array, 26, 27
arrays, 26–29

277



278 • Index

declaring 1-D, 26
declaring 2-D, 27
definition, 26
evaluating, 29, 186
mapping onto, 37
printing, 26
selecting elements from 1-D

arrays, 26
selecting elements from 2-D

arrays, 27
viewing contents, 26

arrow, 131
arrow notation, 18
assign, 51–52
assigned, 190
assigning names, 18, 51
assignment operator, 19
assignments

invalid, 19
multiple, 21
naming, 18
of sets of equations, 51
valid names, 18

assume, 69, 157–161
additionally, 158
integer, 158
nonnegative, 158

assuming, 162
assumptions, 69

on names, 58, 69
removing, 69, 161
setting, 157–158
viewing, 158

automatic simplification, 15
axes, 122
axis labels, 121

base n numbers, converting to,
14

basic arithmetic, 5
basis, 85

Bessel functions, 16
binary numbers, converting to,

14
binomial function, 16
boundary conditions, 72

calculations, exact vs. floating point,
6

calculus, 64–69, 81, 199
capitalization, 11
case sensitivity, 11
cat, 31
catastrophic cancellation, 12
changing variables, 28
circles, plotting, 95, 98
classical dynamics, 228
coeff, 62
coefficients

collecting, 60
extracting, 62
polynomial, 62

collect, 60, 142
distributed, 144

collecting coefficients, 60
colon, 27
color functions, 115
combine, 148

expr, 36
power, 36

combining
powers, 36
products, 36
sums, 36

comma delimited expressions, see
expression sequences

commands, see specific command
names

separating, 5
terminating, 5

common denominator, 35, 149
complex numbers, 13–14



Index • 279

complex roots, 54
computations

integer, 7–8
referring to previous, 8
symbolic, 15

concatenation, 184, 195–197
expression sequences, 21
strings, 31

concatenation operator, 20
conditions

initial, 226, 258
cone, 133
cones, plotting, 114
conformal, 128
constants, 11

factoring, 41
of integration, 220

constrained scaling, in plots, 96
content, multivariate polynomial,

63
continuation character, 7
continuity, extending by, 221
contourplot, 128
convert, 35, 263

base, 14
binary, 14
exp, 35, 156
factorial, 156
hex, 14
list, 35, 184, 263
ln, 156
parfrac, 156
polynom, 183, 206
rational, 156
set, 35, 184
sincos, 156
string, 183
trig, 35

converting
between data structures, 35

between temperature scales,
35

between types, 35
between units, 35
degrees to radians, 35
expressions, 35
expressions to functions, 49
floating-point to rational, 35
radians to degrees, 35
rational to partial fractions,

35
series to polynomials, 35, 65,

66, 183, 206
solution set to list, 45
to floating-point, 12
to lists, 46, 263
to lists and sets, 184
to strings, 183
trigonometric to exponential,

35
coordinates

cylindrical, 113
polar, 97, 118
spherical, 110
viewing, 93

counting, 39
creating

lists, 21
creating functions

with arrow notation, 52
with unapply, 49, 70

CurveFitting, 107
cutout, 135
cylinderplot, 113
cylindrical coordinates, 113
cylindrical coordinates, animations,

120

D, 220, 226, 240
data points, plotting, 105
data types, 20



280 • Index

decimal forms, 10
decimal numbers, 11–13
declaring arrays

one-dimensional, 26
two-dimensional, 27

decomposition, polynomial, 63
defining

discontinuous functions, 100
functions, with arrow nota-

tion, 52
functions, with unapply, 49,

70
defining arrays

one-dimensional, 26
two-dimensional, 27

defining functions, 18
definite integrals, 68, 219
degree, 62
degree of polynomial, 62
delaying evaluation, 191
denom, 38, 172
denominator, 38

common, 35
isolate, 38

denominators, 172
common, 149

densityplot, 128
DEplot, 245
DEplot3d, 247
derivatives, 17, 67, 199

limit definition of, 200
partial, 208, 222

describe, 88
DESol, 243
determining number of elements

(nops), 22, 24
Diff, 67
diff, 180
differential equations

ordinary, 70, 225
partial, 254

solving, 51
systems of, 75

differentiating
expressions in a list, 37

differentiation, 17
Digits, 13
digits

in floating-point calculations,
default, 12

in floating-point calculations,
setting, 12

in floating-point calculations,
setting globally, 13

maximum length of floating-
point approximations, 11

maximum length of integers,
7

Dirac, 71, 251
Dirac delta function, 16, 71, 251
discontinuous functions

defining, 100
plotting, 56, 100

display, 123, 131, 201
displaying

animations, 117
ditto operator, 8
divide, 61
division

integer quotient, 8
integer remainder, 9
polynomial, 17, 61

dodecahedron, 131
double quotes, 30
dsolve, 70–75, 225

explicit, 227
implicit, 227
method=laplace, 228
startinit, 239
type=numeric, 236
type=series, 234



Index • 281

e (exponential function), 11
echo, 265
eigenvalues, 87
eigenvectors, 87
empty_list, 25
empty_set, 25
equations

left-hand side, 38
right-hand side, 38
solving, 43, 54
solving systems of, 44

error functions, 16
errors

floating-point, 13
relative, 12

eval, 45, 46, 61, 70, 71, 180, 186
evalf, 10, 12, 200
evalm, 29
evaln, 190
evaluating

arrays, 29, 186
local variables, 189
matrices, 186
procedures, 186
tables, 186

evaluation, 185–197
and quoting, 191
and substitution, 182
assigned, 190
at a point, 45
delayed, 191
evaln, 190
forcing full, 187
full, 185
last-name, 186
levels of, 186
numerical, 10, 12, 13
one-level, 189
to a name, 190

exact arithmetic, 9

exact numbers, analytic descrip-
tion, 12

exact vs. approximate results, 9–
10

exp, 11
Expand, 142
expand, 15, 34, 140

vs. simplify, 34
expanded normal form, 36
expanding

modulo m, 142
polynomials, 34

explicit functions, plotting, 93
exponential function, 11, 16
exporting

as Maple text, 270
as plain text, 269
HTML, 272
HTML with MathML, 272
LATEX, 271
RTF, 274

ExportMatrix, 266
ExportVector, 266
expression sequences, 20
expression trees, 175
expressions

accessing subexpressions, 39
comma delimited, see expres-

sion sequences
converting, 35
converting to functions, 49
expanding, 15
extracting subexpressions, 39
factoring, 15
identification of, 173
indeterminates of, 178
multiple assignments, 21
multiple, applying commands

to, 37
naming, 18, 51
naming multiple, 21



282 • Index

number of parts, 39
operands of, 173
querying contents, 176
solving, assumptions, 44
substituting, 28
types of, 177
unevaluated, 15, 191

extending by continuity, 221
extracting

1-D array elements, 26
2-D array elements, 27
coefficients, 62
list items, 25
range of subexpressions, 39
set items, 45
subexpressions, 39

Factor, 146
factor, 15, 33

vs. solve, 62
factored normal form, 35, 149
factorial, 7
factorial, integer, 9
factoring, 62, 144–147

constants, 41
expressions, 15
fractions, 33
integers, 8
modulo p, 146
polynomials, 33

feasible, 91
fieldplot, 129
files

reading columns from, 262
reading commands from, 264
reading data from, 262
writing columns to, 265

finding
basis, 85
limits, 64
roots, 43, 53–55, 57

floating-point accuracy, 11–12
floating-point approximations, 11–

13
maximum length, 11

floating-point arithmetic, forcing,
12

floating-point conversions, 12
floating-point errors, 13
floating-point numbers

default accuracy of, 12
vs. rational numbers, 9–10

frac, 158
fractional part function, 16
fractions

on common denominator, 35
denominator, 38
denominators of, 172
expanded normal form, 36
factored normal form, 35
factoring, 33
numerator, 38
numerators of, 172
on common denominator, 149
partial, 156

fsolve, 53–56, 210
avoid, 54
complex, 54
limitations, 54
maxsols, 54
specifying range, 55

full evaluation, 185
functional operator, 18
functions

applying to sets, 24
arguments of, 19
assigning, 18
Bessel, 16
binomial, 16
defining, 18
defining with arrow notation,

52



Index • 283

defining with unapply, 49, 70
Dirac delta, 16
discontinuous, plotting, 56
error, 16
exponential, 11, 16
extending by continuity, 221
fractional part, 16
from expressions, 49
general mathematical, 15
Heaviside step, 16
hyperbolic trigonometric, 16
hypergeometric, 16
inverse trigonometric, 16
Legendre’s elliptic integral,

16
logarithmic base 10, 16
Meijer G, 16
natural logarithmic, 16
piecewise-defined, 252
Riemann Zeta, 16
round to the nearest integer,

16
square root, 16
trigonometric, 16
truncate to the integer part,

16

Gaussian integers, 14
generating random numbers, 89
graphical objects, 131
graphics

devices, 275
in separate windows, 275
inline, 275
printing, 275

graphing, 93
three-dimensional, 108

greatest common divisor, 63
greatest common divisor of inte-

gers, 8

has, 176

hastype, 177
heat equation, 256
Heaviside, 228, 249
Heaviside step function, 16, 249
help pages, accessing, 5
hemisphere, 134
hexidecimal numbers, converting

to, 14
histograms, 90, 130
HP LaserJet, 275
HTML, 272
hyperbolic trigonometric functions,

16
hypergeometric function, 16

imaginary numbers, 13–14
implicitplot, 126
ImportMatrix, 262
impulse function, 71
indefinite integrals, 67, 219
indeterminates, 178
indets, 178
inequal, 126
infinite domains, plotting, 94
infolevel, 148, 159
initial conditions, 70, 226, 258
inline plots, 275
Int, 67

limitations, 68
integer computations, 7–8
integers, 7

arbitrary precision, 7
calculations with, 7
commands for, 8
factorial, 9
factoring, 8
greatest common divisor, 8
maximum length, 7
modulo arithmetic, 9
roots, 9
solving for, 57



284 • Index

square root function, 9
integrals, 67, 84, 217

constants of, 220
definite, 68, 219
indefinite, 67, 219
leftbox, 217
leftsum, 218
Riemann, 217

intercept, 82
interface

echo, 265
verboseproc, 188

interpolation
polynomial, 63

intersect, 23
inttrans package, 231
inverse trigonometric functions,

16
invlaplace, 232
irrational numbers, 10
is, 160, 170
isolate, 201
isolate, left-hand side or right-

hand side, 38
isolve, 57

joining points in plots, 106
joining strings, 31

kernel, 76

laplace, 231
Laplace transforms, 227, 231

inverse, 232
LATEX, 268, 271
least common multiple, 63
left-hand side, 38, 171
Legendre’s elliptic integral func-

tions, 16
legends, 122
length

floating-point approximations,
maximum, 11

integers, maximum, 7
length, 31, 170
levels of evaluation, 186
lexicographical sorting, 60
lhs, 38, 171
library, 76
lighting schemes, 115
lightmode, 115
Limit, 64, 81, 84
limits, 64, 81, 202
line styles, 104, 105
linear algebra, 84
linear optimization, 90
LinearAlgebra package, 84
list items, selecting, 25
lists, 21

applying operations to, 38
applying procedures to, 46
converting to, 184
creating, 21
definition, 22
elements of, 22
empty, 25
mapping onto, 37
merging, 167
operands of, 175
operations on, 24–25
properties, 22
selecting from, 166
sorting, 168
unordered (sets), 23

local variables, evaluating, 189
logarithm, natural, 11
logarithmic function base 10, 16
loglogplot, 127
logplot, 127

map, 24, 37, 38, 46, 47, 163
map2, 164



Index • 285

Maple text, 270
mapping

onto expressions, 176
onto lists, 163
onto sets, 163

mathematical functions, 15
MathML, 272
Matlab package, 86
matrices

evaluating, 186
Transpose, 264

Matrix, 35, 87
matrixplot, 130
max, 216
maximize, 91
maximum length

floating-point approximations,
11

integers, 7
maximum, of a set, 9
mean, 88
Meijer G function, 16
member, 24
merging lists, 167
middlebox, 83
middlesum, 84
minimum, of a set, 9
minus, 25
mod, 14

expanding, 142
factoring, 146

modp, 14
mods, 14
modulo arithmetic, 9, 14
msolve, 58
mul, 165
multiple assignments, 21, 87
multiple curves in plots, 103
multiple expressions

applying commands to, 37
multiple plots, 123

multiple solutions, 47
multivariate polynomial, 63

names, 18–20
assigning, 18
assumptions, 69
with assumptions, 58
prepending, 21
protected, 19
valid and invalid, 18

naming expressions, 18, 51
multiple, 21

natural logarithmic function, 11,
16

Newton’s Law of Cooling, 239
nops, 22, 24, 39, 173
norm of a polynomial, 63
normal, 35

expanded, 36, 150
notation

subscript, 25
number

of elements, determining, 22,
24

of operands, determining, 39
of parts, determining, 39

number systems, other, 14
numbers

complex, 13
exact, analytic description, 12
floating-point, 11–13
imaginary, 13
irrational, 10
random, 89
rational vs. floating-point, 9–

10
numer, 38, 172
numerator

isolate, 38
numerators, 172
numerical



286 • Index

ODEs, 236
numerical solutions, 53

object
graphical, 131

odeplot, 237, 252
oleplot, 250
ODEs, 70, 225

dsolve, 225
initial conditions, 226
Laplace transform method,

228
numerical, 236
plotting, 244
series type, 234

one-level evaluation, 189
op, 39, 173, 216
operands

number of, 39, 173
of expressions, 173
of lists and sets, 175
selecting, 173

operations
on sets and lists, 24

operators
assignment, 19
concatenation, 20
functional, 18

optimization, linear, 90
Order, 65, 240
order term, 65
ordered lists, 21
ordering solution set, 48
ordinary differential equations, 225
output

suppressing, 27

package commands, accessing, 76
packages, 76–92

list of, 78
loading, 76

using commands from, 76
parametric plots

2-D, 95
3-D, 110
cylinders, 114
in polar coordinates, 99
spheres, 112

parametric solutions, 44
partial derivatives, 208, 222

limit definition of, 222
mixed, 223

partial differential equations, 254
partial fractions, 156
Pascal’s Triangle, 165
PDEplot, 258–259
PDEs, 254

initial conditions, 258
plotting, 257

pi, 11
piecewise, 100, 252
playing animations, 117
plex, 60
plot

color, 104, 105
discont, 101, 103
labeldirections, 121
labels, 121
labelsfont, 121
legend, 122
linestyle, 104
numpoints, 107
scaling=constrained, 96
style=line, 106
symbol, 106
symbolsize, 106
title, 120, 183
titlefont, 121

plot3d, 108, 110
axes, 122
grid, 114
lightmodel, 115, 116



Index • 287

shading, 115
style=hidden, 109

plots
3-D default shading, 109
annotations, 120, 125
color functions, 115
colors, specifying, 105
cones, 114
constrained vs. unconstrained

scaling, 96
density, 128
displaying, 123
gray-scale, 116
legends, 122
lighting schemes, 115
line styles, 104
modifying attributes, 93
point styles, specifying, 106
ranges of, 109
refining 2-D, 107
refining 3-D, 114
rotating, 108, 133
setting scale, 96
shading, 115
shell, 111
spheres, 111
spiral (3-D), 113, 115
text, 125
titles, 120, 183, 197
translating, 133
viewing coordinates, 93

plots

animate, 117
animate3d, 119
arrow, 131
cylinderplot, 113
sphereplot, 111

plotsetup, 275
plotting

adaptive algorithm for, 107

animations, see animations,
201

circles, 95, 98
conformal, 128
contours, 128
curves in 3-D space, 129
cylinders, 113, 114
discontinuous functions, 56,

100
explicit functions, 93, 108
histograms, 90
implicit functions, 126
in separate windows, 275
inequalities, 126
infinite domains, 94
inline, 275
joining points, 106
lists of numbers, 263
Matrices, 130
multiple curves, 103
multiple plots, 123
objects, 131
ODEs, 244
on logarithmic axes, 127
on logarithmic axis, 127
parametric curves, 95
parametric surfaces, 110, 112
PDEs, 257
points, 105
polar coordinates, 97
printing, 275
root loci, 130
series, 183
shaded surface, 109
singularities, 101
space curves, 129
specifying range, 94
spheres, 112
spherical coordinates, 110
spirals, 99
surfaces, 108



288 • Index

tangent, 82
tangent function, 102
three-dimensional, 108
to files, 275
topographical maps, 128
tubes, 129
vector fields, 129

plottools, 131
pointplot, 105, 106
points, plotting, 105
polar coordinates, 97

and explicit functions, 98
and parametric functions, 99
animations, 118

polar plots, 97
polarplot, 98
polynomial division, 17
polynomials, 58–63

coefficients of, 62
collecting coefficients, 60
collecting terms, 60, 142
decomposition, 63
definition, 58
degree of, 62
dividing, 17, 61
expanding, 34, 140
factoring, 144
interpolation, 63
sorting, 59–60
sorting elements, 154–155

position in list, specifying, 25
PostScript, 275
precision

floating-point approximations,
11

integers, 7
prepending names, 21
previous computations, referring

to, 8
primality tests, 8
prime number test, 8

primitive part of multivariate poly-
nomial, 63

print, 26
printing

graphics, 275
procedures, 187

procedures
evaluating, 186
printing, 187

protected names, 19
pseudo-remainder, 63

quo, 61
quotation mark, 191
quotient

integer division, 8
polynomials, 61

random, 89
random number generation, 89
random polynomial, 63
range, 88
rational expressions

expanded normal form, 36
factored normal form, 35

rational functions
factoring, 144

rational numbers, 7–10
vs. floating-point numbers, 9–

10
rationalize, 147
read, 264
reading

code, 264
columns, 262
commands, 264
files, 264

reciprocal polynomial, 63
recurrence relations, solving, 58
reference pages (online), see help

pages, accessing



Index • 289

refining 2-D plots, 107
refining 3-D plots, 114
relative error, 12
rem, 61
remainder

integer division, 9
remainder of polynomials, 61
remember tables, 221
remove, 166
removing assumptions, 161
repeated composition operator,

226, 240
reserved names, 19
restart, 267
restricting solutions, 47, 91
resultant of two polynomials, 63
results

exact vs. approximate, 9–10
exact vs. floating-point, 6, 9

rhs, 38, 171
Riemann integrals, 217
Riemann sums, 83, 218
Riemann Zeta function, 16
right-hand side, 38, 171
rootlocus, 130
RootOf, 52, 176

removing, 53
roots

complex, 54
finding, 43, 54
floating-point, 53
integer, 57
of integers, 9
of polynomials, 62
specifying range, 55
surd, 9
transcendental equations, 55

rotate, 133
rotating 3-D plots, 108
round to the nearest integer func-

tion, 16

round-off errors, 239
RowSpace, 85
rsolve , 58
RTF, 274

save, 267
saving

arrays of numbers, 265
lists of numbers, 265
Matrix, 265

scale, in plots, 96
select, 166

has, 177
hastype, 177
realcons, 204
type, 177

selecting
1-D array elements, 26
2-D array elements, 27
from lists and sets, 166
list items, 25
operands, 173
real constants, 204
subexpressions, 173, 176

selectremove, 166
semicolon, 27
semilogplot, 127
separating commands, 5
seq, 165, 190, 240
sequence operator, 207
series, 234

converting to polynomials, 183
creating, 17
order term, 65

series, 17, 65
series approximations of functions,

65–67
set items, extracting, 45
sets, 23

applying functions to, 24
converting to, 184



290 • Index

definition, 23
difference in, 25
empty, 25
intersection of, 23
mapping onto, 37
minus, 25
operands of, 175
operations on, 24–25
properties, 23
selecting from, 166
solution, 43
union of, 23

shading, 115
shell plots, 111
showtangent, 82
side relations, 32, 40, 181
simplex package, 90
simplification, 32–34

automatic, 15
by expanding, 34
limitations, 34, 40
specifying identities, 40
specifying rules, 32
with side relations, 32, 40

simplification rules, applying, 32
simplify, 32, 40, 151–154

limitations, 34, 40
side relations, 32
type, 32
vs. expand, 34
with assumptions, 153
with side relations, 153, 181

simplifying
RootOf expressions, 53

sine animation, 117
singularities, plotting, 101
slope, 200
solution sets, 43

ordering, 48
solutions

floating-point, 53

numerical, 53
restricting, 47
verifying, 45–47

solve, 43, 44, 209
assumptions, 44
limitations, 55
specifying restrictions, 47
vs. factor, 62

solving
differential equations, 51
equation sets, 43
equations, 43, 47, 54
expressions, assumptions, 44
inequalities, 47
for integers, 57
modulo m, 58
numerically, 53
recurrence relations, 58
systems of equations, 44, 47
transcendental equations, 55
variable sets, 43
and verifying, 45–47

sort, 59, 60, 154–155, 169
plex, 60

sorting
algebraic expression elements,

154–155
by length, 170
by total degree, 154
by total order, 60
by your own order, 169
lexicographically, 60, 155, 169
lists, 168
numerically, 169
by total order, 59

space curves, 129
spacecurve, 129
specfunc, 178
specifying

element position, 25
identities for simplifying, 40



Index • 291

plot range, 94
specifying restrictions

to solve, 47
sphere, 132
sphereplot, 111, 112
spheres, plotting, 110, 112
spherical coordinates, 110

animations, 120
spirals, plotting, 99, 113, 115
sqrt, 10
square root function, 10, 16

of integers, 9
square-free factorization, 63
squaring function, 19
standard deviation, 88
startinit, 239
statement separators, 27
stats package, 87
stellate, 134
strings, 30

accessing stubstrings, 31
concatenating, 31, 184
definition, 30
extracting substrings, 31
indexing, 31
joining, 31

student package, 81
subexpressions, extracting, 39
subs, 28, 47, 69, 180, 181
subscript notation, 25
subsop, 182
substituting

expressions, 28
for product of unknowns, 40

substitution, 28
algebraic, 40
of operands, 182

substitutions, 180
sum, 191
summation, 17
suppressing output, 27

surd, 9
symbolic computations, 15
systems of differential equations,

75
systems of equatations

solving, 44

tables, 29
definition, 29
evaluating, 186

tangent function, plotting, 102
tangent, plotting, 82
Taylor series, 183, 205, 216, 239,

241
terminating commands, 5
test, prime number, 8
TEX, 268
text, exporting, 269
textplot, 125
textplot3d, 125
tilde, 58, 158
titles

of graphics, 120, 183, 197
transcendental equations

roots, 55
solving, 55

translate, 133
Transpose, 85, 264
trigonometric functions, 16
truncate to the integer part func-

tion, 16
tubeplot, 129
type, 166, 177

specfunc, 178
types, 20–31
typesetting, 268

unapply, 49–51, 70, 201
unassigning, 193
unevaluated expressions, 15, 191
union, 23, 70



292 • Index

unordered lists (sets), 23

value, 64, 67
variables

changing, 28
vector fields, 129
vectors, 85

transpose of, 85
verboseproc, 188
verfying solutions, 45–47
verifying solutions, 71
viewing array contents, 26
viewing coordinates, 93

wave equation, 254
whattype, 173
with, 76
worksheets

saving, 269

zip, 167




