1 Show that if $F = \text{e-lim } F^{\nu}$ and G is continuous, then

$$\operatorname{e-lim}(F^{\nu} + G) = F + G.$$

- **2** A sequence $(C^{\nu})_{\nu=1}^{\infty}$ of sets in a topological space is said to converge to a set C in the sense of Painlevé-Kuratowski if
 - (i) if $x^{\nu} \to x$ and $x^{\nu^{\mu}} \in C^{\nu^{\mu}}$ for some subsequence, then $x \in C$,
 - (ii) for every $x \in C$ there is a sequence $x^{\nu} \to x$ with $x^{\nu} \in C^{\nu}$.

Show that

- (a) $C^{\nu} \to C$ in the sense of Painlevé-Kuratowski iff e-lim $\delta_{C^{\nu}} = \delta_C$.
- (b) e-lim $f^{\nu} = f$ iff epi $f^{\nu} \to \text{epi} f$ in the sense of Painlevé-Kuratowski.
- **3** Let $\tilde{F}^{\nu}: (\mathbb{R}^n)^{I(\nu)} \to \mathbb{R}$ be the essential objective of (3.3). Show that, if condition (3.2) holds, then

$$F^{\nu}(\Pi^{\nu}z^{\nu}) = \tilde{F}^{\nu}(z^{\nu}),$$

where $\Pi^{\nu} : (\mathbb{R}^n)^{I(\nu)} \to L^p$ is given by

$$\Pi^{\nu} z^{\nu} = \sum_{i \in I(\nu)} z^{\nu,i} \chi^{\nu,i}.$$

4 Show that if $P(\Xi^{\nu,i}) > 0$ for all $i \in I(\nu)$, then the set \mathcal{N}^{ν} is isomorphic to

 $\tilde{\mathcal{N}}^{\nu} = \{ x \in L^p(\Xi, \mathcal{F}, P^{\nu}; \mathbb{R}^n) \, | \, x \text{ contains an } (\mathcal{F}_k)_{k=0}^K \text{-adapted function} \}.$

What metric on \mathcal{N}^{ν} would make them isometric?

- **5** Consider the mapping s^{ν} defined in Section 3.2 and show that $f^{\nu}(x,\xi) = f(x, s^{\nu}(\xi))$ is a normal integrand whenever f is one.
- 6 Prove Lemma 3.9.