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Abstract. The purpose of these lectures is to introduce stochastic in-

tegrals with respect to standard Brownian motion, or more generally

with respect to continuous square integrable martingales. Before this

we discuss discrete time parameter martingales to be familiar with some

of the techniques needeed later. We also prove some results for discrete

time parameter martingales, like moment inequalities and the important

martingale convergence theorem. After this, and after defining stochas-

tic integrals, we give some classical applications of the fundamental Itô

formula: Lévy theorem to characterize Brownian motion and Girsanov

theorem. Another application are the iterated integrals with respect to

Brownian motion; these are useful for example in Malliavin calculus. We

try to cover also the basic facts about stochastic differential equations.

If the time permits, we discuss some other applications.
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1. Basic set-up, background

1.1. Practicalities. Lectures are on Thursdays and on Tuesdays, first lec-
ture on Thursday, March 13, and last on Tuesday, April 29. The course
consists of three parts: lectures, exercises, individual homework and final
exam.

1.2. Background. There are several excellent books on this area. We will
compose our lectures mainly from the following sources:

• K.L. Chung, R.J. Williams: Introduction to Stochastic Integration,
Birkhuser

• J. Jacod, P. Protter: Probability Essentials, Springer
• Karatzas, S.E. Shreve: Brownian Motion and Stochastic Calculus,

Springer
• D. Revuz, M. Yor: Continuous Martingales and Brownian Motion,

Springer
• A.D. Ventsel: A Course in the Theory of Random Processes (in

Russian), Nauka1

1.3. Probability theory. If you feel uncomfortable with the following ma-
terial, please consult ASAP the book by Jacod and Protter mentioned above
[or consult your favorite book on measure theoretical probability].

1.3.1. Probability spaces and random variables. Recall that a probability
space is a triplet (Ω,F , IP), where Ω is the set containing all possible ele-
mentary events, and IP is a probability measure defined on the measurable
space (Ω,F). Random variables X are measurable mappings from (Ω,F , IP)
to some other measurable space (S,S). If X is such a random variable, then
PX is a probability measure on (S,S) defined by PX(B) = IP {ω : X(ω) ∈ B}
for B ∈ S. The probability measure PX is called the law of X. Typically,
(S,S) is the real line with its Borel sets or the set of nonnegative integers IN
with all subsets in IN. In the latter case we say that X takes integer values,
and the law of X can be given in terms of the discrete probabilities αk:

αk = IP(X = k) = PX ({k}) .

Of course, we have
∑

k αk = 1 and αk ≥ 0. On the other hand, if X takes
its values on the real line, it often haves a density fX , which completely
describes the law PX of X:

∫ b

a

fX(y)dy = IP(X ∈ (a, b)) = PX ({(a, b)}) .

1.3.2. Expectations [or integrals with respect to probability measure]. If X is
a simple random variable on real line, which means that we can write X as

X =

n
∑

k=1

yk1Bk
,

1At least a German translation of this book exists, based on an earlier edition of this

interesting book, which is suitable for self study.
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then the expectation IEX is written as

(1.1) IEX =

n
∑

k=1

ykIP(X ∈ Bk) =

n
∑

k=1

ykPX(Bk) = EPX
X.

Having this we can show that every nonnegative random variable X has an
expectation IEX which is defined as

IEX = sup {IEY : 0 ≤ Y ≤ X;Y is simple} ;

At this point we can allow IEX = ∞. Recall that a nonnegative random
variable X is integrable, if IEX < ∞. For general real valued random vari-
ables X we define X+ = max(X, 0) and X− = max(−X, 0), and then we
have X = X+ − X−; the random variable X is integrable, if X+ and X−

are integrable, and then we put

IEX = IEX+ − IEX−.

Example 1.1. • For integer valued X we have

IEX =
∑

k

kαk.

• For integrable and real valued X with density fX we have

IEX =

∫ ∞

−∞

yfX(y)dy.

Notation: IEX =
∫

XdIP =
∫

Ω X(ω)dIP(ω).

1.3.3. Convergence modes. Now Xn, n ≥ 1 and X are random variables.
Recall the following types of convergence:

• Xn
IP→ X if for any ǫ

IP(|Xn − X| > ǫ) → 0

as n → ∞. This is stochastic convergence.

• Xn
a.s.→ X if

IP
(

ω : lim
n

Xn(ω) = X(ω)
)

= 1.

This is almost sure convergence.

• Take p ≥ 1: Xn
Lp

→ X if

lim
n

IE|Xn − X|p = 0.

This is convergence in Lp. Typically we will use convergence in L2.

If Xn co verges to X almost surely or in Lp, then Xn converges to X stochas-
tically. If Xn converges to X stochastically, then Xn can fail to converge to
X almost surely or in Lp. If Xn converges almost surely to X, then it can
fail to converge to X in Lp, and finally, if Xn converges to X in Lp, it can
fail to converge to X almost surely.
Recall also that if Xn → X stochastically, then there exists a subsequence
nk such that Xnk

→ X almost surely.
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1.3.4. Expectation and limits. In this section the sequence Xn converges
stochastically or almost surely, and we write simply Xn → X. Recall the
following theorems

• Monotone converge theorem (MCT): If 0 ≤ X1 ≤ X2 ≤ · · · and
Xn → X, then

lim
n

IEXn = IE
(

lim
n

Xn

)

= IEX.

• Fatou’s lemma: If Xn ≥ Y and Y is an integrable random variable,
then

IE lim inf
n

Xn ≤ lim inf
n

IEXn.

Note that we do assume any convergence here.
• Dominated convergence theorem (DCT): If Xn → X and Y is an

integrable random variable such that |Xn| ≤ Y , then

lim
n

IEXn = IE
(

lim
n

Xn

)

= IEX.

1.3.5. The space L2(Ω,F , IP. We close the necessary background by recall-
ing some properties of the space L2(Ω,F , IP).
The space L2(Ω,F , IP) is a Hilbert space. The inner product is given by

(X,Y )L2(IP) = IE (X,Y ) .

The norm of the vector X is ||X||L2(IP) =
√

IEX2. Orthogonality of two

vectors X,Y ∈ L2(IP) is defined in the usual way: X ⊥ Y ⇔ IE(XY ) = 0.
Xn is a Cauchy-sequence: for any ǫ > 0 there exists an nǫ such that n,m ≥ nǫ

and then ||Xn − Xm||L2(IP) < ǫ. The space L2(IP) is complete: If Xn is a

c-sequence, then there exists a vector X ∈ L2(Ω,F , IP) such that Xn
L2

→ X.
We end by recalling the projection theorem. Recall that H ⊂ L2(Ω,F , IP)
is a subspace, if X,Y ∈ H,α, β ∈ IR ⇒ αX + βY ∈ H and H is closed: if
Xn converges in L2(IP) to X, and Xn ∈ H, then also X ∈ H.

Proposition 1.1 (Projection). Let H ⊂ L2(Ω, IF, IP) be a subspace. Then
for every X ∈ L2(IP) there exists a unique Y = ΠHX ∈ H, the projection
of X on H with the properties

• ||X − Y ||L2(IP) = inf
{

||X − Z||L2(IP) : Z ∈ L2(IP)
}

.
• X − ΠHX ⊥ H.

Example 1.2. The following is a fundamental observation for us. Let G ⊂
F and put H = L2(Ω,G, IP). Then H is a subspace: H is clearly linear, and
it is closed, because the almost sure limit of G measurable random variables
is G measurable. Then by the Projection theorem there exists unique Y =
ΠHX, which is G measurable and X − Y ⊥ H.

After there preparations we can slow down and start to discuss conditioning.
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1.4. Conditioning.

1.4.1. From concrete to abstract. One of the key features of probability the-
ory is the notion of conditional probability and expectation. If A ∈ F and
0 < IP(A) < 1, we define the conditional probability of an arbitrary event
B with the formula

IP(B|A) =
IP(A ∩ B)

IP(A)
.

Note that in this case we also can define the conditional probability with re-
spect to the event Ac := Ω\A. We can also define the conditional expectation
with respect to the event A of a simple random variable X =

∑m
k=1 xk1Bk

with the formula

IE(X|A) =

m
∑

k=1

xkIP(Bk|A).

All the above is based on the fact that we know IP(A) or the event Ac. A
very useful idea is to think that we know only that A will happen or Ac will
happen. Then the conditional expectation of X will be a random variable,
depending weather A has happened of Ac has happened; we can write this
as follows

IE(X|G) = IE(X|A)1A + IE(X|Ac)1Ac ,

where G is the σ- algebra G = {∅, A,Ac,Ω}. An exercise is to check that if
we take Y to be the random variable

Y = IE(X|G)

then Y satisfies the two conditions:

• The random variable Y is measurable with the elementary σ- algebra
(∅, A,Ac,Ω).

• The random variable Y satisfies the integral test : for every G ∈
{∅, A,Ac,Ω} we have

∫

G

Y dIP =

∫

G

XdIP.

To generalize the above is the topic of the next section.

1.5. Conditional expectations. The following definition is one of the con-
tibutions of Kolmogorov to probability theory.

Definition 1.1 (Kolmogorov). Let (Ω,F , IP) be a probability space, X ∈
L1(IP) and G is a sub-σ-algebra of F . The conditional expectation of random
variable X with respect to G IE[X|G] is a random variable Y ∈ G, which
satisfies that

(1.2)

∫

G

XdIP =

∫

G

Y dIP ∀G ∈ G.

For us random variables are in fact equivalence classes of random variables,
which are almost surely the same. With this interpretation the conditional
expectation IE(X|G) is unique.
If the random variable X ∈ L2(IP), then the conditional expectation of X

with respect to G is the projection of X to the subspace H = L2(Ω,G, IP).
Indeed, Y = ΠHX is G measurable, and by definition of the projection
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X − Y ⊥ 1G for arbitrary G ∈ G. But this is exactly the integral test (1.2)
in the definition 1.1:

(X − Y, 1G)L2(IP) = 0 ⇔
∫

G

XdIP =

∫

G

Y dIP.

If X is an integrable random variable with X ≥ 0, then we can define the
conditonal expectation of X by approximating the random variable X by
random varibales X(n) = X ∧ n, and defining

IE(X|G) = lim
n

IE(X(n)|G).

For an integrable random variable X we define the conditional expectation
by the formula

IE(X|G) = IE(X+|G) − IE(X−|G).

1.5.1. Properties of conditional expectations. Let X,Z ∈ L1(Ω,F , IP) and
let G ⊂ F . Put Y = IE[X|G].
If X ∈ G, then IE[X|G] = X. This follows from the defintion 1.1.
From the integral test (1.2) we obtain that

IEX =

∫

Ω
XdIP =

∫

Ω
Y dIP = IEY = IE(IE[X|G]).

Moreover, the conditional expectation satisfies

• IE[aX + bZ|G] = aIE[X|G] + bIE[Z|G], when a, b ∈ IR; hence the
conditional expectation is linear.

• Let H ⊂ G. Then

IE[IE[X|G]|H] = IE[X|H].

This is quite obvious from the projection theorem for square inte-
grable X.

• Let Z ∈ G and assume that XZ ∈ L1. Then

IE[ZX|G] = ZIE[X|G].

To check this property consider first the case Z = 1F , where F ∈ G,
and then the claim follows directly from the definition of conditional
expectation. By lineriaty the claim is true for simple Z, and after
this positive Z,X, and finally for arbitrary Z and X.

• If g : IR → IR is convex and we have that g(X) ∈ L1. Then the
following Jensen’s inequality holds:

g(IE[X|G]) ≤ IE[g(X)|G].

The proof of this claim follows from the linearity of the conditional
expectation and from the fact that for any convex g there are two
sequences an, bn of real numbers such that

g(x) = sup
n

(anx + bn).

The MCT is valid for conditional expectations:

0 ≤ X(n) ↑ Y ∈ L1 ⇒ IE[X(n)|G] ↑ IE[Y |G].

Having this we can prove the DCT for conditional expectations: if |X(n)| ≤
Z ∈ G, X(n) a.s..−→ X, then IE[X(n)|G]

a.s.−→ IE[X|G].
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The Fatou’s lemma is also true: if X(n) ≥ 0, then

IE[lim inf
n

X(n)|G] ≤ lim inf
n

IE[X(n)|G].

The last property of conditional expectation is

• Let X
w G. Then

IE[X|G] = IEX.

This is easy to see if X = 1A, and then the claim is true for simple
X, then for nonnegative X, and finally for integrable X.

2. Discrete time martingales

2.1. Histories and martingales. Let IF = (Fn)n≥1 a family of σ-algebras,
Fn ⊂ F , when n ≥ 1. The family IF is a history, if is increasing : k ≤ n ⇒
Fk ⊂ Fn. Sometimes an history if called a filtration.
Let X = (Xn)n≥1 be a stochastic process: this means only that Xn is a
random varibale for n ≥ 1. Let IF be a history. If Xn ∈ Fn for all n ≥ 1,
then we say that X is IF- adapted ; a short notation is X ∈ IF.

Example 2.1. Let X = (Xn)n≥1 be a stochastic process and

FX
n

.
= σ{X1, . . . ,Xn},

or in plain English: FX
n is the smallest σ- algebra H with the property that

the random variables X1, . . .Xn are measurable with respect to H. We say
that FX

n is the σ- algebra generated by the random variables X1, . . . ,Xn.
Clearly Xn ∈ FX

n . We say that IFX is the history of the process X.

Definition 2.1. Let IF be a history, X = (Xn)n≥1 is a stochastic process.
Assume that X ∈ IF and Xn ∈ L1, when n ≥ 1.

(a) If in addition we have IE[Xn+1|Fn] = Xn, then X is a martingale.
(b) If in addition IE[Xn+1|Fn] ≥ Xn, then X is submartingale.
(c) If in addition IE[Xn+1|Fn] ≤ Xn, then X is supermartingale.

Example 2.2 (Sums of independent random variables). Assume that X(k) w

,

X(k) ∈ L1, when k ≥ 1 and µk = IEX(k). Put

Sn =

n
∑

k=1

X(k)

and

FX
n = σ{X(1), . . . ,X(n)} = σ{S1, . . . , Sn}.

Clearly Sn ∈ Fn and Sn ∈ L1. Since X(n+1) w Fn, then we obtain

IE[Sn+1|Fn] = IE[Sn + X(n+1)|Fn] = Sn + IE[X(n+1)|Fn]

X(n+1) w Fn = Sn + µn+1.

We observe that S is a IF martingale if and only if µk = 0 for all k ≥ 1, a
submartingale if and only if µk ≥ 0 for all k ≥ 1 and a supermartingale if
and only if µk ≤ 0 for all k ≥ 1.
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Example 2.3 (products of independent random variables). Let X(k) w

,

k ≥ 1, X(k) > 0 and µk = IEX(k) > 0, when k ≥ 1. Put Yn =
∏n

k=1 X(k)

and if

Fn = σ{X1, . . . ,Xn} = σ{Y (1), . . . , Y (n)},
then Yn ∈ Fn. Since Yn is a product of independent random variables, then
we have IEYn = µ1 · · ·µn ∈ L1. let us compute the conditional expectation
IE[Yn+1|Fn] by using th einformation Yn+1 = YnX(n+1) and X(n+1) w Fn:

IE[Yn+1|Fn]
Yn∈Fn= YnIE[X(n+1)|Fn]

X(n+1)
w

Fn= Ynµn+1.

Hence Y is a IF- martingale if and only if µk = 1, k ≥ 1.

2.1.1. Stopping times.

Definition 2.2. Let IF = (Fk)k≥0 be a history on probability space (Ω,F , IP).
Therandom variable τ : Ω → IN ∪ {+∞} is a stopping time, if

{τ ≤ k} ∈ Fk ∀k ≥ 0.

τ is a stopping time if and only if {τ = k} ∈ Fk ∀k ≥ 0.

Example 2.4. Let X be a process and put

τ = inf{k : Xk ≥ 3}.
By convention τ = ∞, if Xk < 3 for all k ≥ 1. τ is a IFX stopping time:

{τ > n} = ∩n
k=1{Xk < 3} ∈ FX

n ;

because FX
n is a σ-algebra, then also {τ ≤ n} ∈ FX

n

13.3. 2008


