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Lectures on 22.4. and 24.4. 2008

5.2. Path-wise stochastic integrals. In some special cases one can define
stochastic integrals as almost sure limits of Riemann-Stieltjes integrals, in
other words as path-wise integrals. Of course we must restrict the class of
processes which we can integrate in such a way.

Prologue. Let f : C1(IR) and t 7→ Xt, X ∈ C1(IR) with the derivative X ′
t

The mean value theorem gives

f(Xt) − f(X0) =

∫ t

0
f ′(Xs)X

′
sds

.
=

∫ t

0
f ′(Xs)dXs.

Itô formula without probability. Th path-wise results are due to Hans Föllmer.

Lemma 5.1. Let W Brownian motion and π is a dyadic partition on [0, t]:
tk = j2−nt, j = 0, 1, . . . , 2n. Then

(5.3)
∑

k

(Wtk − Wtk−1
)2 → t a.s.

Proof Let π be a dyadic partion on [0, t] on Yn
.
=

∑2n

k=1(Wtk − Wtk−1
)2.

Like in the proof of (3.2) we have

Var(Yn − t)2n · 2 · t22−2n = t221−n.

Let ǫ > 0 and put An = {|Yn − t| > ǫ}. Using the Tsebysev inequality we
obtain

IP(An) ≤ 1

ǫ2
Var(Yn − t) =

1

ǫ
t221−n.,

This gives
∑

n IP(An) < ∞, and we can use Borel-Cantelli lemma to conclude
that

IP(lim sup An) = 0 ⇔ Yn → t m.v.

�

Remark 5.1. One can improve the result of the previous lemma as follows:
If the partitions satisfy πn ⊂ πn+1, then we have

∑

tk∈πn

(Wtk − Wtk−1
)2 → t a.s.

[Revuz, Yor, Proposition II.2.12].

In this subsection we assume that partitions of [0, T ] are dyadic.

Lemma 5.2. Let g : [0, T ] → IR be a continuous function. Then

(5.4)

∫ T

0
g(Ws)ds = lim

|π|→0

∑

tk∈π

g(Wk−1)(Wtk − Wtk−1
)2

Proof
7 Define µn :=

∑

tk∈πn(Wtk −Wtk−1
)2δtk−1

. Here δtk is the Dirac mass

at tk. Then we can write (5.3) as

µn ((0, u]) → u

7The present proof is different to the proof given in the lecture.
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when u ≤ t, in other words the measures µn converge weakly to the Lebesgue
measure on the interval [0, t]. If h is a continuous function on [0, t], it is a
bounded function on this interval, and so the weak convergence gives

∫ t

0
hsds = lim

n

∫ t

0
hsµ

n(ds) = lim
tk∈πn

htk−1
(Wtk − Wtk−1

)2.

Apply this to the continuous function hs = g(Ws) to obtain (5.4). �.

Theorem 5.2. Let F ∈ C2 and π dyadic partition. Then we have the Itô
formula

F (WT ) = F (0) +

∫ T

0
Fx(Ws)dWs +

1

2

∫ T

0
Fxx(Ws)ds,

where the stochastic integral is a path-wise Riemann-Stieltjes limit

(5.5)

∫ T

0
Fx(Ws)dWs = lim

|π|→0
Fx(Wtk−1

)(Wtk − Wtk−1
).

Remark 5.2. Let us compare this definition to the stochastic integral, which
was defined as L2- limit.

• The stochastic integral H ◦ W was defined in the case where the

integrand H was a predictable process with IE
∫ T

0 H2
s ds < ∞. If Hn is

a sequence of simple predictable processes with IET
0 (Hs−Hn

s )2ds → 0,
then the integral (H ◦ W )T is the L2(IP) limit of random variables
(Hn ◦W )T . But L2- convergence implies stochastic convergence and
so

∫ T

0
Hn

s dWs =
∑

k

Hn
tk−1

(Wtk − Wtk−1
)

IP→ (H ◦ M)T .

• In the formula (5.5) the integrand has a a special form Fx(Ws) and
we pass to the limit using dyadic partitions. Now almost sure conver-
gence implies stochastic convergence, and so the integral defined by
(5.5) is the same as the stochastic integral defined earlier. In many
applications it is important to have this kind of path-wise interpre-
tation of stochastic integrals.

• The proof of (5.5) is based on Taylor expansion. Of course this is
an alternative proof of the Itô- formula, and it is often proved in this
way.

Proof We start the proof with a simple observation: write

F (WT ) − F (0) =

2n
∑

k=1

(

F (Wtk) − F (Wtk−1
)
)

.

Taylor expansion gives

F (Wtk)−F (Wtk−1
) = Fx(Wtk−1

)(Wtk −Wtk−1
)+

1

2
Fxx(Wtk −Wtk−1

)2+Rk,n,

where the correction term Rk,n has the form

Rk,n =
1

2

(

Fxx(ξk) − Fxx(Wtk−1
)
) (

Wtk − Wtk−1

)2

with ξk ∈ (Wtk−1
∧ Wtk ,Wtk−1

∨ Wtk).
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We will show that

(5.6)

2n
∑

k=1

Rk,n → 0,

as n → ∞. Let δn
.
= max{|Wtk − Wtk−1

|, tk ∈ π}. Brownian motion W has
continuous paths, and hence δn → 0, as n → ∞. Hence we can estimate
further

|Rk,n| ≤
1

2
max

|x−y|≤δn

|Fxx(x) − Fxx(y)|(Wtk − Wtk−1
)2 =: ǫn(Wtk − Wtk−1

)2.

The function Fxx is continuous, it is uniformly continuous on intervals
(−δn, δn). Hence ǫn → 0, as n → ∞. We get now (5.6), since

|
2n
∑

k=1

Rk,n| ≤
2n
∑

k=1

|Rk,n| ≤ ǫn

2n
∑

k=1

(Wtk − Wtk−1
)2 → 0,

as n → ∞. Lemma 5.2 gives

2n
∑

k=1

Fxx(Wtk−1
)(Wtk − Wtk−1

)2 →
∫ T

0
Fxx(Ws)ds.

This gives

lim
n

2n
∑

k=1

Fx(Wtk−1
)(Wtk − Wtk−1

) = F (WT ) − F (0) − 1

2

∫ T

0
Fxx(Ws)ds,

and we can interpret the limit as path-wise limit. �

5.3. Girsanov theorem. Recall that if X is a continuous semimartingale,
then it has a unique representation

X = X0 + M + A,

where M is a continuous local martingale and A is a continuous process with
bounded variation on compacts, M0 = A0 = 0. Girsanov theorem explains
how the martingale changes when we change the probability measure.

Stochastic exponential and stochastic logarithm. A useful tool to define change
of measure is the stochastic exponential of a continuous martingale M .

Theorem 5.3. Let M be a continuous local martingale, M0 = 0. The unique
solution to the equation

(5.7) Zt = 1 +

∫ t

0
ZsdMs

is the stochastic exponential E(M) of M :

E(M)t = exp(Mt −
1

2
〈M,M〉t).

For a positive martingale Z, Z0 = 1, we can define the stochastic logarithm

L(Z) by L(Z)t =
∫ t

0
dZs

Zs
. Then we have the following formulas L(E(M)) =

M and E(L(Z)) = Z.
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Proof Itô formula gives that

E(M)t := eMt− 1
2
〈M,M〉t

is a solution to (5.7).
Uniqueness follows from the results on SDEs explained in the last lecture.
The formulas with stochastic exponentials and stochastic logarithms are left
as exercise. �

The proof of the following Yor’s formula is left as an exercise:

E(M)tE(N)t = E(M + N + [M,N ])t.

Before we continue, let us first discuss how to define measures with the
help of Radon-Nikodym derivatives on filtered spaces. Assume that M is
a continuous local martingale, M0 = 0, and IEIPE(M)t = 1 for all t ≥ 0.
This means that E(M) is a martingale [the details are in the extra set of
exercises].
If A ∈ Ft, then we can define a measure Qt on the sigma-algebra Ft by

Qt(A) = IEIP(E(M)tIA).

Let show that this is consistent with respect to time: take s < t and in
A ∈ Fs ⊂ Ft. The martingale property of E(M) gives

Qs(A) = IEIP(E(M)sIA) = IEIP(E(M)tIA) = Qt(A).

This means that the restriction of the measure Qt on the sigma-algebra Fs

is Qs: we can write this as Qt|Fs = Qs.

Theorem 5.4 (Girsanov). Let M be a local (IF, IP)- martingale and assume
that IEIPE(M)t = 1 for t ≥ 0. Let X be another (IF, IP)- martingale. Then
the process X is a (IF, Q)- semimartingale and it has decomposition

X = X̃ + D,

where the process X̃ = X −D is a (IF, Q)- martingale, D = 〈X,M〉 and the
predictable angle bracket process of the martingale X−D is 〈X−D,X−D〉 =
〈X,X〉.

Proof

Let us assume that |Xs| ≤ K, E(M)s ≤ K and V(〈X,M〉)t ≤ K, when
s ≤ t. With this assumption all the stochastic integrals in the proof below
are martingales.
Let A ∈ Fs. Recall that dE(M)t = E(M)dMt and

〈X, E(M)〉t =

∫ t

0
E(M)ud〈X,M〉u = (E(M) · 〈X,M〉)t .
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Let us now compute IEQ[XtIA]:

IEQ[XtIA] = IEIP[E(M)tXtIA]

integration by parts = IEIP[IA

(
∫ t

0
E(M)udXu +

∫ t

0
XuE(M)udMu + 〈X, E(M)〉t

)

= IEIP

(

IA

∫ s

0
E(M)udXu +

∫ s

0
XuE(M)udMu + 〈X, E(M)〉t

)

= IEIP

(

IA

∫ s

0
E(M)udXu +

∫ s

0
XuE(M)udMu + 〈X, E(M)〉s

)

+IEIP[IA([X, E(M)]t − 〈X, E(M)〉s)]
integration by parts = IEIP[IAE(M)sXs] + IEIP[IA([X, E(M)]t − 〈X, E(M)〉s)],
where we have used the fact that the stochastic integrals are martingales.
Now IEIP[IAE(M)sXs] = IEQ[IAXs] and integration by parts gives

〈X, E(M)〉 = E(M) · 〈X,M〉 = 〈X,M〉E(M) − (〈X,M〉 ◦ E(M)).

Now we can combine these observations and we get

IEQ[XtIA] = IEQ[XsIA] + IEQ[IA(〈X,M〉t − 〈X,M〉s)];
in other words the process X − 〈X,M〉 is a (IF, Q)- martingale.
We have proved this by assuming that |Xs| ≤ K, E(M)s ≤ K and Vt(〈X,M〉) ≤
K, when s ≤ t.
Let

τK = inf{u > 0 : |Xu| ≥ K}∧inf{u > 0 : E(M)u ≥ K}∧inf{u > 0 : Vu(〈X,M〉) ≥ K}.
Because the processes X, E(M), 〈X,M〉 are continuous, and then we have
that τK → ∞ as K → ∞ and τK < τK+1. Let X be a local martingale ηn

as the localizing sequence, M is a local martingale with σn as the localiz-
ing sequence. By the previous we get that X − 〈X,M〉 is a (IF, Q)- local
martingale τn ∧ ηn ∧ σn as the localizing sequence.
Put Yt = (Xt − 〈X,M〉)t. Let A ∈ Fs and we compute as above. Using the
integration by parts formula 8

dY 2
t = 2YtdYt + d〈Y, Y 〉t = 2Yt(dXt − 〈X,M〉t) + d〈X,X〉t;

hence the process Y 2 is a continuous semimartingale with respect to the
measure IP with 2Y ◦X as the martingale part and 〈X,X〉− 2Y · 〈X,M〉 as
the bounded variation part. Further

〈E(M), Y 2〉 = 〈E(M), 2Y ◦ X〉 = 2(E(M)Y ) · 〈X,M〉.
We can now compute:

IEQ(IAY 2
t ) = IEIP(IAY 2

t E(M)t)

IP = IEIP(IA(2((E(M)Y ) ◦ X)t − 2(E(M)Y ) · 〈X,M〉t
+(Y 2 · E(M))t + 2(E(M)Y ) · 〈X,M〉t + (E(M) · 〈X,X〉)t)

= IEIP(IAY 2
s E(M)s)

+IEP [IA((E(M) · 〈X,X〉)t − ((E(M) · 〈X,X〉)s)],

8In what follows we shall use the shorthand notation IP.
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and this proves the second claim, since using IP we obtain

IEIP[IA((E(M) · 〈X,X〉)t − ((E(M) · 〈X,X〉)s)] = IEQ[IA (〈X,X〉t − 〈X,X〉s)].
�

5.3.1. Examples and applications. Let X be a continuous process defined on
(Ω, F, IP). One can view the the process as a random variable with values
in the space of continuous functions C(IR) or C([0, T ]). We can define the
metric in this space by putting: f, g ∈ C([0, T ]) and then

||f − g||∞ = sup
s≤T

|f(s) − g(s)|.

Let B be a Borel sigma-algebra generated by the open sets with respect to
the norm || · ||∞. Now the process X induces a probability measure IPX in
the space C([0, T ]) for every T > 0: if B ∈ B, then

IPX(B) = IP(ω : X·(ω) ∈ B),

where we use the notation X·(ω) for a fixed path of the process X. Some-
times it is convenient to work in the space C([0, T ]) directly, and we identify
ω with a function x ∈ C([0, T ]): xt(ω) = xt.

Example 5.1 (Brownian motion with a drift). Consider the following exam-
ple. Let W be a Brownian motion defined on (Ω, F, IP). As explained above,
we can work in the canonical space of trajectories C(IR), and then Brownian
motion induces a measure on IPW in the canonical space. Loosely speaking
the measure IPW ’sees’ only those functions, which have the properties of
Brownian paths. For example, if we consider the following set A ∈ B: x ∈ A

if and only if x is continuous and x has bounded variation on compacts.
Then IPW (A) = 0.
To get another measure in the canonical space consider the measure induced
by the process Yt = Wt + at, in other words Brownian motion with a drift.
Call the corresponding measure by Qa. From theorem 5.4 we obtain way to
find the density:

• In the Girsanov theorem the martingale X is Brownian motion W .
• With respect to the measure Qa Brownian motion can be written as

Wt = W̃t + at, where W̃ is a (IF, Qa) martingale with 〈W̃ , W̃ 〉t =

〈W,W 〉t = t, i.e. W̃ is a (IF, Qa) Brownian motion by Levy’s char-
acterization theorem.

• Take now M = aW , and then 〈X,M〉t = 〈W,aW 〉t = at. Gir-

sanovs theorem tells now that
dQa

t

dIPW
t

= E(aW )t, and the process W̃ is

a (IF, Qa) Brownian motion.
• Sometimes in the literature everything is written in the canonical

space. Then
dQa

t

dIPW
t

= E(ax)t, where x is a PW Brownian motion.

Example 5.2 (Statistical application). One can interpret the previous ex-
ample also statistically. We know that Qa

T ≺≺ IPW , and because the expo-
nential martingale E(ax) is strictly positive on the interval [0, T ], we also
have that IPW ≺≺ Qa. Hence Qa

T ∼ IPW
T , and if we observe a trajectory x

on the interval [0, T ] we cannot say, weather we observe a Brownian motion
or Brownian motion with a drift.
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The Radon-Nikodym derivative is in this case the likelihood ratio between
the hypothesis IPW and Qa. So after observing the trajectory x on [0, T ] the
likelihood ratio is

E(ax)T = eaxT − 1
2
a2T .

The maximum likelihood estimator âT of the parameter a is the maximum
of the likelihood, when the observation x is fixed. A direct computation gives
âT = xT

T
.

Next we apply some martingale techniques to analyze level crossing of Brow-
nian motion, and Girsanov theorem to analyze level crossing of Brownian
motion with a drift.

Lemma 5.3. Let Wt, t ≥ 0 (IFW , IP) be a Brownian motion, a ∈ IR and
τa = inf{u ≥ 0 : Wu = a}. Then τa is a stopping time, IP(τa < ∞) = 1 and
if λ > 0, then

(5.8) IEIPe−λτα = e
√

2λ|a|.

Proof We know τa is a stopping time. Put Mt = exp{σWt − 1
2σ2t}. We

know that M is a martingale, and by Doobs stopping theorem

IEIPMτa∧t = 1,

since τa ∧ t is a bounded stopping time.
Let a > 0; then

Mτa∧t = exp{σWτa∧t −
1

2
σ2τa ∧ t} ≤ exp{σa}.

In the set τa < ∞ we have the limit limt→∞ Mτa∧t = Mτa and in the set
τa = ∞ we have limt→∞ Mτa∧t = 0. DCT implies that IEIP(I{τa<∞}Mτa) =
1, and using the fact that Wτa = a we get

IEIP

(

I{τa<∞} exp{−1

2
σ2τa}

)

= e−σa.

Let now σ → 0 and DCT gives again that

IP(τa < ∞) = 1.

Moreover, the fact that Wτa = a gives the identity

IEIP exp{−1

2
σ2τa} = e−σa.

The formula (5.8) is obtained by choosing σ =
√

2λ.
If a < 0, then we can use the above argments together with the fact that
−W is also a Brownian motion, and in this case τa = inf{u : −Wu = −a}.
�

Next we show how one can use the previous result and Girsanov theorem
to analyze the stopping time τ b

a = inf{u : Wu + bt = a}. Here it is better
to think that we work in the canonical space, and we look properties of the
stopping time

τa = inf{u : x(u) = a}
from the point of the measure Qa.
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Theorem 5.5. Let H be a bounded measurable functional from the space
(C[0,T ],B) to the space (IR, IBIR). Then

(5.9) IEQµH = IEIPW (HE(µW )T ),

where Qµ is the distribution induced by the process Wt + µt in the space
C[0,T ],B) and IPW is the distribution induced by Wt.

Proof Let us assume that the functional H has the form H(xt1 , xt2 −
xt1 , . . . , xtn − xtn−1), when x ∈ C[0,T ] and tk ∈ [0, T ], k = 1, . . . , n. With
respect to the measure Qµ the vector (xt1 , xt2 − xt1 , . . . , xtn − xtn−1) has
the normal distribution, xti − xti−1 ∼ N(µ(ti − ti−1), ti − ti−1) and the
components of the vector are independent. Hence

IEQ(H) =

∫

IRn

H(y1, . . . , yn)

n
∏

i=1

1
√

2π(ti − ti−1)

×e
− 1

2(ti−ti−1)
(yi−µ(ti−ti−1))2

dy1 · · · dyn

=

∫

IRn

n
∏

i=1

1
√

2π(ti − ti−1)

×e
− 1

2(ti−ti−1)
y2

i e
Pn

i=1 µyi− 1
2
µ2

Pn
i=1(ti−ti−1)dy1 · · · dyn

= IEIP(HE(µW )T .

The general case follows from this, since the Qµ distribution of every mea-
surable functional can be approximated by distribtions of the functionals of
the above type. �

Example 5.3. Let us now study the stopping time τa, when we have dis-
tribution Qµ. So τa = inf{t : xt = a}, where x ∈ C[0,T ]. H = e−λτa is a
bounded functional, and so

IEQµe−λτa∧T = IEIPW

(

e−λτa∧TE(µx)τa∧T

)

.

Note that xτa∧T ≤ a, and so

0 ≤ e−λτa∧TE(µx)τa∧T ≤ e|µa|

and if T → ∞, then

e−λτa∧TE(µx)τa∧T → e−λτaE(µx)τaI{τa<∞} = eµae−(λ+ 1
2
µ2)τaI{τa<∞}.

DCT theorem gives

IEQµ

(

e−λτaI{τa<∞}
)

= IEIPW

(

eµae−(λ+ 1
2
µ2)τaI{τa<∞}

)

= exp(µa−|a|
√

2λ + µ2),

where the last equality follows from lemma 5.3. Let now λ → 0 we get that

Qµ(τa = ∞) = eµa−|µa|.

This means that Qµ(τa = ∞) > 0, if µa 6= |µa|.


