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Lectures on 1.4. and 3.4. 2008

2.6.2. Histories and change of measure. Let Q ≺≺ IP, Y = dQ
dIP , and IF =

(Fn)n≥0 is a history, F0 = {∅,Ω}. Put yn = IEIP[Y |Fn]. Then (yn, Fn)n≥0 is
a uniformly integrable martingale.
Let be Qn = Q|Fn the restriction of the measure Q to the σ-algebra Fn and

respectively IPn = IP|Fn. Obviously we have Qn ≺≺ IPn, and let zn = dQn

dIPn

be the corresponding R-N- derivatives. We shall show that zn = yn IP-
almost surely, n ≥ 0. To show this, let F ∈ Fn and we obtain

Qn(F ) = Q(F ) =

∫

F

Y dIP =

∫

F

yndIP,

where the last equality follows from the definition of the conditional expec-
tation. On the other hand

∫

F

yndIP = Qn(F ) =

∫

F

zndIP,

and because the R-N- derivative is IP- almost surely unique, and we have
proved

Theorem 2.14. Let Q ≺≺ IP, Y = dQ
dIP and yn = IEIP[Y |Fn]. Then

(yn, Fn)n≥0 is uniformly integrable martingale and yn = dQn

dIPn
.

Theorem 2.15. Let Q ≺ IP on (Ω,F) and Y = dQ
dIP is Radon-Nikodym-

derivative. Then

• X ∈ IL1(Q) ⇔ XY ∈ L1(IP)
• If X ∈ IL1(Q), then

(2.27) IEQX = IEP (Y X).

Proof If X ≥ 0 is a simple random variable, X =
∑n

k=1 akIAk
, then we get

directly from definitions that

IEQX =
∑

k

akQ(Ak) =
∑

k

ak

∫

(Y IAk
) dIP

=

∫

(

Y

(

∑

k

akIAk

))

dIP = IEIP(Y X).

If X ≥ 0,X ∈ IL1(Q) and Xn is an increasing sequence of simple random
variables and X = limn Xn, then Y n = Y Xn is an increasing sequence of
random variable and Y X = limn Y n.
From the definition of expectation and MCT we obtain

IEQX = lim
n

IEQX(n) = lim
n

IEIPY (n) = IEIP(Y X).

Hence, if X ≥ 0, then X ∈ IL1(Q) if and only if Y X ∈ IL1(IP) and (2.27) is
valid.
The general case follows X = X+ − X−. �
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Distributions of real line. Let X be a random variable on (Ω,F , IP) and let
IPX be the distribution of the random variable X: IPX(B) = IP(X−1(B)),
where B is a Borel set .
Let now Q ≺≺ IP. Then, if QX is the distribution of random variable X

with respect to Q, then QX ≺≺ IPX : if IPX(B) = IP(X−1(B)) = 0, then
also QX(B) = Q(X−1(B)) = 0.
Let us assume that IPX(B) =

∫

B
f(x)µ(dx) and QX(B) =

∫

B
g(x)µ(dx),

where µ is a sigma- finite measure on real line. Let us compute y = dQX

dIPX
:

because QX(B) =
∫

B
g(x)µ(dx) and QX(B) =

∫

B
y(x)f(x)µ(dx); we ob-

serve that if we take y = g
f
I{f>0} we obtain that

QX(B) =

∫

B

g(x)µ(dx)

=

∫

B

g(x)

f(x)
I{>0}(x)f(x)µ(dx) =

∫

B

y(x)f(x)µ(dx).

Because Radon-Nikodym- derivative is unique, we get that y(x) = g(x)
f(x) .

In statistics y = g
f

is likelihood ratio.

2.7. The space M2(IF, IP).

2.7.1. Square integrable martingales. Let (Ω,F , IP) be a probability space.
We say that (Mn, Fn)≥1 is a square integrable martingale, if (M.IF) is a
martingale and Mk ∈ L2(IP) for all k ∈ IN.
Let Xn, n ≥ 1,be a process; put ∆Xk = Xk − Xk−1.

Lemma 2.5 (Energyequation, Pythagoras). Let (X, IF) = (Xk, Fk)k≥0 be a
square integrable martingale. Then

IEX2
n = IEX2

0 +

n
∑

k=1

IE(Xk − Xk−1)
2(2.28)

= IEX2
0 +

n
∑

k=1

IE(∆Xk)
2.

Proof Let j < k. Because X is square integrable, we get that XjXk ∈
L1(IP). Since X is a martingale, then by exercise 18.3., problem 6 we get

IE[Xj(Xk − Xk−1)|Fk−1] = XjIE[Xk − Xk−1|Fk−1] = Xj · 0 = 0;

which implies IE(Xj(Xk −Xk−1)) = 0. On the other hand, any sequence Yn

can be written as a telescopic sum

Yn = Y0 +
n
∑

k=1

∆Yk,

and so we write X2
n as

(2.29) X2
n = X2

0 + 2X0

n
∑

k=1

(∆Xk) +
n
∑

k=1

(∆Xk)
2 +

∑

i6=k

(∆Xj∆Xk).

But for j ≥ 1 we have IE(X0(∆Xj)) = 0, and IE(∆Xj∆Xk) = 0, for j 6= k.
After these observations we obtain (2.28) by taking expectations on the left
and right hand side of (2.29). �
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The proof of lemma 2.5 was based on the fact that a square integrable
martingale has orthogonal increments. Next we give another proof, using
the properties of martingale transforms.
Recall the Abel summation formula for two sequences of numbers a =
(ak)0≤k≤n and b = (bk)0≤k≤n. The Abel summation formula is the iden-
tity

(2.30) ambm = a0b0 +

m
∑

k=1

ak−1∆bk +

m
∑

k=1

bk∆ak.

Let us utilize the following notation:

[a, b]m =
m
∑

k=1

∆ak∆bk.

Now we can write the Abel summation in a symmetric form as follows:

(2.31) ambm = a0b0 +

m
∑

k=1

ak−1∆bk +

m
∑

k=1

bk−1∆ak + [a, b]m.

Often one says that the formula (2.31) is the integration by parts formula in
the discrete time.
Let us return to the proof of the equality (2.28) in Lemma 2.5 Integration
by parts formula gives

X2
n = X2

0 + 2

n
∑

k=1

Xk−1∆Xk + [X,X]n,

where Yn
.
=
∑n

k=1 Xk−1∆Xk is a martingale transform and , the process
Ck

.
= Xk−1 is predictable. Moreover, we get that Xk−1∆Xk ∈ L1(IP),

because X is a square integrable martingale. Hence Y = (Yk)1≤k≤n is a
martingale. Note also that IEYm = 0, and so

IEX2
n = IEX2

0 + IE[X,X]n,

and this the equality (2.29) with our new notation.
Denote by M2(IF, IP) the space of square integrable martingales, bounded
in L2(IP): M ∈ M2(IF, IP) if and only if supn IEM2

n < ∞.

Theorem 2.16. Let (M, IF) = (Mn, Fn)n≥ be a square integrable martin-
gale. Then

(2.32) M ∈ M2 ⇔
∞
∑

k=1

IE (∆Mk)
2 < ∞.

Moreover, if M ∈ M2, then there exists M∞ = limn Mn IP- almost surely.
Moreover M∞ = L2(IP) − limn Mn and

(2.33) IEM2
∞ = IEM2

0 + IE[M,M ]∞.

Proof By Lemma 2.5 n → IEM2
n is increasing in n [or directly, because

M2 is a submartingale]. With Fatou lemma we get IEM2
∞ = limn IEM2

2 and
hence

IEM2
∞ = lim

n
IEM2

n = IEM2
0 +

∞
∑

k=1

IE(∆Mk)
2,
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and this gives (2.32).

We have always IE|Mn| ≤
(

IEM2
n

)
1
2 , and so from the assumption M ∈ M2

it follows that supn IE|Mn| < ∞. Martingale convergence theorem implies
that there exists M∞ such that M∞ = limn Mn IP- almost surely [and also
in IL1(IP), since the martingale M is uniformly integrable, because it is
bounded in L2(IP)].
Next we shall show that M∞ = IL2(IP) − limn Mn. By the energy equality
we obtain

IE(Mn+r − Mn)2 =

n+r
∑

k=n+1

IE(∆Mk)
2 ≤

∞
∑

k=n+1

IE(∆Mk)
2.

By the Fatou lemma

IE(M∞ − Mn)2 = IE lim inf
r

(Mn+r − Mn)2

≤ lim inf
r

IE(Mn+r − Mn)2 ≤
∞
∑

k=n+1

IE(∆Mk)
2.

If n → ∞, then
∑∞

k=n+1 IE(∆Mk)
2 → 0 because the whole series converges,

so M∞ = IL2(IP) − limn Mn. Moreover,

IEM2
∞ = lim

n
IEM2

n = IEM2
0 + lim

n
IE[M,M ]n

and we have proved the equality (2.33). �

The next corollary is useful, when one applies it to sequences of martingales.

Corollary 2.6. Let N,M ∈ M2(IF, IP) such that N0 = M0. Then

(2.34) IE[M − N,M − N ]∞ ≤ IE ((M − N)∗∞)
2 ≤ 4IE[M − N,M − N ]∞.

Proof If M,N ∈ M2 and N0 = M0, then also U = M − N ∈ M2 and
U0 = 0. From the equality IEU2

n = IE[U,U ]n, and from the Doob maximal
inequality we get that

IE[U,U ]n = IEU2
n ≤ IE ((U)∗n)

2 ≤ 4IEU2
n = 4IE[U,U ]n.

We obtain the inequalities in (2.34) from this by letting n → ∞. �

2.8. Doob decomposition. The next theorem, again due to Doob, is very
useful, and the proof is very simple6.

Theorem 2.17 (Doob decomposition). Let (Xn, Fn)n≥0 be an integrable
stochastic process. Then there exists a unique predictable integrable process
A = (An, Fn)n≥0 such that

(2.35) Mn
.
= −X0 + Xn − An

is martingale. The process (Xn, Fn)n≥0 is a submartingale if and only if A

is non-decreasing: An ≤ An+1.

6The corresponding continuous time version of this theorem is called Doob-Meyer de-

composition, and it is one of the most important theorems in stochastic analysis. The

proof of the continuous time result is difficult.
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Proof Note that due to the telescopic formula one can define discrete time
processes by defining their jumps. Define M0 = 0 and if k ≥ 1 then

∆Mk
.
= ∆Xk − IE[∆Xk|Fk−1];

it is easy to see that ∆Mk ∈ IL1(IP), and IE[∆Mk|Fk−1] = 0, and so ∆Mk is
a martingale difference sequence. Hence Mn =

∑n
k=1 ∆Mk is a martingale.

In order to have the equality (2.35), we put A0 = 0 and

An =

n
∑

k=1

IE[∆Xk|Fk−1];

clearly An ∈ IL1(IP) and An ∈ Fn−1.
Let us show that the representation (2.35) is unique. So assume that we

have another representation Xn = X0 + M̃n + Ãn, with a martingale M̃ and
predictable Ã. Then we have

IE[∆Xk|Fk−1] = IE[∆M̃k + ∆Ãk|Fk−1] = ∆Ãk

= IE[∆Mk + ∆Ak|Fk−1] = ∆Ak.

Hence ∆Ak = ∆Ãk IP- almost surely; this in turn implies that An = Ãn IP-
almost surely, and then we get that M̃n = Mn IP- almost surely.
If X is a submartingale, then IE[Xk|Fk−1] ≥ Xk−1, and so ∆Ak ≥ 0; this
shows that the process A in non-decreasing.
Conversely, if A is non-decreasing, then

IE[Xk|Fk−1] = IE[X0 + Mk + Ak|Fk−1] = X0 + Mk−1 + Ak

≥ X0 + Mk−1 + Ak−1 = Xk−1.

We have proved the theorem. �

Remark 2.4. The predictable process A from the Doob decomposition is
called the compensator of X.

Example 2.8. We try to illustrate several aspects of the obtained results in
this example.
Let S0 = 0 and Sn =

∑n
k=1 ξk, where square integrable random variables

ξk are independent, with IEξk = 0 and Var(ξk) = σ2
k > 0. Let Fn = FS

n =
σ{Sk : k ≤ n}. We already know from Example 2.2. that (Sk, Fk), k ≥ 0, is
a square integrable martingale. We have that [S, S]n =

∑n
k=1 ξ2

k, then from
the condition (2.33) we obtain that S ∈ M2 if and only if

IE[S, S]∞ = IE
∞
∑

k=1

ξ2
k =

∞
∑

k=1

σ2
k < ∞.

The integration by parts formula gives

S2
n = S2

0 + 2
∑

k=1

Sk−1∆Sk + [S, S]n,

and hence the process

S2
n − [S, S]n = S2

0 + 2

n
∑

k=1

Sk−1∆Sk
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is a martingale, because
∑n

k=1 Sk−1∆Sk is a martingale transform, Sk−1∆Sk ∈
IL1(IP) and hence IE[Sk−1∆Sk|Fk−1] = Sk−1 · 0 = 0. [It is not difficult to
check that if M is a square integrable martingale, then M2 − [M,M ] is a
martingale. This generalizes the more concrete discussion with sums of in-
dependent centered random variables.]
Let us compare the decomposition S2− [S, S] to the Doob decomposition: By
Jensen inequality (S2

n, Fn)n≥0 is a submartingale, and so according to the
Doob decomposition

S2
n = S2

0 + Mn + An,

A = (An, Fn)n≥0 is predictable and increasing, and M is a martingale.
As in the proof of the Doob decomposition, we first try to figure out, how the
process A looks like.
Because ∆S2

k = 2Sk−1∆Sk + (∆Sk)
2 we obtain that

∆Ak = IE[∆S2
k |Fk−1] = IE[2Sk−1∆Sk + (∆Sk)

2|Fk−1]

= 2Sk−1IE[∆Sk|Fk−1] + IE[ξ2
k|Fk−1] = σ2

k,

where we have used the following information: ∆Sk = ξk, IE[ξk|Fk−1] =
IEξk = 0, because ξk

w

Fk−1 and by the same reason IE[ξ2
k|Fk−1] = IE[ξ2

k] =
σ2

k. From this we will get that

An =
n
∑

k=1

σ2
k.

Later we use the notation: A =< S,S > [for general martingales M we will
also use the notation < M.M > for the compensator of M2.].
Let us study the Doob maximal inequality in this example. From the Doob
maximal inequality we get

IES2
n ≤ IE(S∗

n)2 ≤ 4IES2
n.

But the process S2 − [S, S] is a martingale, and hence IES2
n = IE[S, S]n, and

we can write the maximal inequality in the form

(2.36) IE[S, S]n ≤ IE(S∗
n)2 ≤ 4IE[S, S]n.

But the process S2− < S,S > is also a martingale, and so IES2
n = IE <

S,S >n=
∑n

k=1 σ2
k. We get that

(2.37) IE < S,S >n=

n
∑

k=1

σ2
k ≤ IE(S∗

n)2 ≤ 4

n
∑

k=1

σ2
k = 4IE < S,S >n .

With deterministic times we see no difference in the inequalities. But let τ

be a finite stopping time. Moreover, assume that σ2
k = σ2. Then < S,S >n=

nσ2. Doobs theorem on optimal stopping tells us that

IES2
τ = IE[S, S]τ = IE < S,S >τ= σ2IEτ.

Now we can write the inequality (2.37) in the form

σ2IEτ ≤ IE(S∗
τ )2 ≤ 4σ2IEτ.

Let finally τ be a stopping time such that IP(τ < ∞) = 1. Then τ ∧ n is a
bounded stopping time and we get

σ2IEτ ∧ n ≤ IE(S∗
τ∧n)2 ≤ 4σ2IEτ ∧ n.
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If we let n → ∞, then we will finally get

σ2IEτ ≤ IE(S∗
τ )2 ≤ 4σ2IEτ.

From this we get that S∗
τ ∈ IL2(IP) if and only if IEτ < ∞. Similarly, from

the inequalities (2.36) we obtain the inequalities

IE[S, S]τ ≤ IE(S∗
τ )2 ≤ 4IE[S, S]τ .

This is less informative that the previous one in our case.

Summary. Let (Mn, Fn)n≥0 be a square integrable martingale.
From the integration by parts formula we obtain that the process M2 −
[M,M ] is a martingale, where [M,M ] is an increasing process given by
[M,M ]n =

∑n
k=1(∆Mk)

2. In the case of IP(τ < ∞) = 1 Doobs maximal
inequality and stopping equality give the following inequalities

(2.38) IE[M,M ]τ ≤ IE(M∗
τ )2 ≤ 4IE[M,M ]τ .

Because the process M2 is a submartingale, the Doob decomposition gives
that there exists an increasing integrable process A = (An, Fn)n≥1 such that
M2 − A is a martingale. The process A is the compensator of M2, and we
denote it by < M,M >. From Doobs theorem on optimal stopping it follows
that IEM2

τ = IE < M,M >τ , when τ is a bounded stopping time. We can
now write predictable version of the Doobs maximal inequality (2.38):

(2.39) IE < M,M >τ≤ IE(M∗
τ )2 ≤ 4IE < M,M >τ .

In the example 2.8 we gave an example from a situation, where the pre-
dictable maximal inequalities (2.39) are more informative than the inequal-
ities (2.38).
The processes M2 − [M,M ] and M2− < M,M > are martingales, the
process [M,M ]− < M,M > is a martingale, too:

[M,M ]− < M,M >= M2− < M,M > −(M2 − [M,M ]).

Hence the process < M,M > is the compensator of [M,M ]..

Remark 2.5. The inequalities (2.38) and (2.39) hold, when IE(M∗
τ )2 = ∞:

if this is the case, then IE[M,M ]τ = ∞ and IE < M,M >τ= ∞.

The process [M,M ]n =
∑n

k=1(∆Mk)
2 is sometimes called the energy process

of M . If M is a square integrable process, then the process < M,M >

exists, and it called the predictable energy process. Martingales M ∈ M2

have finite energy.

3. Brownian motion and continuous time martingales

3.1. Basic facts on continuous time processes.

Definition 3.1. Let X = (Xt)t≥0 be a collection of random variables; then
X is a continuous time stochastic process. The map [with ω fixed] t 7→ Xt(ω)
is the path of the process X [sometimes also a trajectory of X]. The process
X is continuous, if it has continuous paths almost surely. The process X

has D-paths, if it has right-continuous paths: Xt+(ω) = Xt(ω) with left-hand
limits: there exists Xt−(ω) = lims↑t Xs(ω). The jump of the process X at
time t is ∆Xt(ω) = Xt(ω) − Xt−(ω).
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A discrete time process Y = (Yk)k≥0 can be embedded in the continuous
time as follows. Define a continuous time process X by Xt = Y⌊t⌋. Then
the process X has D- paths and the sequence of the jumps ∆X satisfies
∆Xn = Yn. Hence we can interpret in this way all the discrete time processes
as continuous time processes with simple D- paths.
Processes with D- paths have several useful properties, which are given in
the next theorem.

Theorem 3.1. Let X = (Xt)t≥0 be a process with D- paths.

a) The expressions X∗
t = sups≤t |Xs|, X∗

∞, sups≤t Xs . . . are random
variables.

b) Let T > 0 and πn = {tk : k = 0, . . . k(n)} a partition of the interval
[0, T ], 0 = t0 < t1 · · · < tk(n) = T and |πn| = maxπn

(tk − tk−1).

Let X
(n)
t = Xtk when t ∈ [tk−1, tk) be a discretization of X and let

|πn| → 0, as n → ∞; then Xt = limn X
(n)
t .

c) With ω fixed the set

∆X(ω) 6= 0 = {t : ∆Xt(ω) 6= 0}

is numerable.

Proof Let f : IR+ → IR be a function with f(t+) = f(t) and with left-

hand limits f(t−). Put f∗(t) = sups≤t |f(s)| and f̃∗(t) = sup{|f(q)| : q ∈

[0, t] ∩ Q ∪ {t}}. Clearly f̃∗(t) ≤ f∗(t). Assume now that f̃∗ < f∗, that

is f∗(t) − f̃∗(t) = ǫ > 0. From the definition we obtain that there exists
t0 ∈ [0, t) such that |f(t0)| > f∗(t) − ǫ

2 . But t0 < t and by the right-

continuity of f |f(t0)| = limqk↓t0 |f(qk), and this gives f̃∗(t) ≥ f(t0), which

is in conflict with the assumption that f∗(t) − f̃∗(t) = ǫ > 0. Apply now

these facts to the functional X∗
t . We have shown that X∗

t = X̃∗
t , where

X̃∗
t = sup{|Xq| : q ∈ [0, t] ∩ Q ∪ {t}}, and the functional X̃∗

t is a random
variable. The other claims of part a) are shown similarly.
The claim b) follows directly form the fact that the process X has D- paths.
Let f be a D-function and let T > 0. Consider the set

∆T
k (f) = {t : |∆(f)(t)| >

1

k
, t ≤ T}.

We claim that the set ∆k(f) is finite. To prove this, assume that this is
not the case. Then we can find a sequence tk ∈ ∆T

k (f), k ≥ 1. Because
the interval [0, T ] is bounded, then there a subsequence tn(k) such exists
t0 = lim tn(k) ∈ [0, T ]. By going to a further subsequence tq we can assume
that tq converges to the point t0 either from the left or from the right. If for
example tq ↓ t0, then the function f is not right-continuous at the point t0.
If tq ↑ t0, then the function f does not have left limit at the point t0. But
f is continuous from the right and has left-hand limits at every point. So
∆T

k (f) is finite.

So for fixed ω the sets ∆T
k (X)(ω) are finite. We obtain that the set

∆X(ω) = ∪T∈IN ∪k≥1 ∆T
k (X)(ω)

is at most numerable, and we have proved part c). �
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The next definition gives several ways to identify in what sense two processes
are the same.

Definition 3.2. Let X, Y be stochastic processes.

• The processes X and Y have the same finite dimensional distributions,
if for all t1, . . . , tk, k ≥ 1 , B1, . . . , Bk ∈ IBIR:

(3.1) IP(Xt1 ∈ B1, . . . ,Xtk ∈ Bk) = IP(Yt1 ∈ B1, . . . , Ytk ∈ Bk).

• The process X is a version of a process Y if t ≥ 0 IP(Xt = Yt) = 1.
• The processes X are Y indistinguishable, if IP(Xt = Yt ∀t ≥ 0) = 1.

Clearly indistinguishably of X and Y implies that they are versions of each
other. More facts of this type in the next theorem.

Theorem 3.2. Let X, Y be stochastic processes.

• If the processes X and Y are versions of each other, then they have
the same finite dimensional distributions.

• If the processes X and Y are versions of each other with D- paths,
then they are indistinguishable.

Proof Let t1, . . . , tk, k ≥ 1 and

A = {ω : Xt1(ω) = Yt1(ω), . . . ,Xtk = Ytk}.

If the processes X and Y are versions of each other, then IP(A) = 1, and so

IP(Xt1 ∈ B1, . . . ,Xtk ∈ Bk) = IP((Xt1 ∈ B1, . . . ,Xtk ∈ Bk) ∩ A)

= IP((Yt1 ∈ B1, . . . , Ytk ∈ Bk) ∩ A)

= IP(Yt1 ∈ B1, . . . , Ytk ∈ Bk),

since, for example we have that

IP((Xt1 ∈ B1, . . . ,Xtk ∈ Bk) ∩ Ac) ≤ IP(Ac) = 0.

Hence the processes X and Y have the same finite dimensional distributions.
We assume the the processes X and Y are versions of each other with D-
paths. Put B = {ω : exists t ≥ 0 with Xt(ω) 6= Yt(ω)}. If ω ∈ B, then
there exists a q ∈ Q such that Xq(ω) 6= Yq(ω). On the other hand, for a
fixed q ∈ Q IP(ω : Xq(ω) 6= Yq(ω), q ≥ 0, q ∈ Q) = 0, and hence IP(B) = 0.
We have shown that X and Y are indistinguishable. �

Example 3.1 (Brownan motion). Stochastic process W = (Wt)t≥0 is a
Brownian motion, if W0 = 0

• For all 0 ≤ t0 < t1 < · · · < tn the increments Wtk − Wtk−1
, k =

1, . . . , n are independent.
• The increment has a normal distribution: Wt − Ws ∼ N(0, t − s)

when t > s ≥ 0.
• The paths of the process W are continuous.

This definition is axiomatic, and at this point we do not know, in what sense
Brownian motion exists. We will discuss this on Tuesday, 8.4.
The name comes from Robert Brown who studied the movement of small
particles in water, and heuristically described the path properties of Brownian
motion having values in three dimensional space. Bachelier obtained first
mathematical results on Brownian motion in his PhD thesis in 1900. He also
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used Brownian motion to model stock price movements at the Paris stock
exchange! In 1905 Einstein used Brownian motion as a model in physics.
Note that this was about twenty five years earlier than the axiomatization of
probability theory by Kolmogorov.

Next we show that the paths of Brownian motion are rather wild. This
fact explains why we must work for a while to be able to define stochastic
integrals with respect to Brownian motion.

Theorem 3.3. Let W = (Wt)t≥0 be a Brownian motion, T > 0 and πn =
{tk : t0 < t1 · · · tk(n)} are partitions of the interval [0, T ] such that |πn| → 0,
as n → ∞. Then

(3.2)
∑

tk∈πn

(Wtk − Wtk−1
)2

L2(IP)
→ T, when |πn| → 0.

Proof Let

X(n) =
∑

tk∈πn

(Wtk − Wtk−1
)2.

We must show that X(n) L2(IP)
→ T , as |πn| → 0. We recall that it is equivalent

to show that IEX(n) → T and Var(X(n)) → 0. Now

IEX(n) =
∑

tk∈πn

IE(Wtk − Wtk−1
)2 =

∑

tk∈πn

(tk − tk−1) = T.

Recall also the following property of the normal distribution: if ξ ∼ N(0, σ2),
then Var(ξ2) = IEξ4 − σ4 = 2σ4. Brownian motion has independent incre-
ments, and so

Var(X(n)) =
∑

tk∈πn

Var((Wtk − Wtk−1
)2)

= 2
∑

tk∈πn

(tk − tk−1)
2 ≤ |πn|T → 0.

This proves the claim. �

Next we recall the definition of variation of a function.

Definition 3.3. The variation of the function f on the interval [0, T ] with
respect to a partition π is the number

Vπ(f) =
∑

tk∈π

|ftk − ftk−1
|,

and its total variation on the interval [0, T ] is the number

VT (f) = sup
π

varπ(f);

and f has bounded variation on the interval [0, T ] if VT (f) < ∞.

Let us show that for a Brownian motion W we have that VT (W ) = ∞ almost
surely. Let us assume that this is not the case. Let A = {ω : VT (W )(ω) <

∞} and assume that IP(A) > 0. If ω ∈ A, then
∑

tk∈πn

(Wtk − Wtk−1
)2 ≤ max

k
|Wtk − Wtk−1

|VT (W )(ω).
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Brownian motion has continuous paths and a continuous function is uni-
formly continuous on compact intervals [0, T ], then maxk |Wtk −Wtk−1

| → 0,
as |πn| → 0.
Hence for ω in the set A

∑

tk∈πn
(Wtk − Wtk−1

)2 → 0; but we have always
∑

tk∈πn
(Wtk −Wtk−1

)2
IP
→ T , as |πn| → 0. This in turn implies that we must

have IP(A) = 0. Hence we have shown that mathcalVT (W ) = ∞ almost
surely.

3.2. Measurability of a process, histories and stopping times. Recall
once more the definition of a stochastic process. The collection X = (Xt)t≥0

is a stochastic process, if Xt is a random variable for all t ≥. Here we fix t

and ask measurability with respect to the ω only. Sometimes it is useful to
ask measurability with respect to the pair (ω, t).

Example 3.2. Let X = (Xn)n≥0 be a stochastic process with discrete time.
Put N = P(IN). Then N is a sigma-algebra on IN [and it is the smallest
sigma-algebra containing singletons {k}]. Consider the process X as a map-
ping (n, ω) 7→ Xn(ω). We see that this is a measurable mapping from the
product space to real line (IN × Ω,N ⊗F) → (IR, IBIR):

{(n, ω) : Xn(ω) ∈ B} = ∪k{k} × {ω : Xk(ω) ∈ IB} ∈ N ⊗ F .

If X = (Xt)t≥ is a continuous time stochastic process, then we again have
{s} × {ω : Xs(ω) ∈ B} ∈ IBIR+ ⊗ F ; but this does not imply that {(s, ω) :
Xs(ω) ∈ B} ∈ IBIR+ ⊗F , since the union is not anymore numerable.

Definition 3.4. The process X = (Xt)t≥0 is (jointly) measurable, if the
mapping (t, ω) 7→ Xt(ω) is a measurable mapping (IR+ × Ω, IBIR+ ⊗ A) →
(IR, IBIR).

3.2.1. Histories and stopping times. A continuous time history IF = (Ft)t≥0

is an increasing family of subsigma-algebras of the sigma-algebra F : s ≤
t ⇒ Fs ⊂ Ft. The process X is IF- adapted, if Xt ∈ Ft, when t ≥ 0.
The intersection of sigma-algebras is again a sigma-algebra, and so

Ft+ = ∩u>tFu

is a sigma-algebra and Ft ⊂ Ft+. We say that a history IF is continuous from the right,
if Ft+ = Ft.
The history of X at time t is FX

t = σ{Xs : s ≤ t}.
A random variable τ : Ω → IR+∪{∞} is a stopping time with respect to the
history IF, if {τ ≤ t} ∈ Ft for t ≥ 0. The stopped sigma-algebra is defined
as in discrete time:

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft}.

Like in discrete time we get easily the following: if σ, τ are two stopping
times with σ ≤ τ , then Fσ ⊂ Fτ .

Lemma 3.1. Let IF be continuous from the right. Then τ is a stopping time
if and only if {τ < t} ∈ Ft.

Proof is an exercise [Problem 3 on 10.4. 2008].
Process X is adapted to IF, if Xt ∈ Ft.



STOCHASTIC ANALYSIS: AN INTRODUCTION 37

Example 3.3. Let X be a IF- adapted process, which has D- paths and
we assume that IF is right-continuous. Let A ∈ IBIR be an open set. Let
τA = inf{t ≥ 0 : Xt ∈ A}, where we agree that inf{∅} = ∞. Let us show
that τA is a stopping time.
Put

B = ∪0≤r≤t,r∈Q{ω : Xr(ω) ∈ A}

and we claim that B = {ω : τA(ω) < t}.
Assume first that ω ∈ B; then τA(ω) ≤ r < t for some rational r, and hence
ω ∈ {τA < t}. On the other hand, if ω ∈ {τA < t}, then Xs(ω) ∈ A for some
s < t, and hence there is a rational number r < t such that Xr(ω) ∈ A, and
hence {τA < t} ⊂ B. This means that {τA < t} = B, and so {τA < t} ∈ Ft

and by Lemma 3.1.
A typical case is the following K > 0 and τK = inf{t ≥ 0 : |Xt| > K}.

3.3. Martingales. Let (X, IF) be an integrable adapted process, and let
s < t. If in addition IE[Xt|Fs] ≤ Xs, then X is a supermartigale; if in
addition IE[Xt|Fs] = Xs, the X is a martingale; and finally, if IE[Xt|Fs] ≥
Xs, then X is a submartingale.

Theorem 3.4. Let X be a process with independent increments and Xt ∈
L2(IP). Put Ft = σ{Xs : s ≤ t}. Then the process Mt = Xt − IEXt, is a
martingale and the M2

t − Var(Xt) is a martingale.

3.3.1. On martingale inequalities in continuous time. Recall Doobs Lp- in-
equality for a discrete time martingale X = (Xk, Fk)1≤k≤n:

||Xn||p ≤ ||X∗
n||p ≤ q||Xn||,

where p, q > 1 are such that 1
p

+ 1
q

= 1.

Let X = (Xt, Ft)t≤T be a continuous time martingale with D- paths. Let
qk ∈ [0, T ] be rational numbers, k = 0, . . . , n−1, 0 ≤ q0 < q1 < · · · < qn−1 <

T and qn = T . If we put Y
(n)
k

.
= Xqk

, G
(n)
k

.
= Fqk

we get a discrete time
martingale, and we have the following inequality

||XT ||p = ||Y (n)
n ||p ≤ ||(Y (n)) ∗n ||p ≤ q||Y (n)

n || = q||XT ||p.

Because X has D- paths, increasing the rational numbers in the definition
of Y (n), we get (Y (n))∗n ↑ X∗

T , and hence the Lp-maximal inequality holds
for a continuous time martingale X with D- paths.
With similar arguments one shows that upcrossing inequality holds for con-
tinuous time submartingales, and other maximal inequalities hold, too, if
the processes have D-paths.

Remark 3.1. Let (M,F ) be a martingale, but not necessarily with D-paths.
Let t > 0 and tn ↑ t. Now Yk = Mtk is a uniformly integrable martingale
with repsect to the history Ftk , and so it converges almost surely. Hence we
always have a left-hand limit Mt− = lim Mtn .
Assume now that sk ↓ t: by using the so-called inverse martingale conver-
gence theorem we can show that Mt+ = limk Msk

. So martingale has always
right-hand limits, too. Clearly Mt+ ∈ Ft+, but not necessarily Mt+ ∈ Ft. If
the history is right-continuous, then Mt+ ∈ Ft. One can show that in this
situation the martingale M has a version with D- paths.
We omit the details.


