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2.1.2. Martingale transforms and predictability.

Definition 2.3. Let IF = (Fk)k≥0 be a history. Stochastic process C =
(Ck)k≥1 is predictable, if Ck ∈ Fk−1 ∀k ≥ 1.

Definition 2.4. Let C and X be stochastic processes. The process C ◦X is
martingale transform, where

(C ◦ X)n
.
=

n
∑

k=1

Ck(Xk − Xk−1) =

n
∑

k=1

Ck∆Xk,

when n ≥ 1 and (C ◦ X)0 = X0.

The next theorem justifies the terminology.

Theorem 2.1. Let IF be a history, the process X satisfies X ∈ IF and C is
a predictable process.

• If in addition 0 ≤ Cn(ω) ≤ K and X is a supermartingale, then
Y

.
= (C ◦ X) is a supermartingale.

• If in addition |Cn(ω)| ≤ K and X is a martingale, then Y
.
= (C ◦X)

is a martingale.

The proof is left as an exercise.

2.1.3. Stopping times and processes. let IF be a history, X is IF- adapted
process and τ is a stopping time. Define the random variable Xτ by

Xτ =

∞
∑

k=0

XkI{τ=k}.

Let us define X∞I{τ=∞} = 0, if there is no limit limn Xn . Since

{Xτ ∈ B} = ∪∞
n=0 ({Xn ∈ B} ∩ {τ = n}) ∈ F ,

when B ∈ IBIR, then Xτ is well defined random variable.

Definition 2.5. Let IF be a history and τ is a stopping time. The stopped
σ-algebra is

Fτ = {A ∈ F : A ∩ {τ ≤ k} ∈ Fk, k ≥ 1}.

Theorem 2.2. Let IF be a history, τ is a stopping time and X IF- adapted
process. Then Xτ ∈ Fτ .

Proof Let B be a Borel set and consider again

{Xτ ∈ B} = ∪∞
n=0 ({Xn ∈ B} ∩ {τ = n}) .

By definition, {Xn ∈ B} ∩ {τ = n} ∈ Fτ , and the claim follows. �

Stopped σ-agebras have the property:

(2.1) σ ≤ τ ⇒ Fσ ⊂ Fτ

and if IP(τ ≤ M) = 1 and X = (Xk)k≥0 is a martingale, then

(2.2) IEXτ = IEX0.

[This follows from Theorem 2.3 proved a bit later.]
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Let X be a stochastic process, IF a history, and τ a stopping time. Assume
that X ∈ IF. Define the stopped process Xτ and the stopped history IFτ by:

Xτ
n = Xτ∧n and F τ

n = Fτ∧n.

We have, for any Borel set B, that

{Xτ
n ∈ B} =

n
∑

k=0

{Xk ∈ B} ∩ {τ = k} + {Xn ∈ B} ∩ {τ > n},

and so Xτ
n ∈ F τ

n . We can write this as Xτ ∈ IFτ . Next we study how
stopping affects martingale properties of the process X.

Lemma 2.1. Let (X, IF) be a (super)martingale and τ is a stopping time.
Then (Xτ , IF) is a (super)martingale.

Proof Put Ck = I{k≤τ}, when k ≥ 1. The process C is predictable:
{Ck = 0} = {τ ≤ k − 1} ∈ Fk−1; note also that

Xτ
n =

n
∑

k=1

Ck(Xk − Xk−1),

and so Xτ is a (super)martingale by Theorem 2.1. �

Theorem 2.3 (Doob). Let X be a martingale, which is defined on a sto-
chastic basis (Ω, IF,F , IP). Let σ, τ be bounded stopping times, which satisfy
σ ≤ τ . Then

(2.3) IE[Xτ |Fσ ] = Xσ .

Proof By assumption we have that σ ≤ τ ≤ M . We must show that for
A ∈ Fσ we have

∫

A

XσdIP =

∫

A

XτdIP.

For this it is enough to show that
∫

A∩{σ=k}
XσdIP =

∫

A∩{σ=k}
XτdIP

when 1 ≤ k ≤ M . Put B = A ∩ {σ = k}, and now we get, using recursion
and the martingale property of X:
∫

B

XσdIP =

∫

B

XkdIP =

∫

B∩{τ=k}
XkdIP +

∫

B∩{τ>k}
XkdIP

=

∫

B∩{τ=k}
XkdIP +

∫

B∩{τ>k}
Xk+1dIP

=

∫

B∩{τ=k}
XτdIP +

∫

B∩{τ=k+1}
XτdIP +

∫

B∩{τ>k+1}
Xk+1dIP

· · ·

=

∫

B∩{k≤τ≤M}
XτdIP =

∫

B

XτdIP.

This proves the claim (2.3). �.
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Remark 2.1. • A more general version of Doob’s stopping theorem
goes as follows: X is a martingale on (Ω, IF, F, IP) and σ, τ are two
stopping times with the property that Xσ,Xτ ∈ L1(IP). If in addition

lim inf
n

∫

{τ>n}
|Xτ |dIP = 0,

then
IE[Xτ |Fσ ]1{τ≥σ} = Xσ1{τ≥σ}.

• As a corollary of Doob’s theorem we obtain that Xτ is a IFτ martin-
gale.

Example 2.5. Let ξk be independent Bernoulli variables with IP(ξk = 1) =
p = 1 − IP(ξk = −1), when k ≥ 1. Let X0 = 0 and Xn =

∑n
k=0 ξk. Put

Fn = FX
n = σ(ξ1, . . . , ξn).

The player can put any amount Vn in the game on the nth round. How
the player chooses Vn can depend on the previous results ξ1, . . . , ξn−1 of the
game. Hence Vn is measurable with respect to Fn−1, or in other words V is
predictable with respect to IFX . We interpret ξn = 1 as the win: the player

receives Vn from the bank, if the outcome of the nth round is ξn = −1, then
the player pays Vn to the bank. The gains process G is the following:

Gn =

n
∑

k=1

Vkξk =

n
∑

k=1

Vk∆Xk = (V ◦ X)n.

If p = 1
2 , the process X is a martingale, and the gains process G is also a

martingale, provided that Gn is integrable.
The martingale strategy goes as follows: bet V1 = 1, and if ξ1 = 1, then stop.
If ξ1 = −1, then bet V2 = 2. And more generally, if ξ1 = −1, . . . , ξn−1 = −1
then bet Vn = 2n, and if ξn = 1, then stop.
Put τ = inf{k : ξk = 1}. τ is a stopping time. Clearly, if τ = n, we have

Gn = 2n −
n
∑

k=1

2k−1 = 2n − 2n + 1 = 1.

Hence Gτ = 1.

• Good news for the gambler: IP(τ < ∞) = 1 [even for any p > 0].
• Bad news for the gambler: IE|Gτ | = ∞ for p ≤ 1

2 [but IE|Gτ | =
2

2(2p−1) < ∞ for p > 1
2 .]

2.2. Some martingale inequalities.

2.2.1. Doob maximal inequality. Let X be a process on (Ω, IF, F, IP) and put

X∗
n = max

k≤n
|Xk|;

by assumption Xk ∈ Fk ⊂ Fn, when k ≤ n, then we get X∗
n ∈ Fn. Clearly

the process X is increasing and non-negative. The process X∗ is the maximal
process .of X.
With the Markov inequality we have for all c > 0

(2.4) cIP(X∗
n ≥ c) ≤ IE(X∗

nI{X∗
n≥c}) ≤ IEX∗

n.
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The next theorem tells that if (Xn, Fn)n≥0 is a non-negative submartingale,
then on the right hand side of (2.4) one can replace the value X∗

n of the
maximal process by the value of submartingale Xn!

Theorem 2.4 (Doob maximal inequality). Let (Z, IF) be a non-negative
submartingale. Then for all c > 0

(2.5) cIP(Z∗
n ≥ c) ≤ IE(ZnI{Z∗

n≥c}) ≤ IEZn.

Proof Put G = {Z∗
n ≥ c}. Let us define recursively G0 = {Z0 ≥ c} and for

k ≥ 1

Gk = {Z0 < c} ∩ {Z1 < c} ∩ · · · ∩ {Zk ≥ c}.

By definition Gk ∈ Fk and if k 6= l, then Gk ∩ Gl = ∅. Moreover, we have
that G = ∪n

k=0Gk.
After these preparations we can prove the inequality (2.5). because Z is a
submartingale, then for all 0 ≤ k ≤ n it holds

(2.6) IE(ZnIGk
) =

∫

Gk

ZndIP ≥

∫

Gk

ZkdIP ≥ cIP(Gk);

since the events Gk are disjoint and their union is G:

cIP(X∗
n ≥ c) = cIP(G) = c

n
∑

k=0

IP(Gk)

estimate(2.6) ≤
n
∑

k=0

∫

Gk

ZndIP = IE(ZnIG).

This proves the inequality (2.5). �

Let (M, IF) be a martingale. Then (|M |, IF) is a nonnegative submartingale,
and we have

Corollary 2.1. Let (M, IF) martingale. Then for all c > 0

(2.7) cIP(M∗
n ≥ c) ≤ IE(|Mn|I{M∗

n≥c}) ≤ IE|Mn|.

2.2.2. Doobs Lp- inequality. Denote ||X||q = (IE|X|q)
1

q , when q > 1. Recall
Hölder’s inequality.

Theorem 2.5 (Hölder). Let p, q be conjugate numbers : p, q ≥ 1 and 1
p
+ 1

q
=

1 If X,Y are random variables , which satisfy X ∈ Lp(IP), Y ∈ Lq(IP), then
XY ∈ L1 and

(2.8) IE|XY | ≤ ||X||p||Y ||q.

Proof We may assume that X,Y ≥ 0 and also that ||X||p > 0 [if ||X||p = 0,
then X = 0 IP- a.s.. and we have the inequality (2.8)]
Define a probability measure Q by

Q(A) =
1

IEIPXp

∫

A

XpdIP

and a random variable U by U = Y
Xp−1 I{X>0}. It follows from the Jensen

inequality that

(IEQU)q ≤ IEQU q.
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On the other hand

IEQU =
1

IEXp
IEIP

(

Y Xp

Xp−1
I{X>0}

)

=
1

IEXp
IEIP(XY I{X>0}) =

1

IEIPXp
IEIP(XY )

and so

IEIP(XY ) = IEP XpIEQU ≤ IEP Xp (IEQU q)
1

q

≤ IEP Xp

(

1

IEIPXp
IEP

((

Y

Xp−1

)q

I{X>0}X
p

))
1

q

= ||X||p
(

IEIP(Y qI{X>0})
)

1

q ≤ ||X||p||Y ||q,

where we used the facts −q(p − 1) + p = 0 and 1 − 1
q

= 1
p
. �

Next we prove inequality:

Lemma 2.2. Let X,Y ≥ 0 be random variables with

(2.9) cIP(X ≥ c) ≤ E(Y I{X≥c}),

when c > 0. Then the following inequality holds

(2.10) ||X||p ≤ q||Y ||p

with conjugate numbers p, q.

Proof We can assume that IP(X ≥ c) > 0, for some c > 0, otherwise (2.10)
holds without a proof, since the left hand side is = 0. Further we can assume
that ||Y ||p < ∞. Let us further assume that ||X||p < ∞.
Using the Fubini theorem

IEXp =

∫

Ω

(

∫ X(ω)

0
pcp−1dc

)

IP(dω)

=

∫ ∞

0

(
∫

Ω
I{X(ω)≥c}IP(dω)

)

pcp−1dc.

By the inequality (2.9) and Fubini theorem we obtain
∫ ∞

0
IP(X ≥ c)pcp−1dc ≤

∫ ∞

0
IE
(

Y I{X≥c}

)

pcp−2dc

=

∫

Ω
Y

(

∫ X(ω)

0
pcp−2dc

)

IP(dω) = qIE(Y Xp−1)

With the help of Hölder inequality we obtain that

IE(Y Xp−1) ≤ ||Xp−1||q||Y ||p = (IEXp)
1

q ||Y ||p,

since (p − 1)q = (p − 1) p
p−1 = p.

So we have obtained the inequality

(2.11) IEXp ≤ qIE(Y Xp−1) ≤ q||Y ||p (IEXp)
1

q .

Because 1 − 1
q

= 1
p

we obtain from the (2.11) by dividing the left and right

hand side by the term (IEXp)
1

q the inequality

||X||p ≤ q||Y ||p.
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Now we show how one can proceed without assuming that ||X||p < ∞: if the
random variable X satisfies (2.9), then it is true for the truncated random
variable X ∧ n and so for all n we have

||X ∧ n||p ≤ q||Y ||p.

The claim (2.10) follows now by letting n → ∞. �

Corollary 2.2. Let X,Y ≥ 0 be random variables, which satisfy (2.9) and
||Y ||p < ∞. Then X ∈ Lp.

Theorem 2.6 (Doob’s Lp inequality). Let (X, IF, IP) be a martingale. If
Xn ∈ Lp, then X∗

k ∈ Lp for all k ≤ n and

(2.12) ||X∗
n||p ≤ q||Xn||p.

Proof From the corollary 2.1 we get that for the maximal process X∗ we
have the inequality (2.9) for all k ≤ n, when Y = |Xn|. From the corollary
2.2 we get that if Xn ∈ Lp, then also X∗

k ∈ Lp for all k ≤ n. The inequality
(2.12) will follow from the Lemma 2.2. �

The following are left to exercises:
Let (Xn, Fn), n = 1, . . . , N be a supermartingale and let c > 0 be a constant.
Then

cIP(max
n≤N

Xn ≥ c) ≤ IEX1 −

∫

{maxn≤N Xn<c}
XNdIP

≤ IEX1 + IEX−
N .

and

cIP(min
n≤N

Xn ≤ −c) ≤ −

∫

{minn≤N Xn≤−c}
XNdIP ≤ IEX−

N .

To prove these one can use stopping times τ = min{k ≤ N : Xk ≥ c} and
σ = min{k ≤ N : Xk ≤ −c}; in addition we agree that min{∅} = N .

2.3. Martingale convergence theorem.

2.3.1. Doob’s upcrossing inequality.

Convergence and upcrossings. Let xn,n ≥ 1 be a sequence of real numbers
and let a < b be fixed. Let us compute, how many times the sequence xn,
n ≥ 1, will pass over the interval [a, b] in such a way that the passsing will
take place from below to up: upcrossing, when k ≤ N ; denote this number
by ux

N [a, b]. Put ux
∞[a, b] = limN ux

N [a, b].
We can now make the following observations concerning the convergence
and upcrossings:

• If ux
∞[a, b] = ∞ for some a < b; then the sequence (xn)n≥1 does not

converge.
• If the sequence (x)n≥1 converges, then ux

∞[a, b] < ∞ for all a < b.
• If ux

∞[a, b] < ∞ for all a < b, then either the sequence (xn)n≥1

converges or it goes in absolute value to infinity: lim xn → −∞ or
xn → ∞.
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2.3.2. Doob’s upcrossing inequality. Let (X, IF) be a process. Given a, b ∈ IR
with a < b define two sequences of stopping times τn and σn as follows. Put
τ0 = 0 and then define recursively, for j ≥ 0

(2.13) σj+1 = min{k > τj : Xk ≤ a}, τj+1 = min{k > σj+1 : Xk ≥ b},

where min{∅} = ∞. We have then

uX
n [a, b] = max{j : τj ≤ n}.

Theorem 2.7 (Doob’s upcrossing inequality). Let (X, IF) be a submartin-
gale, a < b. Then

(2.14) IEuX
n [a, b] ≤

1

b − a
IE
(

(Xn − a)+
)

.

Proof Put Yn = (Xn − a)+. Then (Y, IF) is also a submartingale. Moreover,
we have that Yn ≥ 0 and

uY
n [0, b − a] = uX

n [a, b].

So, without loosing generality it is enough to prove the inequality

IEuX
n [0, b] ≤

1

b
IEXn

in the case Xn ≥ 0 for all n ≥ 0 [othewise we can go from X to Y , where
Yn = (Xn − a)+]. Define now the two sequences of stopping times σn and
τn with respect to 0 and b > 0. Always τn ≥ n and so we can write

Xn = X0 +
∞
∑

i=1

(Xτi∧n − Xσi∧n) +
∞
∑

i=0

(Xσi+1∧n − Xτi∧n).

Because X is a submartingale, we will get

IE(Xσi+1∧n − Xτi∧n) ≥ 0, i ≥ 0.

On the other hand, bu the construction of the stopping times σn, τn we have
∞
∑

i=1

(Xτi∧n − Xσi∧n) ≥ buX
n [0, b].

Hence we have

IEXn ≥ IEX0 + IE

∞
∑

i=1

(Xτi∧n − Xσi∧n) ≥ bIEuX
n [0, b],

and this proves (2.14). � 18.3. 2008


