2.1.2. Martingale transforms and predictability.

Definition 2.3. Let $\mathbb{F} = (\mathcal{F}_k)_{k\geq 0}$ be a history. Stochastic process $C = (C_k)_{k\geq 1}$ is <u>predictable</u>, if $C_k \in \mathcal{F}_{k-1} \ \forall k \geq 1$.

Definition 2.4. Let C and X be stochastic processes. The process $C \circ X$ is <u>martingale transform</u>, where

$$(C \circ X)_n \doteq \sum_{k=1}^n C_k (X_k - X_{k-1}) = \sum_{k=1}^n C_k \Delta X_k,$$

when $n \ge 1$ and $(C \circ X)_0 = X_0$.

The next theorem justifies the terminology.

Theorem 2.1. Let \mathbb{F} be a history, the process X satisfies $X \in \mathbb{F}$ and C is a predictable process.

- If in addition $0 \leq C_n(\omega) \leq K$ and X is a supermartingale, then $Y \doteq (C \circ X)$ is a supermartingale.
- If in addition $|C_n(\omega)| \leq K$ and X is a martingale, then $Y \doteq (C \circ X)$ is a martingale.

The proof is left as an exercise.

2.1.3. Stopping times and processes. let \mathbb{F} be a history, X is \mathbb{F} - adapted process and τ is a stopping time. Define the random variable X_{τ} by

$$X_{\tau} = \sum_{k=0}^{\infty} X_k I_{\{\tau=k\}}.$$

Let us define $X_{\infty}I_{\{\tau=\infty\}} = 0$, if there is no limit $\lim_n X_n$. Since

$$X_{\tau} \in B\} = \bigcup_{n=0}^{\infty} \left(\{X_n \in B\} \cap \{\tau = n\} \right) \in \mathcal{F},$$

when $B \in \mathbb{B}_{\mathbb{R}}$, then X_{τ} is well defined random variable.

Definition 2.5. Let \mathbb{F} be a history and τ is a stopping time. The stopped σ -algebra is

$$F_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \le k \} \in F_k, k \ge 1 \}.$$

Theorem 2.2. Let \mathbb{F} be a history, τ is a stopping time and $X \mathbb{F}$ - adapted process. Then $X_{\tau} \in \mathcal{F}_{\tau}$.

Proof Let B be a Borel set and consider again

$$\{X_{\tau} \in B\} = \cup_{n=0}^{\infty} \left(\{X_n \in B\} \cap \{\tau = n\}\right).$$

By definition, $\{X_n \in B\} \cap \{\tau = n\} \in F_{\tau}$, and the claim follows. Stopped σ -agebras have the property:

(2.1)
$$\sigma \le \tau \Rightarrow F_{\sigma} \subset F$$

and if $\mathbb{P}(\tau \leq M) = 1$ and $X = (X_k)_{k \geq 0}$ is a martingale, then

[This follows from Theorem 2.3 proved a bit later.]

Let X be a stochastic process, \mathbb{F} a history, and τ a stopping time. Assume that $X \in \mathbb{F}$. Define the stopped process X^{τ} and the stopped history \mathbb{F}^{τ} by:

$$X_n^{\tau} = X_{\tau \wedge n}$$
 and $F_n^{\tau} = F_{\tau \wedge n}$.

We have, for any Borel set B, that

$$\{X_n^{\tau} \in B\} = \sum_{k=0}^n \{X_k \in B\} \cap \{\tau = k\} + \{X_n \in B\} \cap \{\tau > n\},\$$

and so $X_n^{\tau} \in F_n^{\tau}$. We can write this as $X^{\tau} \in \mathbb{F}^{\tau}$. Next we study how stopping affects martingale properties of the process X.

Lemma 2.1. Let (X, \mathbb{F}) be a (super)martingale and τ is a stopping time. Then (X^{τ}, \mathbb{F}) is a (super)martingale.

Proof Put $C_k = I_{\{k \le \tau\}}$, when $k \ge 1$. The process C is predictable: $\{C_k = 0\} = \{\tau \le k - 1\} \in F_{k-1}$; note also that

$$X_n^{\tau} = \sum_{k=1}^n C_k (X_k - X_{k-1}),$$

and so X^{τ} is a (super)martingale by Theorem 2.1.

Theorem 2.3 (Doob). Let X be a martingale, which is defined on a stochastic basis $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$. Let σ, τ be bounded stopping times, which satisfy $\sigma \leq \tau$. Then

(2.3)
$$\mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}] = X_{\sigma}.$$

~

Proof By assumption we have that $\sigma \leq \tau \leq M$. We must show that for $A \in F_{\sigma}$ we have

$$\int_A X_\sigma d\mathbf{I} \mathbf{P} = \int_A X_\tau d\mathbf{I} \mathbf{P}.$$

For this it is enough to show that

$$\int_{A \cap \{\sigma=k\}} X_{\sigma} d\mathbf{P} = \int_{A \cap \{\sigma=k\}} X_{\tau} d\mathbf{P}$$

~

when $1 \le k \le M$. Put $B = A \cap \{\sigma = k\}$, and now we get, using recursion and the martingale property of X:

$$\int_{B} X_{\sigma} d\mathbb{P} = \int_{B} X_{k} d\mathbb{P} = \int_{B \cap \{\tau = k\}} X_{k} d\mathbb{P} + \int_{B \cap \{\tau > k\}} X_{k} d\mathbb{P}$$

$$= \int_{B \cap \{\tau = k\}} X_{k} d\mathbb{P} + \int_{B \cap \{\tau > k\}} X_{k+1} d\mathbb{P}$$

$$= \int_{B \cap \{\tau = k\}} X_{\tau} d\mathbb{P} + \int_{B \cap \{\tau = k+1\}} X_{\tau} d\mathbb{P} + \int_{B \cap \{\tau > k+1\}} X_{k+1} d\mathbb{P}$$

$$\cdots$$

$$= \int_{B \cap \{k \le \tau \le M\}} X_{\tau} d\mathbb{P} = \int_{B} X_{\tau} d\mathbb{P}.$$

This proves the claim (2.3).

 \Box .

Remark 2.1. • A more general version of Doob's stopping theorem goes as follows: X is a martingale on $(\Omega, \mathbb{F}, F, \mathbb{P})$ and σ, τ are two stopping times with the property that $X_{\sigma}, X_{\tau} \in L^1(\mathbb{P})$. If in addition

$$\liminf_{n} \int_{\{\tau > n\}} |X_{\tau}| d\mathbf{I} \mathbf{P} = 0,$$

then

$$\mathbb{E}[X_{\tau}|F_{\sigma}]1_{\{\tau \ge \sigma\}} = X_{\sigma}1_{\{\tau \ge \sigma\}}.$$

 As a corollary of Doob's theorem we obtain that X^τ is a F^τ martingale.

Example 2.5. Let ξ_k be independent Bernoulli variables with $\mathbb{P}(\xi_k = 1) = p = 1 - \mathbb{P}(\xi_k = -1)$, when $k \ge 1$. Let $X_0 = 0$ and $X_n = \sum_{k=0}^n \xi_k$. Put $F_n = F_n^X = \sigma(\xi_1, \ldots, \xi_n)$.

The <u>player</u> can put any amount V_n in the game on the n^{th} round. How the player chooses V_n can depend on the previous results ξ_1, \ldots, ξ_{n-1} of the game. Hence V_n is measurable with respect to F_{n-1} , or in other words V is predictable with respect to \mathbb{F}^X . We interpret $\xi_n = 1$ as the win: the player receives V_n from the <u>bank</u>, if the outcome of the n^{th} round is $\xi_n = -1$, then the player pays V_n to the bank. The gains process G is the following:

$$G_n = \sum_{k=1}^n V_k \xi_k = \sum_{k=1}^n V_k \Delta X_k = (V \circ X)_n.$$

If $p = \frac{1}{2}$, the process X is a martingale, and the gains process G is also a martingale, provided that G_n is integrable.

The <u>martingale</u> strategy goes as follows: bet $V_1 = 1$, and if $\xi_1 = 1$, then stop. If $\xi_1 = -1$, then bet $V_2 = 2$. And more generally, if $\xi_1 = -1, \ldots, \xi_{n-1} = -1$ then bet $V_n = 2^n$, and if $\xi_n = 1$, then stop.

Put $\tau = \inf\{k : \xi_k = 1\}$. τ is a stopping time. Clearly, if $\tau = n$, we have

$$G_n = 2^n - \sum_{k=1}^n 2^{k-1} = 2^n - 2^n + 1 = 1.$$

Hence $G_{\tau} = 1$.

- Good news for the gambler: $\mathbb{P}(\tau < \infty) = 1$ [even for any p > 0].
- Bad news for the gambler: $\mathbb{E}|G_{\tau}| = \infty$ for $p \leq \frac{1}{2}$ [but $\mathbb{E}|G_{\tau}| = \frac{2}{2(2p-1)} < \infty$ for $p > \frac{1}{2}$.]

2.2. Some martingale inequalities.

2.2.1. Doob maximal inequality. Let X be a process on $(\Omega, \mathbb{F}, F, \mathbb{P})$ and put

$$X_n^* = \max_{k \le n} |X_k|;$$

by assumption $X_k \in F_k \subset F_n$, when $k \leq n$, then we get $X_n^* \in F_n$. Clearly the process X is increasing and non-negative. The process X^* is the maximal process of X.

With the Markov inequality we have for all c > 0

(2.4)
$$c\mathbb{P}(X_n^* \ge c) \le \mathbb{E}(X_n^* I_{\{X_n^* \ge c\}}) \le \mathbb{E}X_n^*.$$

The next theorem tells that if $(X_n, F_n)_{n\geq 0}$ is a non-negative submartingale, then on the right hand side of (2.4) one can replace the value X_n^* of the maximal process by the value of submartingale X_n !

Theorem 2.4 (Doob maximal inequality). Let (Z, \mathbb{F}) be a non-negative submartingale. Then for all c > 0

(2.5)
$$c\mathbb{P}(Z_n^* \ge c) \le \mathbb{E}(Z_n I_{\{Z_n^* \ge c\}}) \le \mathbb{E}Z_n.$$

Proof Put $G = \{Z_n^* \ge c\}$. Let us define recursively $G_0 = \{Z_0 \ge c\}$ and for $k \ge 1$

$$G_k = \{Z_0 < c\} \cap \{Z_1 < c\} \cap \dots \cap \{Z_k \ge c\}.$$

By definition $G_k \in F_k$ and if $k \neq l$, then $G_k \cap G_l = \emptyset$. Moreover, we have that $G = \bigcup_{k=0}^n G_k$.

After these preparations we can prove the inequality (2.5). because Z is a submartingale, then for all $0 \le k \le n$ it holds

(2.6)
$$\mathbb{E}(Z_n I_{G_k}) = \int_{G_k} Z_n d\mathbb{P} \ge \int_{G_k} Z_k d\mathbb{P} \ge c\mathbb{P}(G_k);$$

since the events G_k are disjoint and their union is G:

$$c\mathbb{P}(X_n^* \ge c) = c\mathbb{P}(G) = c\sum_{k=0}^n \mathbb{P}(G_k)$$

estimate(2.6) $\le \sum_{k=0}^n \int_{G_k} Z_n d\mathbb{P} = \mathbb{E}(Z_n I_G).$

This proves the inequality (2.5).

Let $(M, {\rm I\!F})$ be a martingale. Then $(|M|, {\rm I\!F})$ is a nonnegative submartingale, and we have

Corollary 2.1. Let (M, \mathbb{F}) martingale. Then for all c > 0

(2.7)
$$c\mathbb{P}(M_n^* \ge c) \le \mathbb{E}(|M_n|I_{\{M_n^* \ge c\}}) \le \mathbb{E}|M_n|.$$

2.2.2. Doobs L^p - inequality. Denote $||X||_q = (\mathbb{E}|X|^q)^{\frac{1}{q}}$, when q > 1. Recall Hölder's inequality.

Theorem 2.5 (Hölder). Let p, q be conjugate numbers : $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} = 1$ If X, Y are random variables, which satisfy $X \in L^p(\mathbb{P}), Y \in L^q(\mathbb{P})$, then $XY \in \mathcal{L}^1$ and

$$(2.8) \mathbb{E}|XY| \le ||X||_p ||Y||_q.$$

Proof We may assume that $X, Y \ge 0$ and also that $||X||_p > 0$ [if $||X||_p = 0$, then X = 0 IP- a.s.. and we have the inequality (2.8)] Define a probability measure Q by

$$Q(A) = \frac{1}{\mathbb{E}_{\mathbb{P}} X^p} \int_A X^p d\mathbb{P}$$

and a random variable U by $U = \frac{Y}{X^{p-1}}I_{\{X>0\}}$. It follows from the Jensen inequality that

$$(\mathbb{E}_Q U)^q \leq \mathbb{E}_Q U^q.$$

On the other hand

$$\mathbb{E}_{Q}U = \frac{1}{\mathbb{E}X^{p}}\mathbb{E}_{\mathbb{P}}\left(\frac{YX^{p}}{X^{p-1}}I_{\{X>0\}}\right)$$
$$= \frac{1}{\mathbb{E}X^{p}}\mathbb{E}_{\mathbb{P}}(XYI_{\{X>0\}}) = \frac{1}{\mathbb{E}_{\mathbb{P}}X^{p}}\mathbb{E}_{\mathbb{P}}(XY)$$

and so

$$\mathbb{E}_{\mathbb{P}}(XY) = \mathbb{E}_{P}X^{p}\mathbb{E}_{Q}U \leq \mathbb{E}_{P}X^{p}\left(\mathbb{E}_{Q}U^{q}\right)^{\frac{1}{q}} \\
\leq \mathbb{E}_{P}X^{p}\left(\frac{1}{\mathbb{E}_{\mathbb{P}}X^{p}}\mathbb{E}_{P}\left(\left(\frac{Y}{X^{p-1}}\right)^{q}I_{\{X>0\}}X^{p}\right)\right)^{\frac{1}{q}} \\
= ||X||_{p}\left(\mathbb{E}_{\mathbb{P}}(Y^{q}I_{\{X>0\}})\right)^{\frac{1}{q}} \leq ||X||_{p}||Y||_{q},$$

where we used the facts -q(p-1) + p = 0 and $1 - \frac{1}{q} = \frac{1}{p}$. Next we prove inequality:

Lemma 2.2. Let $X, Y \ge 0$ be random variables with

(2.9)
$$c\mathbb{P}(X \ge c) \le E(YI_{\{X \ge c\}}),$$

when c > 0. Then the following inequality holds

$$(2.10) ||X||_p \le q||Y||_p$$

with conjugate numbers p, q.

Proof We can assume that $\mathbb{IP}(X \ge c) > 0$, for some c > 0, otherwise (2.10) holds without a proof, since the left hand side is = 0. Further we can assume that $||Y||_p < \infty$. Let us further assume that $||X||_p < \infty$. Using the Fubini theorem

$$\mathbb{E}X^{p} = \int_{\Omega} \left(\int_{0}^{X(\omega)} pc^{p-1} dc \right) \mathbb{P}(d\omega)$$
$$= \int_{0}^{\infty} \left(\int_{\Omega} I_{\{X(\omega) \ge c\}} \mathbb{P}(d\omega) \right) pc^{p-1} dc.$$

By the inequality (2.9) and Fubini theorem we obtain

$$\int_0^\infty \mathbb{P}(X \ge c) p c^{p-1} dc \le \int_0^\infty \mathbb{E} \left(Y I_{\{X \ge c\}} \right) p c^{p-2} dc$$
$$= \int_\Omega Y \left(\int_0^{X(\omega)} p c^{p-2} dc \right) \mathbb{P}(d\omega) = q \mathbb{E}(Y X^{p-1})$$

With the help of Hölder inequality we obtain that

$$\mathbb{E}(YX^{p-1}) \le ||X^{p-1}||_q ||Y||_p = (\mathbb{E}X^p)^{\frac{1}{q}} ||Y||_p,$$

since $(p-1)q = (p-1)\frac{p}{p-1} = p$. So we have obtained the inequality

(2.11)
$$\mathbb{E}X^p \le q\mathbb{E}(YX^{p-1}) \le q||Y||_p (\mathbb{E}X^p)^{\frac{1}{q}}.$$

Because $1 - \frac{1}{q} = \frac{1}{p}$ we obtain from the (2.11) by dividing the left and right hand side by the term $(\mathbb{E}X^p)^{\frac{1}{q}}$ the inequality

$$||X||_p \le q||Y||_p.$$

Now we show how one can proceed without assuming that $||X||_p < \infty$: if the random variable X satisfies (2.9), then it is true for the truncated random variable $X \wedge n$ and so for all n we have

$$||X \wedge n||_p \le q||Y||_p.$$

The claim (2.10) follows now by letting $n \to \infty$.

Corollary 2.2. Let $X, Y \ge 0$ be random variables, which satisfy (2.9) and $||Y||_p < \infty$. Then $X \in L^p$.

Theorem 2.6 (Doob's L^p inequality). Let $(X, \mathbb{F}, \mathbb{P})$ be a martingale. If $X_n \in L^p$, then $X_k^* \in L^p$ for all $k \leq n$ and

(2.12)
$$||X_n^*||_p \le q||X_n||_p.$$

Proof From the corollary 2.1 we get that for the maximal process X^* we have the inequality (2.9) for all $k \leq n$, when $Y = |X_n|$. From the corollary 2.2 we get that if $X_n \in L^p$, then also $X_k^* \in L^p$ for all $k \leq n$. The inequality (2.12) will follow from the Lemma 2.2.

The following are left to exercises:

Let (X_n, F_n) , n = 1, ..., N be a supermartingale and let c > 0 be a constant. Then

$$c\mathbb{P}(\max_{n\leq N} X_n \geq c) \leq \mathbb{E}X_1 - \int_{\{\max_{n\leq N} X_n < c\}} X_N d\mathbb{P}$$
$$\leq \mathbb{E}X_1 + \mathbb{E}X_N^-.$$

and

$$c\mathbb{P}(\min_{n\leq N} X_n \leq -c) \leq -\int_{\{\min_{n\leq N} X_n \leq -c\}} X_N d\mathbb{P} \leq \mathbb{E}X_N^-.$$

To prove these one can use stopping times $\tau = \min\{k \leq N : X_k \geq c\}$ and $\sigma = \min\{k \leq N : X_k \leq -c\}$; in addition we agree that $\min\{\emptyset\} = N$.

2.3. Martingale convergence theorem.

2.3.1. Doob's upcrossing inequality.

Convergence and upcrossings. Let $x_n, n \ge 1$ be a sequence of real numbers and let a < b be fixed. Let us compute, how many times the sequence x_n , $n \ge 1$, will pass over the interval [a, b] in such a way that the passing will take place from below to up: upcrossing, when $k \le N$; denote this number by $u_N^x[a, b]$. Put $u_{\infty}^x[a, b] = \lim_N u_N^x[a, b]$.

We can now make the following observations concerning the convergence and upcrossings:

- If $u_{\infty}^{x}[a,b] = \infty$ for some a < b; then the sequence $(x_{n})_{n \geq 1}$ does not converge.
- If the sequence $(x)_{n\geq 1}$ converges, then $u_{\infty}^{x}[a,b] < \infty$ for all a < b.
- If $u_{\infty}^{x}[a,b] < \infty$ for all a < b, then either the sequence $(x_{n})_{n\geq 1}$ converges or it goes in absolute value to infinity: $\lim x_{n} \to -\infty$ or $x_{n} \to \infty$.

2.3.2. Doob's upcrossing inequality. Let (X, \mathbb{F}) be a process. Given $a, b \in \mathbb{R}$ with a < b define two sequences of stopping times τ_n and σ_n as follows. Put $\tau_0 = 0$ and then define recursively, for $j \ge 0$

(2.13) $\sigma_{j+1} = \min\{k > \tau_j : X_k \le a\}, \quad \tau_{j+1} = \min\{k > \sigma_{j+1} : X_k \ge b\},$ where $\min\{\emptyset\} = \infty$. We have then

$$u_n^X[a,b] = \max\{j : \tau_j \le n\}$$

Theorem 2.7 (Doob's upcrossing inequality). Let (X, \mathbb{F}) be a submartingale, a < b. Then

(2.14)
$$\mathbb{E}u_n^X[a,b] \le \frac{1}{b-a} \mathbb{E}\left((X_n - a)^+ \right).$$

Proof Put $Y_n = (X_n - a)^+$. Then (Y, \mathbb{F}) is also a submartingale. Moreover, we have that $Y_n \ge 0$ and

$$u_n^Y[0, b-a] = u_n^X[a, b]$$

So, without loosing generality it is enough to prove the inequality

$$\mathbb{E}u_n^X[0,b] \le \frac{1}{b}\mathbb{E}X_n$$

in the case $X_n \ge 0$ for all $n \ge 0$ [othewise we can go from X to Y, where $Y_n = (X_n - a)^+$]. Define now the two sequences of stopping times σ_n and τ_n with respect to 0 and b > 0. Always $\tau_n \ge n$ and so we can write

$$X_n = X_0 + \sum_{i=1}^{\infty} (X_{\tau_i \wedge n} - X_{\sigma_i \wedge n}) + \sum_{i=0}^{\infty} (X_{\sigma_{i+1} \wedge n} - X_{\tau_i \wedge n}).$$

Because X is a submartingale, we will get

 $\mathbb{E}(X_{\sigma_{i+1}\wedge n} - X_{\tau_i\wedge n}) \ge 0, i \ge 0.$

On the other hand, but he construction of the stopping times σ_n, τ_n we have

$$\sum_{i=1}^{\infty} (X_{\tau_i \wedge n} - X_{\sigma_i \wedge n}) \ge b u_n^X[0, b].$$

Hence we have

$$\mathbb{E}X_n \ge \mathbb{E}X_0 + \mathbb{E}\sum_{i=1}^{\infty} (X_{\tau_i \wedge n} - X_{\sigma_i \wedge n}) \ge b\mathbb{E}u_n^X[0,b],$$

and this proves (2.14).

 \Box 18.3. 2008