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2.1.2. Martingale transforms and predictability.

Definition 2.3. Let IF = (Fy)r>0 be a history. Stochastic process C' =
(Cr)k>1 1s predictable, if Cy, € F—1 Vk > 1.

Definition 2.4. Let C and X be stochastic processes. The process C o X is
martingale transform, where

(CoX)n =) Cu(Xp—Xpo1) = CrAXy,
k=1 k=1

when n > 1 and (C o X)o = X.
The next theorem justifies the terminology.
Theorem 2.1. Let IF be a history, the process X satisfies X € IF and C is

a predictable process.

e If in addition 0 < Cp(w) < K and X is a supermartingale, then
Y = (C o X) is a supermartingale.

e Ifin addition |Cy,(w)| < K and X is a martingale, then Y = (Co X)
is a martingale.

The proof is left as an exercise.

2.1.3. Stopping times and processes. let IF be a history, X is IF- adapted
process and 7 is a stopping time. Define the random variable X by

e e}
X, =) Xplgopy
k=0

Let us define Xoo Iy = 0, if there is no limit lim,, X, . Since
{X;eB}=U"y({X, € B}n{r=n}) eF,
when B € BBR, then X, is well defined random variable.

Definition 2.5. Let IF be a history and 7 is a stopping time. The stopped
o-algebra is
F.={AcF:An{r <k} e F,k>1}.

Theorem 2.2. Let IF be a history, T is a stopping time and X IF- adapted
process. Then X, € F.

Proof Let B be a Borel set and consider again
{X; eB}=U"y({X, € B}n{r=n}).

By definition, {X,, € B} N {7 =n} € F;, and the claim follows. O
Stopped o-agebras have the property:

(2.1) o<1=F,CF,
and if IP(7 < M) =1 and X = (X})r>0 is a martingale, then
(2.2) EX, = EX,.

[This follows from Theorem 2.3 proved a bit later.]
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Let X be a stochastic process, IF a history, and 7 a stopping time. Assume
that X € IF. Define the stopped process X™ and the stopped history IF™ by:

X;; = X—,—/\n and F;L— = FT/\n-
We have, for any Borel set B, that

{X;EB}:f:{XkeB}m{T:k}HXneB}n{wn},
k=0

and so X € F7. We can write this as X™ € IF". Next we study how
stopping affects martingale properties of the process X.

Lemma 2.1. Let (X,IF) be a (super)martingale and T is a stopping time.
Then (X7,IF) is a (super)martingale.

Proof  Put Cy = Ifp<ry, when k > 1. The process C' is predictable:
{Cr, =0} ={7 <k —1} € F;_1; note also that

X7 = Cp(Xp — Xp1),
k=1

and so X7 is a (super)martingale by Theorem 2.1. O

Theorem 2.3 (Doob). Let X be a martingale, which is defined on a sto-
chastic basis (Q,IF, F,IP). Let o,7 be bounded stopping times, which satisfy
o <rT1. Then

(2.3) E[X,|F,] = X,.

Proof By assumption we have that ¢ < 7 < M. We must show that for

A € F, we have
/ X, dIP = / X, dIP.
A A

For this it is enough to show that

/ X,dIP = X, dIP
An{o=k} An{o=k}

when 1 <k < M. Put B= AN {o = k}, and now we get, using recursion
and the martingale property of X:

/Xad]P /Xkd]P:/ XkdIP—F/ X dIP
B B Bn{r=k} Bn{r>k}
= / Xkd]P-i-/ Xi11dIP
Bn{r=k} Bn{r>k}

= / X dIP + / X dP + / Xy 1dIP
Bn{r=k} Bn{r=k+1} Bn{r>k+1}

/ X, dP = / X, dIP.
B{k<r<M} B

This proves the claim (2.3). a.
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Remark 2.1. e A more general version of Doob’s stopping theorem
goes as follows: X is a martingale on (Q,IF, F,IP) and o,7 are two
stopping times with the property that Xy, X, € L'(IP). If in addition

lim inf/ | X |dIP =0,

{r>n}

n

then
IE[XT|FU]1{TZJ} = XUl{TZJ}'
e As a corollary of Doob’s theorem we obtain that X7 is a IFT martin-
gale.

Example 2.5. Let & be independent Bernoulli variables with IP(&, = 1) =
p=1—1P( = —1), when k > 1. Let Xo =0 and X, = > ;_,&. Put
Fn :FTALX :U(Sla"'aén)'

The player can put any amount V,, in the game on the nt round. How
the player chooses V,, can depend on the previous results &1, ...,&,_1 of the
game. Hence V,, is measurable with respect to F,,_1, or in other words V is
predictable with respect to IFX. We interpret &, = 1 as the win: the player
receives Vy, from the bank, if the outcome of the nth round is &= —1, then
the player pays V,, to the bank. The gains process G is the following:

Gn=> Vi&=> ViAXp=(VoX)n.
k=1 k=1

If p = %, the process X is a martingale, and the gains process G is also a
martingale, provided that G,, is integrable.

The martingale strategy goes as follows: bet Vi =1, and if & = 1, then stop.
If &1 = —1, then bet Vo = 2. And more generally, if & = —1,...,§,—1 = —1
then bet V,, = 2", and if &, = 1, then stop.

Put 7 =inf{k : & = 1}. 7 is a stopping time. Clearly, if T = n, we have

n
Gn:2"—22k‘1:2"—2"+1:1.
k=1

Hence G, = 1.

e Good news for the gambler: IP(1 < o0) =1 [even for any p > 0].
e Bad news for the gambler: E|G.| = oo for p < 1 [but E|G,| =

m < oo forp > %/
2.2. Some martingale inequalities.
2.2.1. Doob mazimal inequality. Let X be a process on (2, IF, F', IP) and put
X = Xkl;
n = max | Xg|;
by assumption X € Fy C F),, when k < n, then we get X € F,,. Clearly
the process X is increasing and non-negative. The process X* is the mazimal

process .of X.
With the Markov inequality we have for all ¢ > 0

(2.4) P(X} > ¢) < B(XjI{x:50) < EX;.



STOCHASTIC ANALYSIS: AN INTRODUCTION 15

The next theorem tells that if (X,,, F},)n>0 is a non-negative submartingale,
then on the right hand side of (2.4) one can replace the value X of the
maximal process by the value of submartingale X,!

Theorem 2.4 (Doob maximal inequality). Let (Z,IF) be a non-negative
submartingale. Then for all ¢ > 0

(2.5) AP(Z: > ¢) < B(ZnIz:5e)) < EZy.

Proof Put G ={Z} > c}. Let us define recursively Gy = {Zy > ¢} and for
kE>1

Gk:{Z()<C}ﬁ{Zl <C}ﬁ"'ﬂ{ZkZC}.
By definition Gy € Fy and if k # [, then G}, N G; = (. Moreover, we have
that G = Up_,G}.
After these preparations we can prove the inequality (2.5). because Z is a
submartingale, then for all 0 < k < n it holds

(2.6) E(Zn1g,) = / ZpdIP > / ZpdIP > cIP(Gy);
Gy G

since the events GG are disjoint and their union is G:

P(X:>¢c) = P(G)= cZIP(Gk)

estimate(2.6) < Z / ZndIP = 1E(Z,I¢).
Gy

This proves the inequality (2.5). O
Let (M,IF) be a martingale. Then (|M|,IF) is a nonnegative submartingale,
and we have

Corollary 2.1. Let (M,IF) martingale. Then for all ¢ > 0

(2.7) clP(My, > ¢) S TE(|My|Ifpre>cy) < IE|M,|.

2.2.2. Doobs LP- inequality. Denote || X ||, = (IE|X|? )q when ¢ > 1. Recall
Hoélder’s inequality.

Theorem 2.5 (Holder). Let p, q be conjugate numbers : p,q > 1 and %—I—% =

1 If X, Y are random variables , which satisfy X € LP(IP),Y € Li(IP), then
XY € £ and

(2.8) EIXY] < [[X]]p|[Yllg-

Proof We may assume that X,Y > 0 and also that || X||, > 0 [if || X ||, = 0,
then X = 0 IP- a.s.. and we have the inequality (2.8)]

Define a probability measure @) by

1
Q) = 5 / XPdIP

and a random variable U by U =
inequality that

<= - (x>0}- It follows from the Jensen

(IEQU)q < ]EQUq.
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On the other hand
1 Y XP
ol = gxple <Xp 1[{X>°}>

1
= EmEr(Yx.q) =

1
EpXP

5 Ep(XY)

and so
Ep(XY) = EpXPEU < EpX? (EqU7)s

1
q
S IEPXP (IEIPX;D << 1) I{X>0}Xp>>
1
= [|X]lp (IE]P YqI{X>0} )q ||X||p |Y||Q7
where we used the facts —¢(p —1) +p=0and 1 — . O

p
Next we prove inequality:

Lemma 2.2. Let X,Y > 0 be random variables with

(2.9) cP(X >c) < E(YIix>e),
when ¢ > 0. Then the following inequality holds
(2.10) Xy < allY1lp

with conjugate numbers p, q.

Proof We can assume that IP(X > ¢) > 0, for some ¢ > 0, otherwise (2.10)
holds without a proof, since the left hand side is = 0. Further we can assume
that ||Y||, < co. Let us further assume that ||X||, < co.

Using the Fubini theorem

X(w)
EX? = / </ pcp_ldc> IP(dw)
Q 0
= /0 </Q I{X(w)>c}lp(dw)> pcp_ldc.

By the inequality (2.9) and Fubini theorem we obtain

/ IP(X > c)pP~tde < / IE (YI{XZC})pcp_2dc
0 0

- / Y ( / e pcp_2dc> IP(dw) = ¢qIE(Y XP~1)
Q 0

With the help of Holder inequality we obtain that
1
EY XY <[|XP Y[V ], = (EXP)a [[Y]],,

since (p—1)g = (p— 1)1% = p.
So we have obtained the inequality

(2.11) EX? < qE(YXP™!) < q||Y|, (EX?)7
Because 1 — % = % we obtain from the (2.11) by dividing the left and right
hand side by the term (IEXP)% the inequality

X1y < allY]]p-
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Now we show how one can proceed without assuming that || X||, < oco: if the
random variable X satisfies (2.9), then it is true for the truncated random
variable X A n and so for all n we have

1X Anlly < gl[Y]]p-
The claim (2.10) follows now by letting n — oc. O

Corollary 2.2. Let X, Y > 0 be random variables, which satisfy (2.9) and
|Y||lp < co. Then X € LP.

Theorem 2.6 (Doob’s LP inequality). Let (X,IF,IP) be a martingale. If
Xn € LP, then X[, € LP for all k <n and

(2.12) X2l < allXallp-

Proof From the corollary 2.1 we get that for the maximal process X* we
have the inequality (2.9) for all £ < n, when Y = |X,,|. From the corollary
2.2 we get that if X, € LP, then also X; € LP for all k < n. The inequality
(2.12) will follow from the Lemma 2.2. O
The following are left to exercises:

Let (X, F,),n=1,..., N be asupermartingale and let ¢ > 0 be a constant.

Then
EX; — / XydIP
{max, <y Xn<c}

EX; + EXy.

cIP(max X,, > ¢)
n<N

IN

IA

and

cP(min X,, < —¢) < —/ XydlP <IEX.
n<N {min, <y X,<—c}

To prove these one can use stopping times 7 = min{k < N : X > ¢} and

o =min{k < N : X; < —c}; in addition we agree that min{(} = N.

2.3. Martingale convergence theorem.
2.3.1. Doob’s upcrossing inequality.

Convergence and upcrossings. Let x,,n > 1 be a sequence of real numbers
and let a < b be fixed. Let us compute, how many times the sequence x,
n > 1, will pass over the interval [a,b] in such a way that the passsing will
take place from below to up: upcrossing, when k < N; denote this number
by uf;[a,b]. Put uZ [a,b] = limy uf;|a, b].

We can now make the following observations concerning the convergence
and upcrossings:

o If uZ_[a,b] = oo for some a < b; then the sequence (z,),>1 does not
converge.

e If the sequence (z),>1 converges, then u% [a,b] < oo for all a < b.

o If uZ [a,b] < oo for all a < b, then either the sequence (z)n>1
converges or it goes in absolute value to infinity: limx,, — —oo or
Ty, — 00.
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2.3.2. Doob’s upcrossing inequality. Let (X,IF) be a process. Given a,b € IR
with a < b define two sequences of stopping times 7, and o, as follows. Put
70 = 0 and then define recursively, for j > 0
(2.13)  ojp1 =min{k > 7 : Xy < a}, 741 = min{k > 0541 : X > b},
where min{()} = co. We have then

up [a,b] = max{j : 7; < n}.

Theorem 2.7 (Doob’s upcrossing inequality). Let (X,IF) be a submartin-
gale, a < b. Then

(2.14) Eu X [a,b] < ﬁ]E (Xn—a)).

Proof PutY, = (X, —a)*. Then (Y,TF) is also a submartingale. Moreover,
we have that Y,, > 0 and

uy, [0,b — a] = ;) [a, b].
So, without loosing generality it is enough to prove the inequality

1
uy, [0,8] < TIBX,

in the case X,, > 0 for all n > 0 [othewise we can go from X to Y, where
Y, = (X, —a)T]. Define now the two sequences of stopping times o,, and
T, with respect to 0 and b > 0. Always 7,, > n and so we can write

o (o.0]
Xn=Xo+ > (Xeian — Xoyan) + > (Xoroynn — Xrinn)-
i=1 i=0
Because X is a submartingale, we will get
]E(XO'i+1/\n - XTi/\n) Z 071 2 0

On the other hand, bu the construction of the stopping times o, 7,, we have

o0

Z(XTZ'/\TL - Xcri/\n) > buf [0, b]
i=1
Hence we have
EX, >EXo+EY (Xpan — Xoan) > bEY[0,8],

i=1
and this proves (2.14). O 18.3. 2008



