Mat-1.3602 Stochastic Analysis.

Exercise 24.4. 2008 Azmoodeh/Valkeila.

1. Let H be a predictable process such that $\int_0^\infty H_s^2 d\langle M, M \rangle_s < \infty$, where M is a continuous martingale. Let τ be a stopping time such that $\int_0^\tau H^2_s d\langle M, M \rangle_s \in L^1(\mathbb{P})$. Show that the following processes are the same, and they are all martingales:

$$\int_0^{\tau \wedge t} H_s dM_s, \quad \int_0^t H_s \mathbb{1}_{(0,\tau]}(s) dM_s \quad \text{and} \quad \int_0^t H_s dM_s^{\tau}$$

- Compute $\mathbb{E}W_t^4$ using the fact that $\mathbb{E}W_s^2 = s$ and the Itô 2. formula.
- Let X, Y be continuous semimartingales. Show that 3.

$$XY = X_0Y_0 + X \circ Y + Y \circ X + \langle X, Y \rangle.$$

- Let h^i , where i = 1, 2 be a deterministic functions with 4. $\mathbb{E} \int_0^\infty (h_s^i)^2 ds < \infty$ and W is a Brownian motion. Define $M_t =$ $\int_{0}^{t} h_{s}^{1} dW_{s} \text{ and } N_{t} = \int_{0}^{t} h_{s}^{1} \int_{0}^{s} h_{u}^{2} dW_{u} dW_{s}. \text{ Show that } M \text{ and } N$ are martingales and that $\mathbb{E}(N_{t}M_{t}) = 0.$ Show that the process $W_{t} - \int_{0}^{t} \frac{W_{s}}{s} ds$ is a Brownian motion with respect to \mathbb{F}^{X} , but not with respect to \mathbb{F}^{W} . Hint: direct
- 5.computation. Use also the fact that orthogonality is equivalent to independence in the Gaussian case, which we have here.
- 6. Find the value of the stochastic integral $\int_0^t W_s e^{W_s} dW_s$.