Mat-1.3602 Stochastic Analysis.

Exercise 27.3. 2008 Azmoodeh/Valkeila.

- 1.+2. Prove Theorem 2.1.:
 - Let \mathbb{F} be a history, the process X satisfies $X \in \mathbb{F}$ and C is a predictable process.
 - If in addition $0 \le C_n(\omega) \le K$ and X is a supermartingale, then $Y \doteq (C \circ X)$ is a supermartingale.
 - If in addition $|C_n(\omega)| \leq K$ and X is a martingale, then $Y \doteq (C \circ X)$ is a martingale.
 - 3. let $(M, \mathbb{F}, \mathbb{P})$ be a martingale, adn τ is a stopping time such that $\mathbb{P}(\tau < \infty) = 1$. Prove the following corollary of Theorem 2.6:

$$||X_{\tau}||_{p} \le ||X_{\tau}^{*}||_{p} \le q||X_{\tau}||_{p},$$

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

- 4. Let (X, \mathbb{P}) be a submartingale. Put $Y_n(X_n-a)^+$, where $a \in \mathbb{R}$. Show that (Y, \mathbb{F}) is also a submartingale.
- 5. + 6. Let (X_n, F_n) , n = 1, ..., N be a supermartingale and let c > 0 be a constant. Then

$$c\mathbb{P}(\max_{n\leq N} X_n \geq c) \leq \mathbb{E}X_1 - \int_{\{\max_{n\leq N} X_n < c\}} X_N d\mathbb{P}$$

$$\leq \mathbb{E}X_1 + \mathbb{E}X_N^-.$$

and

$$c\mathbb{P}(\min_{n\leq N} X_n \leq -c) \leq -\int_{\{\min_{n\leq N} X_n \leq -c\}} X_N d\mathbb{P} \leq \mathbb{E}X_N^-.$$

To prove these one can use stopping times $\tau = \min\{k \leq N : X_k \geq c\}$ and $\sigma = \min\{k \leq N : X_k \leq -c\}$; in addition we agree that $\min\{\emptyset\} = N$.