STOCHASTIC ANALYSIS: AN INTRODUCTION

ESKO VALKEILA

ABSTRACT. The purpose of these lectures is to introduce stochastic integrals with respect to standard Brownian motion, or more generally with respect to continuous square integrable martingales. Before this we discuss discrete time parameter martingales to be familiar with some of the techniques needeed later. We also prove some results for discrete time parameter martingales, like moment inequalities and the important martingale convergence theorem. After this, and after defining stochastic integrals, we give some classical applications of the fundamental Itô formula: Lévy theorem to characterize Brownian motion and Girsanov theorem. Another application are the iterated integrals with respect to Brownian motion; these are useful for example in Malliavin calculus. We try to cover also the basic facts about stochastic differential equations. If the time permits, we discuss some other applications.

Contents

1.	Basic set-up, background	ŗ
1.1.	Practicalities	
1.2.	Background	٦
1.3.	Probability theory	٦
1.4.	Conditioning	: : :
1.5.	Conditional expectations	8
2.	Discrete time martingales	10
2.1.	Histories and martingales	1(
2.2.	_	14
2.3.		17
2.4.	Martingale convergence theorem	19
2.5.	Uniform integrable martingales	20
2.6.	9	24
2.7.	The space $\mathcal{M}^2(\mathbb{F}, \mathbb{P})$	27
2.8.	= , ,	29
3.	Brownian motion and continuous time martingales	32
3.1.	Basic facts on continuous time processes	32
3.2.	Measurability of a process, histories and stopping times	36
3.3.	Martingales	37
3.4.	Existence of Brownian motion	38
3.5.	Stopping and localization	38
3.6.	Continuous square integrable martingales	39
3.7.		41
3.8.		
	$\stackrel{\circ}{M}$	42
4.	Stochastic integrals	44

2 ESKO VALKEILA

4.1.	Stochastic integral of a simple predictable process	44
4.2.	Stochastic integral	45
4.3.	Itô formula	49
5.	Applications of the Itô formula	53
5.1.	A characterization of Brownian motion by Lévy	53
5.2.	Path-wise stochastic integrals	55
5.3.	Girsanov theorem	57
5.4.	Itô-Clark representation theorem	63
5.5.	Stochastic differential equations	64