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Abstract. The purpose of these lectures is to introduce stochastic in-

tegrals with respect to standard Brownian motion, or more generally

with respect to continuous square integrable martingales. Before this

we discuss discrete time parameter martingales to be familiar with some

of the techniques needeed later. We also prove some results for discrete

time parameter martingales, like moment inequalities and the important

martingale convergence theorem. After this, and after defining stochas-

tic integrals, we give some classical applications of the fundamental Itô

formula: Lévy theorem to characterize Brownian motion and Girsanov

theorem. Another application are the iterated integrals with respect to

Brownian motion; these are useful for example in Malliavin calculus. We

try to cover also the basic facts about stochastic differential equations.

If the time permits, we discuss some other applications.
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