5.3.2. Novikov's condition. In order to know weather the candidate $\mathcal{E}(a \circ W)$ is a true martingale or not is a difficult problem. One sufficient condition for this is Novikov's condition.
But before the formulation of this theorem recall that if $\int_{0}^{T} a_{s}^{2} d s<\infty$ and a is a predictable process with respect to (\mathbb{F}, \mathbb{P}), then the stochastic integral $a \circ W$ is a local martingale. Then also $\mathcal{E}(a \circ W)$ is a local martingale. Because $\mathcal{E}(a \circ W)_{0}=1$ and $\mathcal{E}(a \circ W)_{t}>0$, then $\mathcal{E}(a \circ W)$ is a supermartingale. We know from the extra exercise set that in order the exponential to be a true martingale on the interval $[0, T]$ it is enough to show that $\mathbb{E}_{\mathbb{P}}\left(\mathcal{E}(a \circ W)_{T}\right)=$ 1. One sufficient condition is given in the following theorem.

Theorem 5.6 (Novikov). Let a be a predictable process such that

$$
\mathbb{P}\left(\int_{0}^{t} a_{s}^{2} d s<\infty\right)=1
$$

for all $0 \leq t \leq T$. Let $M=\mathcal{E}(a \circ W)$ be the exponential of $a \circ W$. If the Novikovs condition holds

$$
\mathbb{E}_{\mathbb{P}}\left(\exp \left(\frac{1}{2} \int_{0}^{T} a_{s}^{2} d s\right)\right)<\infty
$$

then $M_{t}, 0 \leq t \leq T$ is a martingale.
We will not prove this theorem.
5.4. Itô-Clark representation theorem. We know that if W is a Brownian motion and H is a predictable process with $\mathbb{E} \int_{0}^{T} H_{d}^{2} s<\infty$, then the stochastic integral $H \circ W$ is a martingale and $Y:=\int_{0}^{T} H_{s} d W_{s}$ is a square integrable F_{T}^{W} - measurable random variable. The Itô-Clark representation theorem tells that the opposite fact is true: if $Y \in L^{2}\left(F_{T}^{W}, \mathbb{P}\right)$ then there exists a unique predictable process H^{Y} such that

$$
\begin{equation*}
Y=\mathbb{E} Y+\int_{0}^{T} H_{s}^{Y} d W_{s} \tag{5.10}
\end{equation*}
$$

From (5.10) it follows that every square integrable $\left(\mathbb{F}^{W}, \mathbb{P}\right)$ - martingale M has unique representation

$$
M_{t}=\mathbb{E} M_{T}+\int_{0}^{T} H_{s}^{M} d W_{s} ;
$$

this is easy, since the square integrable F_{T}^{W} - measurable random variable $Y=M_{T}$ has the representation (5.10), and from this we obtain the representation for the martingale M. Before we prove (5.10) we have the following fact from (5.10):

- Every square integrable $\left(\mathbb{F}^{W}, \mathbb{P}\right)$ martingale is continuous.

Theorem 5.7. Let W be a Brownian motion, and Y is a square integrable F_{T}^{W} - measurable random variable. Then Y has a unique integral representation with a predictable process H^{Y} and Brownian motion W :

$$
\begin{equation*}
Y=\mathbb{E} Y+\int_{0}^{T} H_{s}^{Y} d W_{s} \tag{5.11}
\end{equation*}
$$

Proof Note first that the representation (5.11) is unique: If we have another representation with predictable \tilde{H}, then

$$
0=Y-Y=\int_{0}^{T}\left(\tilde{H}_{s}-H_{s}^{Y}\right) d W_{s}
$$

and the Itô- isometry gives

$$
\mathbb{E} \int_{0}^{T}\left(\tilde{H}_{s}-H_{s}^{Y}\right)^{2} d s=0
$$

and hence H^{Y} is unique [in the space $\left.L^{2}\left(\mathcal{P}\left(\mathbb{F}^{W}\right), \mathbb{P} \otimes L e b\right)\right]$.
Before the proof, we recall the following fact: if $Y \in L^{2}\left(F_{T}^{W}\right)$ then there exists a sequence of continuous bounded functions on $\mathbb{R}^{k_{n}}$ such that $f^{n}\left(W_{t_{1}^{n}}, \ldots, W_{t_{k_{n}}^{n}}\right.$ such that $f^{n} \rightarrow Y$ in $L^{2}(\mathbb{P})$.
Next we assume that $Y=f\left(W_{t_{1}}, W_{t_{2}}, \ldots, W_{t_{n}}\right)$ is a square integrable random variable and f is smooth; here $0 \leq t_{1}<t_{2}<\cdots t_{n} \leq T$.
Define a function U by

$$
\begin{array}{r}
U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n-1}, x_{n-1}, t, x\right) \\
=\int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{n-1}, y\right) \frac{1}{\sqrt{2 \pi\left(t_{n}-t\right)}} \exp \left[-\frac{(y-x)^{2}}{2\left(t_{n}-t\right)}\right] d y .
\end{array}
$$

Note first that

$$
f\left(W_{t_{1}}, W_{t_{2}}, \ldots, W_{t_{n}}\right)=U\left(t_{1}, W_{t_{1}}, \ldots, t_{n}, W_{t_{n}}\right)
$$

The function U satisfies

$$
\frac{\partial U}{\partial t}+\frac{1}{2} \frac{\partial^{2} U}{\partial x^{2}}=0
$$

Itô- formula gives now

$$
\begin{array}{r}
U\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n-1}, x_{n-1}, t_{n}, W_{t_{n}}\right)-V\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n-1}, x_{n-1}\right) \\
=\int_{t_{n-1}}^{t_{n}} U_{x}\left(t_{1}, x_{t_{1}}, t_{2}, x_{t_{2}}, \ldots, t_{n-1}, x_{n-1}, s, W_{s}\right) d W_{s}
\end{array}
$$

where $V\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{n-1}, x_{n-1}\right)=U\left(t_{1}, x_{1}, t_{2}, \ldots, t_{n-1}, x_{n-1}, t_{n-1}, x_{n-1}\right)$. We can now continue backwards from $n-1$ to $n-2$, and in this way we obtain the representation (5.10).
The general claim is proved as follows: every F_{T}^{W} measurable random variable Y is a limit of smooth n-dimensional functionals of W, where $n \rightarrow \infty$.. Denote by H^{m} the predictable processes, which are associated to representation of f_{m}, the smooth approximation of Y. Then H^{m} is a c-sequence, which has a limit H^{Y}; by Itô isometry we get the representation (5.10).
5.5. Stochastic differential equations. In this section we shall work with a fixed Brownian motion W; moreover we have two functions σ and b, both are functions from $\mathbb{R}_{+} \prod \mathbb{R}$ to \mathbb{R}. We want to specify, when we can write equations of the form

$$
\begin{equation*}
X_{t}(\omega)=\zeta(\omega)+\int_{s}^{t} \sigma\left(u, X_{u}\right) d W_{s}+\int_{s}^{t} b\left(u, X_{u}\right) d u \tag{5.12}
\end{equation*}
$$

where $\zeta(\omega)$ is a $F_{s^{-}}$measurable random variable.

We shall assume that the coefficients σ and b satisfy the following two conditions:

- Lipschitz continuity:

$$
|\sigma(t, x)-\sigma(t, y)| \leq A|x-y|
$$

and

$$
|b(t, x)-b(t, y)| \leq A|x-y|
$$

- linear growth:

$$
|\sigma(t, x)| \leq A(1+|x|)
$$

and $|b(t, x)| \leq A(1+|x|)$
Note that linear growth and Lipschitz continuity imply that $|\sigma(t, 0)| \leq A$ and $|b(t, 0)| \leq A$.
Assume that $\zeta \in F_{s}$ is square integrable, we look for a progressively measurable continuous solution x to (5.12) with

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}}\left\{\int_{s}^{t} x_{u}^{2}(\omega) d u\right\}<\infty \tag{5.13}
\end{equation*}
$$

Theorem 5.8. Assume that the coefficients b, σ satisfy linear growth and Lipschitz continuity assumptions, $\zeta \in L^{2}\left(F_{s}\right)$. Then there is a unique solution to (5.12) with the property (5.13).

The proof is based on Lindelöf-Picard iteration:
Proof (i) Define x_{t}^{0} by $x_{t}^{0} \equiv \zeta$, and then recursively

$$
x_{t}^{n+1}=\zeta+\int_{s}^{t} \sigma\left(u, x_{u}^{n}\right) d W_{u}+\int_{s}^{t} b\left(u, x_{u}^{n}\right) d u .
$$

We have the following facts, which can be checked by induction:

- For $n \geq 0, x^{n+1}$ is well defined, progressively measurable and almost surely continuous.
- By linear growth we obtain that for every $t>s$

$$
\sup _{s \leq u \leq t} \mathbb{E}_{\mathbb{P}}\left\{\left|x_{u}^{n+1}\right|^{2}\right\}<\infty
$$

and this together with linear growth implies

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}}\left\{\int_{s}^{t}\left|\sigma\left(u, x_{u}^{n+1}\right)\right|^{2} d u\right\}<\infty \tag{5.14}
\end{equation*}
$$

The property (5.14) means that the stochastic integral in the next recursion step is well defined.
(ii) Define, for $t \geq s$ the difference

$$
\begin{aligned}
y_{t}^{n}= & x_{t}^{n+1}-x_{t}^{n} \\
= & \int_{s}^{t}\left[\sigma\left(u, x_{u}^{n}\right)-\sigma\left(u, x_{u}^{n-1}\right)\right] d W_{u} \\
& +\int_{s}^{t}\left[b\left(u, x_{u}^{n}\right)-b\left(u, x_{u}^{n-1}\right)\right] d u
\end{aligned}
$$

Denote $\Delta_{n}(t)=\mathbb{E}_{\mathbb{P}}\left\{\left(y_{t}^{n}\right)^{2}\right\}$ we obtain using Lipschitz continuity, Itô- isometry and Schwartz inequality that

$$
\Delta_{n}(t) \leq 2 A^{2}(1+t-s) \int_{s}^{t} \Delta_{n-1}(u) d u
$$

Fix now $T \geq t \geq s$ and we can write the above as

$$
\begin{equation*}
\Delta_{n}(t) \leq 2 A^{2}(1+T-s) \int_{s}^{t} \Delta_{n-1}(u) d u=C_{T} \int_{s}^{t} \Delta_{n-1}(u) d u \tag{5.15}
\end{equation*}
$$

If $n=0$ we define

$$
y_{t}^{0}=\int_{0}^{t} \sigma(u, \zeta) d W_{u}+\int_{0}^{t} b(u, \zeta) d u
$$

and estimate directly

$$
\begin{equation*}
\Delta_{0}(t)=\mathbb{E}_{\mathbb{P}}\left\{\left(y_{t}^{0}\right)^{2}\right\} \leq C C_{T} t \tag{5.16}
\end{equation*}
$$

where C_{T} is as in (5.15) and $C=\mathbb{E}_{\mathbb{P}}\left\{1+\zeta^{2}\right\}$.
(iii) Iterating the inequalities (5.15) and (5.16) give the estimate

$$
\begin{equation*}
\Delta_{n}(t) \leq C \frac{C_{T}^{n+1} t^{n+1}}{(n+1)!} \tag{5.17}
\end{equation*}
$$

and so $\sup _{s \leq t \leq T} \Delta_{n}(t) \rightarrow 0$. Next, consider the expression $\left\|\sup _{s \leq t \leq T}\left|y_{t}^{n}\right|\right\| \|_{L^{2}(\mathbb{P})}$. We have that

$$
\left\|\sup _{s \leq t \leq T}\left|y_{t}^{n}\right|\right\|_{L^{2}(\mathbb{P})} \leq\left\|\operatorname { s u p } _ { s \leq t \leq T } \left|y_{n}^{(1)}(t)\| \|_{L^{2}(\mathbb{P})}+\left\|\sup _{s \leq t \leq T}\left|y_{n}^{(2)}(t)\right|\right\|_{L^{2}(\mathbb{P})}\right.\right.
$$

with

$$
y_{n}^{(1)}(t)=\int_{s}^{t}\left[\sigma\left(u, x_{u}^{n}\right)-\sigma\left(u, x_{u}^{n-1}\right] d W_{u}\right.
$$

and

$$
y_{n}^{(2)}(t)=\int_{s}^{t}\left[b\left(u, x_{u}^{n}\right)-b\left(u, x_{u}^{n-1}\right)\right] d u
$$

The process $y_{n}^{(1)}$ is a martingale, and so with the help of the Doob maximal inequality we get

$$
\left\|\sup _{s \leq t \leq T} \mid y_{n}^{(1)}(t)\right\|\left\|_{L^{2}(\mathbb{P})} \leq 2\right\| y_{n}^{(1)}(T) \|_{L^{2}(\mathbb{P})} \leq A_{T}\left\{\int_{s}^{T} \Delta_{n-1}(u) d u\right\}^{\frac{1}{2}}
$$

For the second term we will use the trick $\left(\int_{s}^{t} f_{u} d u\right)^{2} \leq(t-s) \int_{s}^{t} f_{u}^{2} d u$ and we obtain

$$
\left\|\sup _{s} \leq t \leq T \mid y_{n}^{(2)}(t)\right\| \|_{L^{2}(\mathbb{P})} \leq A_{T}\left\{\int_{s}^{T} \Delta_{n-1}(u) d u\right\}^{\frac{1}{2}}
$$

(iv) Putting together the estimates from above we obtain that

$$
\sum_{n}\left\|\sup _{t \leq T} \mid y_{n}(t)\right\| \|_{L^{2}(\mathbb{P})}<\infty
$$

Hence the sum $\sum y^{n}$ uniformly and almost surely on every finite interval. This means that x^{n} converges uniformly almost surely to a limit X, which
is continuous and progressively measurable. We can write the following display:

$$
x_{t}^{n+1}=\zeta+\int_{s}^{t} \sigma\left(u, x_{u}^{n}\right) d W_{u}+\int_{s}^{t} b\left(u, x_{u}\right) d u
$$

here $x^{n+1} \rightarrow X$ uniformly almost surely and $\int_{s}^{t} b\left(u, x_{u}^{n}\right) d u \rightarrow \int_{s}^{t} b\left(u, X_{u}\right) d u$ almost surely, and so X is a solution to (5.12).
(v) Finally, we show the uniqueness. If \tilde{X} is another solution to (5.12) with the property (5.13), then by the previous estimates we get for $Y=X-\tilde{X}$ the estimate

$$
\mathbb{E}_{\mathbb{P}}\left\{Y_{t}^{2}\right\} \leq C_{T} \int_{s}^{t} \mathbb{E}_{\mathbb{P}}\left(Y_{u}^{2}\right) d u
$$

On the other hand we also have the estimate

$$
\mathbb{E}_{\mathbb{P}} Y_{t}^{2} \leq C_{T} t
$$

valid for $s \leq t \leq T$. Iterating this together with the previous one gives

$$
\mathbb{E}_{\mathbb{P}} Y_{t}^{2} \leq \frac{C_{T}^{n} t^{n}}{n!}
$$

and this show that $Y_{t}=0$ for all $t \leq T$.

> That's all, folks.

