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| Lecture 29.4. 2008 |

5.3.2. Nowikov’s condition. In order to know weather the candidate £(aoW)
is a true martingale or not is a difficult problem. One sufficient condition
for this is Novikov’s condition.

But before the formulation of this theorem recall that if f(;f a%ds < oo and a
is a predictable process with respect to (IF, IP), then the stochastic integral
aoW is alocal martingale. Then also £(acW) is a local martingale. Because
E(aoW)g=1and E(aoW); >0, then E(ao W) is a supermartingale. We
know from the extra exercise set that in order the exponential to be a true
martingale on the interval [0, 7] it is enough to show that IEp(E(acW)r) =
1. One sufficient condition is given in the following theorem.

Theorem 5.6 (Novikov). Let a be a predictable process such that

t
IP(/ a?ds < o00) = 1
0

for all0 <t <T. Let M = E(a o W) be the exponential of a o W. If the
Nowvikovs condition holds

1 (T
Ep (exp <§/ a§d5>> < 00,
0

then My, 0 <t <T is a martingale.

We will not prove this theorem.

5.4. It6-Clark representation theorem. We know that if W is a Brow-
nian motion and H is a predictable process with IE fOT Hgs < 00, then the

stochastic integral H o W is a martingale and Y := fOT H,dW; is a square
integrable F%V - measurable random variable. The It6-Clark representation
theorem tells that the opposite fact is true: if Y € L%(F}Y,IP) then there
exists a unique predictable process HY such that

T
(5.10) Y =EY + / HY dw,.
0
From (5.10) it follows that every square integrable (IF" IP)- martingale M
has unique representation

T
M, =EMp+ / HMaw,;
0
this is easy, since the square integrable FTW - measurable random variable
Y = My has the representation (5.10), and from this we obtain the repre-
sentation for the martingale M. Before we prove (5.10) we have the following
fact from (5.10):

e Every square integrable (IF",IP) martingale is continuous.

Theorem 5.7. Let W be a Brownian motion, and Y is a square integrable
FQW— measurable random variable. Then Y has a unique integral represen-
tation with a predictable process HY and Brownian motion W :

T
(5.11) Y =IEY +/ HY dw,.
0
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Proof Note first that the representation (5.11) is unique: If we have another
representation with predictable H, then

T
O:Y—Y:/ (HS—HSY>dWS
0
and the Ito- isometry gives
T, 2
IE/ (HS—H,?’) ds =0,
0

and hence HY is unique [in the space L*(P(IFV),IP ® Leb)).

Before the proof, we recall the following fact: if Y € L?(F}”) then there ex-

ists a sequence of continuous bounded functions on IR** such that f ”(Wt?, e Wth
such that f* — Y in L2(IP).

Next we assume that Y = f(W;,, Ws,,..., W, ) is a square integrable ran-

dom variable and f is smooth; here 0 <t <ty < ---t, <T.

Define a function U by

U(tl,xl,tg,l‘g, e ,tn_l,l‘n_l,t,l‘)

) L | w=2?
_/]Rf(l‘l, e 1, Y) 2ty — 1) exp[ 2(tn—t)] a-

Note first that
Wy Wy oo o Wy, ) = U, Weyy ooty W)

The function U satisfies
oU 10%U

ot 2o

Ito- formula gives now

U(tl,ZCl,tQ,ZCQ, .o atn—laxn—latna th) - V(tl,l‘l,tg,xg, cee 7tn—1>$n—1)

tn
:/t Up(ti, @y, to, gy o ooy tn—1,2, 4,8, Wi )dWs,
n—1

where V(tl, T, tg, Ty .. ,tnfl, xnfl) = U(tl, T, tg, ce ,tnfl, Tn—1, tnfl, .Tnfl).
We can now continue backwards from n — 1 to n — 2, and in this way we
obtain the representation (5.10).

The general claim is proved as follows: every F%V measurable random vari-
able Y is a limit of smooth n-dimensional functionals of W, where n — oo..
Denote by H™ the predictable processes, which are associated to represen-
tation of f,,, the smooth approximation of Y. Then H™ is a c-sequence,
which has a limit HY; by Ito isometry we get the representation (5.10). O

5.5. Stochastic differential equations. In this section we shall work with
a fixed Brownian motion W'; moreover we have two functions o and b, both
are functions from IRy [JIR to IR. We want to specify, when we can write
equations of the form

t t
(5.12) Xy(w) = C(w) + / o, X)W, + / b(u, X )du,

where ((w) is a Fs- measurable random variable.
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We shall assume that the coefficients o and b satisfy the following two con-
ditions:

e Lipschitz continuity:

o(t,2) — o(t,y)| < Alz —y]
and
[b(t,2) = b(t, y)| < Alz —yl.
e linear growth:
ot x)] < A(1 + |2))
and |b(t,z)| < A(1 + |z|)

Note that linear growth and Lipschitz continuity imply that |o(¢,0)] < A
and |b(t,0)] < A.

Assume that ( € F§ is square integrable, we look for a progressively mea-
surable continuous solution z to (5.12) with

(5.13) Ep {/t xi(w)du} < .

Theorem 5.8. Assume that the coefficients b, o satisfy linear growth and
Lipschitz continuity assumptions, ( € L?(F,). Then there is a unique solu-
tion to (5.12) with the property (5.13).

The proof is based on Lindelof-Picard iteration:
Proof (i) Define 2) by 2 = ¢, and then recursively

t t
it =¢ —l—/ o(u, zy)dW,, —l—/ b(u, x;, )du.
S S

We have the following facts, which can be checked by induction:

e For n > 0, 2" is well defined, progressively measurable and almost
surely continuous.
e By linear growth we obtain that for every t > s

sup Ep {|z0T*} < o0,
s<u<t

and this together with linear growth implies

(5.14) Ep {/ o (u, 27| du} < oo.

The property (5.14) means that the stochastic integral in the next recursion
step is well defined.
(ii) Define, for t > s the difference

n o __ n+1 n
Yo = Ty  — Iy
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Denote A, (t) = Ep {(yf)Q} we obtain using Lipschitz continuity, 1t6- isom-
etry and Schwartz inequality that

An(t) < 242(1 + 1 — 5) /t A, (u)du.
Fix now T >t > s and we can write the absove as
(5.15) An(t) <2421+ T — ) /t Ap_i(u)du = Cr /t Ap—i(u)du.
If n = 0 we define s S
W= o, Q) + / b, O
and estimate directly : :
(5.16) Aot) = B { ()"} < cCrt,

where Cp is as in (5.15) and C = IEp {1+ ¢*}.
(iii) Iterating the inequalities (5.15) and (5.16) give the estimate

(5.17) Anlt) £ O 7

and 80 sup,<¢<7 An(t) — 0. Next, consider the expression || sup,<;<r [y{'|||L2(p)-
We have that

| sup [y lllzzaey < 11 osup [wSD Oz + 1 sup (42 @)z ).
s<t<T s<t<T s<t<T
with .
B0 = [ [otwal) - otuay) aw,
and

y(t) = / [b(u, 27) — b(u, 27 1)] du.
(1)

The process yy; ' is a martingale, and so with the help of the Doob maximal
inequality we get

T 2
| sup [y Oz < 2lv8 (Dllzge) < Ar {/ An_l(U)dU} :
s<t<T s

2
For the second term we will use the trick (fst fudu) < (t—s) fst f2du and

we obtain

T 3
Isup < ¢ < TP Ollacey < Ar { [ Apawyin}
S S
(iv) Putting together the estimates from above we obtain that
> 1sup [ya (B[] 22y < o0
—<T

Hence the sum ) y™ uniformly and almost surely on every finite interval.
This means that 2™ converges uniformly almost surely to a limit X, which
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is continuous and progressively measurable. We can write the following
display:

t t
Pt = ¢ —I—/ o(u, zy)dW,, + / b(u, xy,)du;
S S

here "1 — X uniformly almost surely and fst b(u, 2 )du — fst b(u, X,)du
almost surely, and so X is a solution to (5.12).

(v) Finally, we show the uniqueness. If X is another solution to (5.12) with
the property (5.13), then by the previous estimates we get for Y = X — X
the estimate

t
Ep {Y?} < CT/ Ep (Y,7) du.
S

On the other hand we also have the estimate

EpY? < Crt,
valid for s <t <T. Iterating this together with the previous one gives
Cntn
]E]PYt2 < T
and this show that Y; =0 for all ¢t <T. O

That’s all, folks.




