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Lecture 29.4. 2008

5.3.2. Novikov’s condition. In order to know weather the candidate E(a◦W )
is a true martingale or not is a difficult problem. One sufficient condition
for this is Novikov’s condition.

But before the formulation of this theorem recall that if
∫

T

0 a2
sds < ∞ and a

is a predictable process with respect to (IF, IP), then the stochastic integral
a◦W is a local martingale. Then also E(a◦W ) is a local martingale. Because
E(a ◦ W )0 = 1 and E(a ◦ W )t > 0, then E(a ◦ W ) is a supermartingale. We
know from the extra exercise set that in order the exponential to be a true
martingale on the interval [0, T ] it is enough to show that IEIP(E(a◦W )T ) =
1. One sufficient condition is given in the following theorem.

Theorem 5.6 (Novikov). Let a be a predictable process such that

IP(

∫

t

0
a2

sds < ∞) = 1

for all 0 ≤ t ≤ T . Let M = E(a ◦ W ) be the exponential of a ◦ W . If the
Novikovs condition holds

IEIP

(

exp

(

1

2

∫

T

0
a2

sds

))

< ∞,

then Mt, 0 ≤ t ≤ T is a martingale.

We will not prove this theorem.

5.4. Itô-Clark representation theorem. We know that if W is a Brow-

nian motion and H is a predictable process with IE
∫

T

0 H2
d
s < ∞, then the

stochastic integral H ◦ W is a martingale and Y :=
∫

T

0 HsdWs is a square

integrable FW

T
- measurable random variable. The Itô-Clark representation

theorem tells that the opposite fact is true: if Y ∈ L2(FW

T
, IP) then there

exists a unique predictable process HY such that

(5.10) Y = IEY +

∫

T

0
HY

s dWs.

From (5.10) it follows that every square integrable (IFW , IP)- martingale M

has unique representation

Mt = IEMT +

∫

T

0
HM

s dWs;

this is easy, since the square integrable FW

T
- measurable random variable

Y = MT has the representation (5.10), and from this we obtain the repre-
sentation for the martingale M . Before we prove (5.10) we have the following
fact from (5.10):

• Every square integrable (IFW , IP) martingale is continuous.

Theorem 5.7. Let W be a Brownian motion, and Y is a square integrable
FW

T
- measurable random variable. Then Y has a unique integral represen-

tation with a predictable process HY and Brownian motion W :

(5.11) Y = IEY +

∫

T

0
HY

s dWs.
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Proof Note first that the representation (5.11) is unique: If we have another

representation with predictable H̃, then

0 = Y − Y =

∫

T

0

(

H̃s − HY

s

)

dWs

and the Itô- isometry gives

IE

∫

T

0

(

H̃s − HY

s

)2
ds = 0,

and hence HY is unique [in the space L2(P(IFW ), IP ⊗ Leb)].
Before the proof, we recall the following fact: if Y ∈ L2(FW

T
) then there ex-

ists a sequence of continuous bounded functions on IRkn such that fn(Wtn
1
, , . . . ,Wtn

kn

such that fn → Y in L2(IP).
Next we assume that Y = f(Wt1 ,Wt2 , . . . ,Wtn) is a square integrable ran-
dom variable and f is smooth; here 0 ≤ t1 < t2 < · · · tn ≤ T .
Define a function U by

U(t1, x1, t2, x2, . . . , tn−1, xn−1, t, x)

=

∫

IR
f(x1, . . . , xn−1, y)

1
√

2π(tn − t)
exp

[

−
(y − x)2

2 (tn − t)

]

dy.

Note first that

f(Wt1 ,Wt2 , . . . ,Wtn) = U(t1,Wt1 , . . . , tn,Wtn).

The function U satisfies
∂U

∂t
+

1

2

∂2U

∂x2
= 0;

Itô- formula gives now

U(t1, x1, t2, x2, . . . , tn−1, xn−1, tn,Wtn) − V (t1, x1, t2, x2, . . . , tn−1, xn−1)

=

∫

tn

tn−1

Ux(t1, xt1 , t2, xt2 , . . . , tn−1, xn−1
, s,Ws)dWs,

where V (t1, x1, t2, x2, . . . , tn−1, xn−1) = U(t1, x1, t2, . . . , tn−1, xn−1, tn−1, xn−1).
We can now continue backwards from n − 1 to n − 2, and in this way we
obtain the representation (5.10).
The general claim is proved as follows: every FW

T
measurable random vari-

able Y is a limit of smooth n-dimensional functionals of W , where n → ∞..
Denote by Hm the predictable processes, which are associated to represen-
tation of fm, the smooth approximation of Y . Then Hm is a c-sequence,
which has a limit HY ; by Itô isometry we get the representation (5.10). �

5.5. Stochastic differential equations. In this section we shall work with
a fixed Brownian motion W ; moreover we have two functions σ and b, both
are functions from IR+

∏

IR to IR. We want to specify, when we can write
equations of the form

(5.12) Xt(ω) = ζ(ω) +

∫

t

s

σ(u,Xu)dWs +

∫

t

s

b(u,Xu)du,

where ζ(ω) is a Fs- measurable random variable.
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We shall assume that the coefficients σ and b satisfy the following two con-
ditions:

• Lipschitz continuity:

|σ(t, x) − σ(t, y)| ≤ A|x − y|

and

|b(t, x) − b(t, y)| ≤ A|x − y|.

• linear growth:

|σ(t, x)| ≤ A(1 + |x|)

and |b(t, x)| ≤ A(1 + |x|)

Note that linear growth and Lipschitz continuity imply that |σ(t, 0)| ≤ A

and |b(t, 0)| ≤ A.
Assume that ζ ∈ Fs is square integrable, we look for a progressively mea-
surable continuous solution x to (5.12) with

(5.13) IEIP

{
∫

t

s

x2
u(ω)du

}

< ∞.

Theorem 5.8. Assume that the coefficients b, σ satisfy linear growth and
Lipschitz continuity assumptions, ζ ∈ L2(Fs). Then there is a unique solu-
tion to (5.12) with the property (5.13).

The proof is based on Lindelöf-Picard iteration:
Proof (i) Define x0

t by x0
t ≡ ζ, and then recursively

xn+1
t

= ζ +

∫

t

s

σ(u, xn

u)dWu +

∫

t

s

b(u, xn

u)du.

We have the following facts, which can be checked by induction:

• For n ≥ 0, xn+1 is well defined, progressively measurable and almost
surely continuous.

• By linear growth we obtain that for every t > s

sup
s≤u≤t

IEIP

{

|xn+1
u |2

}

< ∞,

and this together with linear growth implies

(5.14) IEIP

{
∫

t

s

|σ(u, xn+1
u )|2du

}

< ∞.

The property (5.14) means that the stochastic integral in the next recursion
step is well defined.
(ii) Define, for t ≥ s the difference

yn

t = xn+1
t

− xn

t

=

∫

t

s

[

σ(u, xn

u) − σ(u, xn−1
u )

]

dWu

+

∫

t

s

[

b(u, xn

u) − b(u, xn−1
u )

]

du
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Denote ∆n(t) = IEIP

{

(yn
t )2

}

we obtain using Lipschitz continuity, Itô- isom-

etry and Schwartz inequality that

∆n(t) ≤ 2A2(1 + t − s)

∫

t

s

∆n−1(u)du.

Fix now T ≥ t ≥ s and we can write the above as

(5.15) ∆n(t) ≤ 2A2(1 + T − s)

∫

t

s

∆n−1(u)du = CT

∫

t

s

∆n−1(u)du.

If n = 0 we define

y0
t =

∫

t

0
σ(u, ζ)dWu +

∫

t

0
b(u, ζ)du

and estimate directly

(5.16) ∆0(t) = IEIP

{

(

y0
t

)2
}

≤ CCT t,

where CT is as in (5.15) and C = IEIP

{

1 + ζ2
}

.
(iii) Iterating the inequalities (5.15) and (5.16) give the estimate

(5.17) ∆n(t) ≤ C
Cn+1

T
tn+1

(n + 1)!

and so sups≤t≤T ∆n(t) → 0. Next, consider the expression || sups≤t≤T |yn
t |||L2(IP).

We have that

|| sup
s≤t≤T

|yn

t |||L2(IP) ≤ || sup
s≤t≤T

|y(1)
n (t)|||L2(IP) + || sup

s≤t≤T

|y(2)
n (t)|||L2(IP).

with

y(1)
n (t) =

∫

t

s

[

σ(u, xn

u) − σ(u, xn−1
u

]

dWu

and

y(2)
n (t) =

∫

t

s

[

b(u, xn

u) − b(u, xn−1
u )

]

du.

The process y
(1)
n is a martingale, and so with the help of the Doob maximal

inequality we get

|| sup
s≤t≤T

|y(1)
n (t)|||L2(IP) ≤ 2||y(1)

n (T )||L2(IP) ≤ AT

{
∫

T

s

∆n−1(u)du

}

1

2

.

For the second term we will use the trick
(

∫

t

s
fudu

)2
≤ (t − s)

∫

t

s
f2

udu and

we obtain

|| sup
s

≤ t ≤ T |y(2)
n (t)|||L2(IP) ≤ AT

{
∫

T

s

∆n−1(u)du

}

1

2

.

(iv) Putting together the estimates from above we obtain that
∑

n

|| sup
t≤T

|yn(t)|||L2(IP) < ∞.

Hence the sum
∑

yn uniformly and almost surely on every finite interval.
This means that xn converges uniformly almost surely to a limit X, which
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is continuous and progressively measurable. We can write the following
display:

xn+1
t

= ζ +

∫

t

s

σ(u, xn

u)dWu +

∫

t

s

b(u, xu)du;

here xn+1 → X uniformly almost surely and
∫

t

s
b(u, xn

u)du →
∫

t

s
b(u,Xu)du

almost surely, and so X is a solution to (5.12).

(v) Finally, we show the uniqueness. If X̃ is another solution to (5.12) with

the property (5.13), then by the previous estimates we get for Y = X − X̃

the estimate

IEIP

{

Y 2
t

}

≤ CT

∫

t

s

IEIP

(

Y 2
u

)

du.

On the other hand we also have the estimate

IEIPY 2
t ≤ CT t,

valid for s ≤ t ≤ T . Iterating this together with the previous one gives

IEIPY 2
t ≤

Cn

T
tn

n!
and this show that Yt = 0 for all t ≤ T . �

That’s all, folks.


