Tue 13.4. 1999
L8.html
FEM, triangle coordinates, quadr. shape functions
Handouts
- Femtool manual 4-1 .. 4.7 (The FE Method, the elliptic equation)
- Celia-Gray (bright blue) pp. 145-162 (Pick up at Rikka's envelope in
case you missed)
Scanned transparencies
page 1
page 2
page 3
page 4
Matlab-session (right below)
Recall from lecture 7.
Some more ideas
Suppose we exported the p,e,t and there are 9 nodes.
Here's a nice way of seeing the basis (pyramid) functions:
for i=1:9;Id=eye(9,9);pdesurf(p,t,Id(:,i)); view(30,20);grid;pause;end;
(Just make a surface plot of the 9-dimensional coordinate unit vectors
placed on the mesh points.)
Continue with lecture nr. 8, Apr 13
Shape functions , start with linear
See (download) also Maple ws femtri.mws
x=[0 1 1];y=[0 0 1];
fill(x,y,'g') % Triangle with vertices at (x(i),y(i))
z=[1 0 0];fill3(x,y,z,'b');grid;hold on;fill(x,y,'g')
>> view(-30,20)
z=[0 1 0];fill3(x,y,z,'r')
z=[0 0 1];fill3(x,y,z,'y')
% Try various views
>> view(45,0)
>> view(45,80)
>> view(130,70)
x1=[0 1 0.5];x2=[1 1 0.5];x3=[.5 1 0];x4=[0 .5 0];
y1=[0 0 .5];y2=[0 1 .5];y3=[.5 1 1];y4=[0 .5 1];
>> fill(x1,y1,'y',x2,y2,'b',x3,y3,'g',x4,y4,'r')
z1=[0 0 1];z2=[0 0 1];
fill3(x1,y1,z1,'y',x2,y2,z2,'b');grid
view(30,60)
Quadratic shape functions:
x=[0 1 2 1.5 1 .5 0];
y=[0 0 0 .5 1 .5 0];
>> fill(x,y,'g')
Well, one idea is to build the p,t,e of pdetool and use pdesurf. That's
worth trying (get aquanted with pdetool structures and tools also).